1,854 research outputs found

    Machine Learning and Irresponsible Inference: Morally Assessing the Training Data for Image Recognition Systems

    Get PDF
    Just as humans can draw conclusions responsibly or irresponsibly, so too can computers. Machine learning systems that have been trained on data sets that include irresponsible judgments are likely to yield irresponsible predictions as outputs. In this paper I focus on a particular kind of inference a computer system might make: identification of the intentions with which a person acted on the basis of photographic evidence. Such inferences are liable to be morally objectionable, because of a way in which they are presumptuous. After elaborating this moral concern, I explore the possibility that carefully procuring the training data for image recognition systems could ensure that the systems avoid the problem. The lesson of this paper extends beyond just the particular case of image recognition systems and the challenge of responsibly identifying a person’s intentions. Reflection on this particular case demonstrates the importance (as well as the difficulty) of evaluating machine learning systems and their training data from the standpoint of moral considerations that are not encompassed by ordinary assessments of predictive accuracy

    Small deviations of iterated processes in space of trajectories

    Full text link
    We derive logarithmic asymptotics of probabilities of small deviations for iterated processes in the space of trajectories. We find conditions under which these asymptotics coincide with those of processes generating iterated processes. When these conditions fail the asymptotics are quite different

    The Humanities and the Public Soul 1

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73120/1/j.1467-8330.2008.00615.x.pd

    Topological semimetal in a fermionic optical lattice

    Full text link
    Optical lattices play a versatile role in advancing our understanding of correlated quantum matter. The recent implementation of orbital degrees of freedom in chequerboard and hexagonal optical lattices opens up a new thrust towards discovering novel quantum states of matter, which have no prior analogs in solid state electronic materials. Here, we demonstrate that an exotic topological semimetal emerges as a parity-protected gapless state in the orbital bands of a two-dimensional fermionic optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2π2\pi, in sharp contrast to the π\pi flux of Dirac points as in graphene. We prove that the appearance of this topological liquid is universal for all lattices with D4_4 point group symmetry as long as orbitals with opposite parities hybridize strongly with each other and the band degeneracy is protected by odd parity. Turning on inter-particle repulsive interactions, the system undergoes a phase transition to a topological insulator whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states.Comment: 6 pages, 3 figures and Supplementary Informatio

    Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration

    Get PDF
    The technique of guided tissue regeneration (GTR) has evolved over recent years in an attempt to achieve periodontal tissue regeneration by the use of a barrier membrane. However, there are significant limitations in the currently available membranes and overall outcomes may be limited. A degradable composite material was investigated as a potential GTR membrane material. Polylactic acid (PLA) and nanohydroxyapatite (nHA) composite was analysed, its bioactive potential and suitability as a carrier system for growth factors were assessed. The effect of nHA concentrations and the addition of platelet derived growth factor (PDGF) on osteoblast proliferation and differentiation was investigated. The bioactivity was dependent on the nHA concentration in the films, with more apatite deposited on films containing higher nHA content. Osteoblasts proliferated well on samples containing low nHA content and differentiated on films with higher nHA content. The composite films were able to deliver PDGF and cell proliferation increased on samples that were pre absorbed with the growth factor. nHA–PLA composite films are able to deliver active PDGF. In addition the bioactivity and cell differentiation was higher on films containing more nHA. The use of a nHA–PLA composite material containing a high concentration of nHA may be a useful material for GTR membrane as it will not only act as a barrier, but may also be able to enhance bone regeneration by delivery of biologically active molecules

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure

    Transparency in health economic modeling : options, issues and potential solutions

    Get PDF
    Economic models are increasingly being used by health economists to assess the value of health technologies and inform healthcare decision making. However, most published economic models represent a kind of black box, with known inputs and outputs but undisclosed internal calculations and assumptions. This lack of transparency makes the evaluation of the model results challenging, complicates comparisons between models, and limits the reproducibility of the models. Here, we aim to provide an overview of the possible steps that could be undertaken to make economic models more transparent and encourage model developers to share more detailed calculations and assumptions with their peers. Scenarios with different levels of transparency (i.e., how much information is disclosed) and reach of transparency (i.e., who has access to the disclosed information) are discussed, and five key concerns (copyrights, model misuse, confidential data, software, and time/resources) pertaining to model transparency are presented, along with possible solutions. While a shift toward open-source models is underway in health economics, as has happened before in other research fields, the challenges ahead should not be underestimated. Importantly, there is a pressing need to find an acceptable trade-off between the added value of model transparency and the time and resources needed to achieve such transparency. To this end, it will be crucial to set incentives at different stakeholder levels. Despite the many challenges, the many benefits of publicly sharing economic models make increased transparency a goal worth pursuing

    Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism

    Get PDF
    This essay examines the philosophical significance of Ω\Omega-logic in Zermelo-Fraenkel set theory with choice (ZFC). The duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω\Omega-logical validity can then be countenanced within a coalgebraic logic, and Ω\Omega-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω\Omega-logical validity correspond to those of second-order logical consequence, Ω\Omega-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets

    Vortex arrays in neutral trapped Fermi gases through the BCS–BEC crossover

    Get PDF
    Vortex arrays in type-II superconductors reflect the translational symmetry of an infinite system. There are cases, however, such as ultracold trapped Fermi gases and the crust of neutron stars, where finite-size effects make it complex to account for the geometrical arrangement of vortices. Here, we self-consistently generate these arrays of vortices at zero and finite temperature through a microscopic description of the non-homogeneous superfluid based on a differential equation for the local order parameter, obtained by coarse graining the Bogoliubov–de Gennes (BdG) equations. In this way, the strength of the inter-particle interaction is varied along the BCS–BEC crossover, from largely overlapping Cooper pairs in the Bardeen–Cooper–Schrieffer (BCS) limit to dilute composite bosons in the Bose–Einstein condensed (BEC) limit. Detailed comparison with two landmark experiments on ultracold Fermi gases, aimed at revealing the presence of the superfluid phase, brings out several features that make them relevant for other systems in nature as well
    • …
    corecore