2,194 research outputs found

    Human motion tracking based on complementary Kalman filter

    Get PDF
    Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors

    Beat-to-beat ambulatory blood pressure estimation based on random forest

    Get PDF
    Ambulatory blood pressure is critical in predicting some major cardiovascular events; therefore, cuff-less and noninvasive beat-to-beat ambulatory blood pressure measure-ment is of great significance. Machine-learning methods have shown the potential to derive the relationship between physio-logical signal features and ABP. In this paper, we apply random forest method to systematically explorer the inherent connections between photoplethysmography signal, electrocardiogram signal and ambulatory blood pressure. To archive this goal, 18 features were extracted from PPG and ECG signals. Several models with most significant features as inputs and beat-to-beat ABP as outputs were trained and tested on data from the Multi-Parameter Intelligent Monitoring in Intensive Care II database. Results indicate that compared with the common pulse transit time method, the RF method gives a better performance for one-hour continuous estimation of diastolic blood pressure and systolic blood pressure under both the Association for the Advancement of Medical Instrumentation and British Hyper-tension Society standard

    Flavonoid intake and the risk of age-related cataract in China’s Heilongjiang Province

    Get PDF
    Background/Objectives: Epidemiological evidence suggests that diets rich in flavonoids may reduce the risk of developing age-related cataract (ARC). Flavonoids are widely distributed in foods of plant origin and the objective of this study was to evaluate retrospectively the association between the intakes of the five flavonoid subclasses and the risk of ARC.  Subjects/Methods: A population-based case-control study (249 cases and 66 controls) was carried out in Heilongjiang province, which is located in the Northeast of China, and where intakes and availability of fresh vegetables and fruits can be limited. Dietary data gathered by food-frequency questionnaire (FFQ) were used to calculate flavonoid intake. Adjusted odds ratio (OR) and 95% confidence interval (CI) were estimated by logistic regression.  Results: No linear associations between risk of developing ARC and intakes of total dietary flavonoids, anthocyanidins, flavon-3-ol, flavanone, total flavones or total flavonols were found, but quercetin and isorhamnetin intake was inversely associated with ARC risk (OR 11.78, 95% CI: 1.62-85.84, P<0.05, and OR 6.99, 95% CI:1.12-43.44, P<0.05, quartile 4 vs quartile 1, respectively).  Conclusion: As quercetin is contained in many plant foods and isorhamnetin is only contained in very few foods, we concluded that higher quercetin intake may be an important dietary factor in the reduction of risk of age-related cataract

    Simultaneous determination of flavonoids and triterpenoids in Cyclocarya paliurus leaves using high-performance liquid chromatography

    Get PDF
    Background: Cyclocarya paliurus is an endangered plant and endemic to China. The leaves of C. paliurus have been used in drug formulations and as ingredients in functional foods in China. The aim of this study was to develop an effective method to extract most of the compounds and to establish a simplified HPLC analytical method to determine the contents of major bioactive compounds simultaneously.Materials and methods: High-performance liquid chromatography (HPLC) coupled with a photodiode array detector (PDA) was used for the simultaneous determination of the major flavonoids and triterpenoids in C. paliurus leaves.Results: Ultrasonic extraction in 100% methanol for 30 min was adopted as the optimal extraction method for C. paliurus leaves. The separation conditions were optimized using a Phenomenex C18 ODS column (250 mm × 4.6 mm, 5 μm) with a mobile phase of acetonitrile and 0.02% formic acid and a detection wavelength of 205 nm. The validation data indicated that this new HPLC analytical method successfully quantified the provenance and seasonal variations of seven major compounds (three flavonoids and four triterpenoids) in C. paliurus leaves.Conclusion: The study provided a novel and simplified approach to simultaneously determine the quantity of major flavonoids and triterpenoids in C. paliurus leaves. The results could promote the optimization of silvicultural systems for quality control of C. paliurus.Key words: Cyclocarya paliurus; HPLC; flavonoids; triterpenoid

    Experimental study on seismic performance of existing reinforced concrete coupling beams in Hongkong

    Get PDF
    2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The Biology and Ecology of the Emerald Ash Borer, Agrilus planipennis, in China

    Get PDF
    The biology, ecology, and life cycle of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), were studied using regular inspection in the forest and observations in the laboratory. Results indicated that A. planipennis are mostly univoltine in Tianjin, China. They overwintered individually as mature larvae in shallow chambers excavated in the outer sapwood. In late July, some full-grown larvae began to build overwintering chambers, and all larvae entered the sapwood for dormancy by early November. A. planipennis pupated in the overwintering chamber from early April to mid May the following year, and the average pupal duration was about 20 days. In late April, some newly eclosed adults could be found in the pupal cells, but they had not yet emerged from the tree. Adults began to emerge in early May, with peak flight occurring in mid May. The average longevity of adults was about 21 days and the adult stage lasted through early July. The adults fed on ash foliage as a source of nutrition. Mating was usually conducted and completed on the leaf or trunk surfaces of ash trees. Oviposition began in mid May and eggs hatched on average in 15.7 days. The first instar larvae appeared in early June. The larval stage lasted about 300 days to complete an entire generation. The emerald ash borer had four larval instars on velvet ash, Fraxinus velutina (Scrophulariales: Oleaceae). The major natural control factors of A. planipennis were also investigated, and preliminary suggestions for its integrated management are proposed

    Protein 3D Graph Structure Learning for Robust Structure-based Protein Property Prediction

    Full text link
    Protein structure-based property prediction has emerged as a promising approach for various biological tasks, such as protein function prediction and sub-cellular location estimation. The existing methods highly rely on experimental protein structure data and fail in scenarios where these data are unavailable. Predicted protein structures from AI tools (e.g., AlphaFold2) were utilized as alternatives. However, we observed that current practices, which simply employ accurately predicted structures during inference, suffer from notable degradation in prediction accuracy. While similar phenomena have been extensively studied in general fields (e.g., Computer Vision) as model robustness, their impact on protein property prediction remains unexplored. In this paper, we first investigate the reason behind the performance decrease when utilizing predicted structures, attributing it to the structure embedding bias from the perspective of structure representation learning. To study this problem, we identify a Protein 3D Graph Structure Learning Problem for Robust Protein Property Prediction (PGSL-RP3), collect benchmark datasets, and present a protein Structure embedding Alignment Optimization framework (SAO) to mitigate the problem of structure embedding bias between the predicted and experimental protein structures. Extensive experiments have shown that our framework is model-agnostic and effective in improving the property prediction of both predicted structures and experimental structures. The benchmark datasets and codes will be released to benefit the community

    Tim-3 Negatively Regulates IL-12 Expression by Monocytes in HCV Infection

    Get PDF
    T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection
    corecore