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Abstract
Let X ,X1,X2, . . . be a standardized Gaussian sequence. The universal results in almost
sure central limit theorems for the maximaMn and partial sums and maxima
(Sn/σn,Mn) are established, respectively, where Sn =

∑n
i=1 Xi , σ

2
n = Var Sn, and

Mn =max1≤i≤n Xi .
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1 Introduction
Starting with Brosamler [] and Schatte [], in the last two decades several authors inves-
tigated the almost sure central limit theorem (ASCLT) dealing mostly with partial sums
of random variables. Some ASCLT results for partial sums were obtained by Ibragimov
and Lifshits [], Miao [], Berkes and Csáki [], Hörmann [], Wu [–], and Wu and
Chen []. The concept has already started to have applications in many areas. Fahrner
and Stadtmüller [] and Nadarajah and Mitov [] investigated ASCLT for the maxima of
i.i.d. random variables. The ASCLT of Gaussian sequences has experienced new develop-
ments in the recent past years. Significant recent contributions can be found in Csáki and
Gonchigdanzan [], Chen and Lin [], Tan et al. [], and Tan and Peng [], extending
this principle by proving ASCLT for the maxima of a Gaussian sequence. Further, Peng
et al. [–], Zhao et al. [], and Tan and Wang [] studied the maximum and partial
sums of a standardized nonstationary Gaussian sequence.

A standardized Gaussian sequence {Xn; n ≥ } is a sequence of standard normal ran-
dom variables, and for any choice of n, i, . . . , in, the joint distribution of Xi , . . . , Xin is
an n-dimensional normal distribution. Throughout this paper we assume {Xn; n ≥ } is
a standardized Gaussian sequence with covariance ri,j := Cov(Xi, Xj). For each n ≥ , let
Sn =

∑n
i= Xi, σ 

n = Var Sn, Mn = max≤i≤n Xi. The symbols Sn/σn and Mn denote partial
sums and maxima, respectively. Let �(·) and φ(·) denote the standard normal distribution
function and its density function, respectively, and I denote an indicator function. An ∼ Bn

denotes limn→∞ An/Bn = , and An � Bn means that there exists a constant c >  such that
An ≤ cBn for sufficiently large n. The symbol c stands for a generic positive constant which
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may differ from one place to another. The normalizing constants an and bn are defined by

an = ( ln n)/, bn = an –
ln ln n + ln(π )

an
. ()

Chen and Lin [] obtained the following almost sure limit theorem for the maximum
of a standardized nonstationary Gaussian sequence.

Theorem A Let {Xn; n ≥ } be a standardized nonstationary Gaussian sequence such that
|rij| ≤ ρ|i–j| for i �= j where ρn <  for all n ≥  and ρn � 

ln n(ln ln n)+ε . Let the numerical se-
quence {uni;  ≤ i ≤ n, n ≥ } be such that n( – �(λn)) is bounded and λn = min≤i≤n uni ≥
c ln/ n for some c > . If

∑n
i=( – �(uni)) → τ as n → ∞ for some τ ≥ , then

lim
n→∞


ln n

n∑

k=


k

I

( k⋂

i=

(Xi ≤ uki)

)

= exp(–τ ) a.s.

Zhao et al. [] obtained the following almost sure limit theorem for maximum and
partial sums of standardized nonstationary Gaussian sequence.

Theorem B Let {Xn; n ≥ } be a standardized nonstationary Gaussian sequence. Suppose
that there exists a numerical sequence {uni;  ≤ i ≤ n, n ≥ } such that

∑n
i=( –�(uni)) → τ

for some  < τ < ∞ and n(–�(λn)) is bounded, where λn = min≤i≤n uni. If supi�=j |rij| = δ < ,

n∑

j=

j–∑

i=

|rij| = o(n), ()

sup
i≥

n∑

j=

|rij| � ln/ n
(ln ln n)+ε

for some ε > , ()

then

lim
n→∞


ln n

n∑

k=


k

I

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

= exp(–τ )�(y) a.s. for all y ∈R ()

and

lim
n→∞


ln n

n∑

k=


k

I
(

ak(Mk – bk) ≤ x,
Sk

σk
≤ y

)

= exp
(
–e–x)�(y) a.s. for all x, y ∈R. ()

By the terminology of summation procedures (see e.g. Chandrasekharan and Minak-
shisundaram [], p.) one shows that the larger the weight sequence in ASCLT is, the
stronger the relation becomes. Based on this view, one should also expect to get stronger
results if one uses larger weights. Moreover, it would be of considerable interest to deter-
mine the optimal weights.

The purpose of this paper is to give substantial improvements for weight sequences and
to weaken greatly conditions () and () in Theorem B obtained by Zhao et al. []. We
will study and establish the ASCLT for maximum Mn and maximum and partial sums of
the standardized Gaussian sequences, and we will show that the ASCLT holds under a
fairly general growth condition on dk = k– exp(lnα k),  ≤ α < /.
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2 Main results
Set

dk =
exp(lnα k)

k
, Dn =

n∑

k=

dk for  ≤ α < /. ()

Our theorems are formulated in a more general setting.

Theorem . Let {Xn; n ≥ } be a standardized Gaussian sequence. Let the numerical se-
quence {uni;  ≤ i ≤ n, n ≥ } be such that

∑n
i=( – �(uni)) → τ for some  ≤ τ < ∞ and

n( – �(λn)) is bounded, where λn = min≤i≤n uni. Suppose that ρn <  for all n ≥  such that

|rij| ≤ ρ|i–j| for i �= j, ρn � 
ln n(ln Dn)+ε

for some ε > . ()

Then

lim
n→∞


Dn

n∑

k=

dkI

( k⋂

i=

(Xi ≤ uki)

)

= exp(–τ ) a.s. ()

and

lim
n→∞


Dn

n∑

k=

dkI
(
ak(Mk – bk) ≤ x

)
= exp

(
–e–x) a.s. for any x ∈R, ()

where an and bn are defined by ().

Theorem . Let {Xn; n ≥ } be a standardized Gaussian sequence. Let the numerical se-
quence {uni;  ≤ i ≤ n, n ≥ } be such that

∑n
i=( – �(uni)) → τ for some  ≤ τ < ∞ and

n(–�(λn)) is bounded, where λn = min≤i≤n uni. Suppose that supi�=j |rij| = δ < , there exists
a constant  < c < / such that

∣
∣
∣
∣

∑

≤i<j≤n

rij

∣
∣
∣
∣ ≤ cn, ()

max
≤i≤n

n∑

j=

|rij| � ln/ n
ln Dn

. ()

Then

lim
n→∞


Dn

n∑

k=

dkI

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

= exp(–τ )�(y) a.s. for any y ∈R ()

and

lim
n→∞


Dn

n∑

k=

dkI
(

ak(Mk – bk) ≤ x,
Sk

σk
≤ y

)

= exp
(
–e–x)�(y) a.s. for any x, y ∈R, ()

where an and bn are defined by ().
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Taking uki = uk for  ≤ i ≤ k in Theorems . and ., we can immediately obtain the
following corollaries.

Corollary . Let {Xn; n ≥ } be a standardized Gaussian sequence. Let the numerical
sequence {un; n ≥ } be such that n( – �(un)) → τ for some  ≤ τ < ∞. Suppose that con-
dition () is satisfied. Then () and

lim
n→∞


Dn

n∑

k=

dkI(Mk ≤ uk) = exp(–τ ) a.s.

hold.

Corollary . Let {Xn; n ≥ } be a standardized Gaussian sequence. Let the numerical
sequence {un; n ≥ } be such that n( – �(un)) → τ for some  ≤ τ < ∞. Suppose that
supi�=j |rij| = δ < , there exists a constant  < c < / such that conditions () and () are
satisfied. Then () and

lim
n→∞


Dn

n∑

k=

dkI
(

Mk ≤ uk ,
Sk

σk
≤ y

)

= exp(–τ )�(y) a.s. for any y ∈R

hold.

By the terminology of summation procedures (see e.g. Chandrasekharan and Minak-
shisundaram [], p.), we have the following corollary.

Corollary . Theorems . and ., Corollaries . and . remain valid if we replace the
weight sequence {dk ; n ≥ } by any {d∗

k ; n ≥ } such that  ≤ d∗
k ≤ dk ,

∑∞
k= d∗

k = ∞.

Remark . Obviously, the condition () is significantly weaker than the condition (),
and in particular taking α = , i.e., the weight dk = e/k, we have Dn ∼ e ln n and ln Dn ∼
ln ln n, in this case, the condition () is significantly weaker than the condition (), and
the conclusions () and () become () and (), respectively. Therefore, our Theorem .
not only gives substantial improvements for the weight but also has greatly weakened re-
strictions on the covariance rij in Theorem B obtained by Zhao et al. [].

Remark . Theorem A obtained by Chen and Lin [] is a special case of Theorem .
when α = . When {Xn; n ≥ } is stationary, uni = un,  ≤ i ≤ n, and α = , Theorem . is
Corollary . obtained by Csáki and Gonchigdanzan [].

Remark . Whether (), (), (), and () work also for some / ≤ α <  remains an
open question.

3 Proofs
The proof of our results follows a well-known scheme of the proof of an a.s. limit theo-
rem, e.g. Berkes and Csáki [], Chuprunov and Fazekas [, ], and Fazekas and Rychlik
[]. We will point out that the weight from dk = /k is extended to dk = exp(lnα k)/k,
 ≤ α < /, and relaxed restrictions on the covariance rij encountered great difficulties



Wu Journal of Inequalities and Applications  (2015) 2015:109 Page 5 of 15

and challenges; to overcome the difficulties and challenges the following five lemmas play
an important role. The proofs of Lemmas . to . are given in the Appendix.

Lemma . (Normal comparison lemma, Theorem .. in Leadbetter et al. []) Suppose
ξ, . . . , ξn are standard normal variables with covariance matrix  = (

ij), and η, . . . ,ηn

similarly with covariance matrix  = (
ij), and let ρij = max(|

ij|, |
ij|), maxi�=j ρij = δ < .

Further, let u, . . . , un be real numbers. Then

∣
∣P(ξj ≤ uj for j = , . . . , n) – P(ηj ≤ uj for j = , . . . , n)

∣
∣

≤ K
∑

≤i<j≤n

∣
∣

ij – 
ij
∣
∣ exp

(

–
u

i + u
j

( + ρij)

)

for some constant K , depending only on δ.

Lemma . Suppose that the conditions of Theorem . hold, then there exists a constant
γ >  such that

sup
≤k≤l

k∑

i=

l∑

j=i+

|rij| exp

(

–
u

ki + u
lj

( + |rij|)
)

� 
lγ

+


(ln Dl)+ε
, ()

E

∣
∣
∣
∣
∣
I

( l⋂

i=

(Xi ≤ uli)

)

– I

( l⋂

i=k+

(Xi ≤ uli)

)∣
∣
∣
∣
∣
� k

l
for  ≤ k < l, ()

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki)

)

, I

( l⋂

i=k+

(Xi ≤ uli)

))∣
∣
∣
∣
∣
� 

lγ
+


(ln Dl)+ε

for  ≤ k < l, ()

where ε is defined by ().

Lemma . Suppose that the conditions of Theorem . hold, then there exists a constant
γ >  such that

E

∣
∣
∣
∣
∣
I

( l⋂

i=

(Xi ≤ uli),
Sl

σl
≤ y

)

– I

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

)∣
∣
∣
∣
∣
�

(
k
l

)γ

for  ≤ k < l, ()

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

, I

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

))∣
∣
∣
∣
∣

�
(

k
l

)γ

+
k/(ln l)/

l/ ln Dl
for  ≤ k <

l
ln l

. ()

The following weak convergence results are the extended versions of Theorem .. of
Leadbetter et al. [] to the nonstationary normal random variables.

Lemma . Suppose that the conditions of Theorem . hold, then

lim
n→∞P

( n⋂

i=

(Xi ≤ uni)

)

= e–τ . ()
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Suppose that the conditions of Theorem . hold, then

lim
n→∞P

( n⋂

i=

(Xi ≤ uni),
Sn

σn
≤ y

)

= e–τ�(y). ()

Lemma . Let {ξn; n ≥ } be a sequence of uniformly bounded random variables. If

Var

( n∑

k=

dkξk

)

� D
n

(ln Dn)+ε

for some ε > , then

lim
n→∞


Dn

n∑

k=

dk(ξk – Eξk) =  a.s.,

where dn and Dn are defined by ().

Proof Similarly to the proof of Lemma . in Wu [], we can prove Lemma .. �

Proof of Theorem . Using Lemma ., P(
⋂n

i=(Xi ≤ uni)) → exp(–τ ), and hence by the
Toeplitz lemma,

lim
n→∞


Dn

n∑

k=

dkP

( k⋂

i=

(Xi ≤ uki)

)

= exp(–τ ).

Therefore, in order to prove (), it suffices to prove that

lim
n→∞


Dn

n∑

k=

dk

(

I

( k⋂

i=

(Xi ≤ uki)

)

– P

( k⋂

i=

(Xi ≤ uki)

))

=  a.s.,

which will be done by showing that

Var

( n∑

k=

dkI

( k⋂

i=

(Xi ≤ uki)

))

� D
n

(ln Dn)+ε
()

for some ε >  from Lemma .. Let ξk := I(
⋂k

i=(Xi ≤ uki)) –P(
⋂k

i=(Xi ≤ uki)). Then Eξk =
 and |ξk| ≤  for all k ≥ . Hence

Var

( n∑

k=

dkI

( k⋂

i=

(Xi ≤ uki)

))

=
n∑

k=

d
kEξ 

k + 
∑

≤k<l≤n

dkdlE(ξkξl)

:= T + T. ()

Since |ξk| ≤  and exp( lnβ x) = exp(
∫ x


(ln u)β–

u du), β < , is a slowly varying function at
infinity, from Seneta [], it follows that

T ≤
∞∑

k=

exp( lnα k)
k = c ≤ D

n
(ln Dn)+ε

. ()
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By Lemma ., for  ≤ k < l,

∣
∣E(ξkξl)

∣
∣ ≤

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki)

)

, I

( l⋂

i=

(Xi ≤ uli)

)

– I

( l⋂

i=k+

(Xi ≤ uli)

))∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki)

)

, I

( l⋂

i=k+

(Xi ≤ uli)

))∣
∣
∣
∣
∣

� E

∣
∣
∣
∣
∣
I

( l⋂

i=

(Xi ≤ uli)

)

– I

( l⋂

i=k+

(Xi ≤ uli)

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki)

)

, I

( l⋂

i=k+

(Xi ≤ uli)

))∣
∣
∣
∣
∣

�
(

k
l

)γ

+


(ln Dl)+ε

for γ = min(,γ ) > . Hence,

T �
n∑

l=

l∑

k=

dkdl

(
k
l

)γ

+
n∑

l=

l∑

k=

dkdl


(ln Dl)+ε

:= T + T. ()

By () in Wu [],

Dn ∼ 
α

ln–α n exp
(
lnα n

)
, ln Dn ∼ lnα n,

exp
(
lnα n

) ∼ αDn

(ln Dn) –α
α

for α > .
()

From this, combined with the fact that
∫ x


l(t)
tβ dt ∼ l(x)x–β

–β
as x → ∞ for β <  and l(x) is

a slowly varying function at infinity (see Proposition .. in Bingham et al. []), we get

T ≤
n∑

l=

dl

lγ

l∑

k=

exp(lnα k)
k–γ

�
n∑

l=

dl

lγ
lγ exp

(
lnα l

)

≤ Dn exp
(
lnα n

) �
{

D
n

(ln Dn)(–α)/α , α > ,
Dn, α = 

≤ D
n

(ln Dn)+ε
()

for  < ε < ( – α)/α.
Now, we estimate T. For α > , by ()

T =
n∑

l=

dl

(ln Dl)+ε
Dl �

n∑

l=

exp( lnα l)(ln l)–α–αε

l

∼
∫ n

e

exp( lnα x)(ln x)–α–αε

x
dx =

∫ ln n


exp

(
yα

)
y–α–αε dy



Wu Journal of Inequalities and Applications  (2015) 2015:109 Page 8 of 15

∼
∫ ln n



(

exp
(
yα

)
y–α–αε +

 – α – αε

α
exp

(
yα

)
y–α–αε

)

dy

=
∫ ln n



(
(α)– exp

(
yα

)
y–α–αε

)′ dy

� exp
(
 lnα n

)
(ln n)–α–αε

� D
n

(ln Dn)+ε
. ()

For α = , noting the fact that Dn ∼ ln n, similarly we get

T ∼
n∑

l=

ln l
l(ln ln l)+ε

∼
∫ n



ln x
x(ln ln x)+ε

dx

=
∫ ln n

ln 

y
(ln y)+ε

dy � ln n
(ln ln n)+ε

∼ D
n

(ln Dn)+ε
. ()

Equations ()-(), ()-() together establish (), which concludes the proof of ().
Next, take uni = un = x/an + bn. Then we see that

∑n
i=( –�(uni)) = n( –�(un)) → exp(–x)

as n → ∞ (see Theorem .. in Leadbetter et al. []) and hence () immediately follows
from () with uni = x/an + bn.

This completes the proof of Theorem .. �

Proof of Theorem . Using Lemma ., P(
⋂n

i=(Xi ≤ uni), Sn/σn ≤ y) → e–τ�(y), and
hence by the Toeplitz lemma,

lim
n→∞


Dn

n∑

k=

dkP

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

= e–τ�(y).

Therefore, in order to prove (), it suffices to prove that

lim
n→∞


Dn

n∑

k=

dk

(

I

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

– P

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

))

=  a.s.,

which will be done by showing that

Var

( n∑

k=

dkI

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

))

� D
n

(ln Dn)+ε
()

for some ε >  from Lemma .. Let ηk := I(
⋂k

i=(Xi ≤ uki), Sk
σk

≤ y) – P(
⋂k

i=(Xi ≤ uki),
Sk
σk

≤ y). By Lemma ., for  ≤ k < l/ ln l,

∣
∣E(ηkηl)

∣
∣ ≤

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

, I

( l⋂

i=

(Xi ≤ uli),
Sl

σl
≤ y

)

– I

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

))∣
∣
∣
∣
∣
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+

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

, I

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

))∣
∣
∣
∣
∣

≤ E

∣
∣
∣
∣
∣
I

( l⋂

i=

(Xi ≤ uli),
Sl

σl
≤ y

)

– I

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

, I

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

))∣
∣
∣
∣
∣

�
(

k
l

)γ

+
k/ ln/ l
l/ ln Dl

.

Hence,

Var

( n∑

k=

dkI

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

))

=
n∑

k=

d
kEη

k + 
∑

≤k<l≤n

dkdlE(ηkηl) �
∑

≤k<l≤n

dkdlE(ηkηl)

�
n∑

l=

∑

≤k<l/ ln l

dkdl

(
k
l

)γ

+
n∑

l=

∑

≤k<l/ ln l

dkdl
k/ ln/ l
l/ ln Dl

+
n∑

l=

∑

l/ ln l≤k≤l

dkdl

:= T + T + T. ()

By the proof of (),

T � D
n

(ln Dn)+ε
for  < ε < ( – α)/α. ()

Now, we estimate T. For α > , by ()

T ≤
n∑

l=

dl ln/ l
l/ ln Dl

l∑

k=

exp(lnα k)
k/ �

n∑

l=

dl ln/ l
l/ ln Dl

l/ exp
(
lnα l

)

∼
∫ n

e

exp( lnα x)(ln x)/–α

x
dx =

∫ ln n


exp

(
yα

)
y/–α dy

∼
∫ ln n



(

exp
(
yα

)
y/–α +

 – α

α
exp

(
yα

)
y/–α

)

dy

=
∫ ln n



(
(α)– exp

(
yα

)
y/–α

)′ dy

� exp
(
 lnα n

)
(ln n)/–α � D

n
(ln Dn)/α

� D
n

(ln Dn)+ε
()

for  < ε < /(α) – .
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For α = ,

T �
n∑

l=

ln/ l
l/ ln ln l

l∑

k=


k/ �

n∑

l=

ln/ l
l ln ln l

∼
∫ n



(ln x)/

x ln ln x
dx =

∫ ln n

ln 

y/

ln y
dy

� (ln n)/

ln ln n
∼ D/

n
(ln Dn)

, ()

T ≤
n∑

l=

dl exp
(
lnα l

) ∑

l/ ln l≤k≤l


k

�
n∑

l=

dl exp
(
lnα l

)
ln ln l

� Dn exp
(
lnα n

)
ln ln n

�
{

D
n ln ln Dn

(ln Dn)(–α)/α , α > ,
Dn ln Dn, α = 

≤ D
n

(ln Dn)+ε
. ()

Equations ()-() together establish () for ε = min(ε, ε) > , which concludes the
proof of (). Next, take uni = un = x/an + bn. Then we see that

∑n
i=( – �(uni)) = n( –

�(un)) → exp(–x) as n → ∞ (see Theorem .. in Leadbetter et al. []) and hence ()
immediately follows from () with uni = x/an + bn.

This completes the proof of Theorem .. �

Appendix
Proof of Lemma . By assumption (), we have δ := supi�=j |rij| < . Define λ such that  <
λ < /( + δ) – , for  ≤ k ≤ l,

k∑

i=

l∑

j=i+

|rij| exp

(

–
u

ki + u
lj

( + |rij|)
)

=
k∑

i=

∑

i+≤j≤l,j–i≤lλ
|rij| exp

(

–
u

ki + u
lj

( + |rij|)
)

+
k∑

i=

∑

i+≤j≤l,j–i>lλ
|rij| exp

(

–
u

ki + u
lj

( + |rij|)
)

:= H + H. ()

Since n( – �(λn)) is bounded, where λn is the same as defined in Theorem ., there
exists a constant c >  such that n( – �(λn)) ≤ c. vn is defined to satisfy n( – �(vn)) = c;
then clearly vn ≤ λn.

Since  – �(x) ∼ φ(x)/x as x → ∞, we have

exp

(

–
v

n


)

∼ c
vn

n
, vn ∼ √

 ln n. ()
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By () and (),

H ≤
k∑

i=

∑

i+≤j≤l,j–i≤lλ
ρj–i exp

(

–
v

k + v
l

( + δ)

)

≤
k∑

i=

∑

≤s≤lλ
ρs exp

(

–
v

k + v
l

( + δ)

)

≤ klλ
(ln k)/(+δ)

k/(+δ)
(ln l)/(+δ)

l/(+δ) ≤ (ln l)/(+δ)

l/(+δ)––λ

≤ 
lγ

()

for  < γ < /( + δ) –  – λ.
Setting σj = supi≥j ρi, by () and (),

σlλ = sup
i≥lλ

ρi � sup
i≥lλ


ln i(ln Di)+ε

=


ln lλ(ln Dlλ )+ε
� 

ln l(ln Dl)+ε

and

σlλvkvl � 
(ln Dl)+ε

for all  ≤ k ≤ l.

This, combined with (), shows

H ≤
k∑

i=

∑

i+≤j≤l,j–i>lλ
ρj–i exp

(

–
v

k + v
l

( + ρj–i)

)

≤
k∑

i=

∑

lλ≤s≤l

ρs exp

(

–
v

k + v
l



)

exp

(
σlλ (v

k + v
l )



)

� klσlλ
vk

k
vl

l
� 

(ln Dl)+ε
.

This, together with () and () implies that () holds.
It is well known that P(B) –P(AB) ≤ P(Ā) for any sets A and B, then using the condition

that n( – �(λn)) is bounded, for  ≤ k < l, we get

E

∣
∣
∣
∣
∣
I

( l⋂

i=

(Xi ≤ uli)

)

– I

( l⋂

i=k+

(Xi ≤ uli)

)∣
∣
∣
∣
∣

= P

( l⋂

i=k+

(Xi ≤ uli)

)

– P

( l⋂

i=

(Xi ≤ uli)

)

≤ P(Xi > uli for some  ≤ i ≤ k) ≤
k∑

i=

P(Xi > uli)

≤ k
(
 – �(λl)

)
=

k
l

l
(
 – �(λl)

)

� k
l

.

Hence, () holds.
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Now we prove (). By (), applying the normal comparison lemma, Lemma ., for
 ≤ k < l,

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki)

)

, I

( l⋂

i=k+

(Xi ≤ uli)

))∣
∣
∣
∣
∣

=
∣
∣P(X ≤ uk, . . . , Xk ≤ ukk , Xk+ ≤ ul,k+, . . . , Xl ≤ ull)

– P(X ≤ uk, . . . , Xk ≤ ukk)P(Xk+ ≤ ul,k+, . . . , Xl ≤ ull)
∣
∣

�
k∑

i=

l∑

j=k+

|rij| exp

(

–
u

ki + u
lj

( + |rij|)
)

� 
lγ

+


ln l(ln Dl)+ε
.

Hence, () holds. �

Proof of Lemma . Notice, for  ≤ k < l,

E

∣
∣
∣
∣
∣
I

( l⋂

i=

(Xi ≤ uli),
Sl

σl
≤ y

)

– I

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

)∣
∣
∣
∣
∣

= P

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

)

– P

( l⋂

i=

(Xi ≤ uli),
Sl

σl
≤ y

)

≤
∣
∣
∣
∣
∣
P

( l⋂

i=

(Xi ≤ uli),
Sl

σl
≤ y

)

– P

( l⋂

i=

(Xi ≤ uli)

)

P

(
Sl

σl
≤ y

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
P

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

)

– P

( l⋂

i=k+

(Xi ≤ uli)

)

P

(
Sl

σl
≤ y

)∣
∣
∣
∣
∣

+ P

(
Sl

σl
≤ y

)(

P

( l⋂

i=k+

(Xi ≤ uli)

)

– P

( l⋂

i=

(Xi ≤ uli)

))

:= H + H + H. ()

Using l – |∑≤i<j≤l rij| ≤ σ 
l ≤ l + |∑≤i<j≤l rij| and (), there exist constants ci > ,

i = , , such that

cl ≤ σ 
l ≤ cl. ()

Hence, using (), for  ≤ i ≤ l ≤ n,

∣
∣
∣
∣Cov

(

Xi,
Sl

σl

)∣
∣
∣
∣ ≤ 

σl

l∑

j=

|rij| � ln/ l
l/ ln Dl

()

and

∣
∣
∣
∣Cov

(
Sk

σk
,

Sl

σl

)∣
∣
∣
∣ ≤ 

σkσl

k∑

i=

l∑

j=

|rij| � k/

l/
(ln l)/

ln Dl
. ()
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Noting the fact that ln l and ln Dl are slowly varying functions at infinity, () and ()
imply that there exists  < μ <  such that, for sufficiently large l,

max
≤i≤l

∣
∣
∣
∣Cov

(

Xi,
Sl

σl

)∣
∣
∣
∣ ≤ μ

and

max
≤k<l/ ln l

∣
∣
∣
∣Cov

(
Sk

σk
,

Sl

σl

)∣
∣
∣
∣ ≤ μ.

Combining (), (), and the normal comparison lemma, Lemma ., for i = , ,

Hi �
l∑

i=

∣
∣
∣
∣Cov

(

Xi,
Sl

σl

)∣
∣
∣
∣ exp

(

–
u

li + y

( + μ)

)

≤
l∑

i=

∣
∣
∣
∣Cov

(

Xi,
Sl

σl

)∣
∣
∣
∣ exp

(

–
v

l
( + μ)

)

≤ (ln l)/+/(+μ)

l/(+μ)–/ ln Dl
≤ 

lγ
()

for  < γ < /( + μ) – /.
By the proof of (), we have H � k/l. This, combined with () and (), implies that

() holds for γ = min(,γ) > .
Now we prove (). Again applying the normal comparison lemma, Lemma ., for  ≤

k < l/ ln l,

∣
∣
∣
∣
∣
Cov

(

I

( k⋂

i=

(Xi ≤ uki),
Sk

σk
≤ y

)

, I

( l⋂

i=k+

(Xi ≤ uli),
Sl

σl
≤ y

))∣
∣
∣
∣
∣

=
∣
∣
∣
∣P

(

X ≤ uk, . . . , Xk ≤ ukk ,
Sk

σk
≤ y, Xk+ ≤ ul,k+, . . . , Xl ≤ ull,

Sl

σl
≤ y

)

– P

(

X ≤ uk, . . . , Xk ≤ ukk ,
Sk

σk
≤ y

)

× P

(

Xk+ ≤ ul,k+, . . . , Xl ≤ ull,
Sl

σl
≤ y

)∣
∣
∣
∣

�
k∑

i=

l∑

j=k+

|rij| exp

(

–
u

ki + u
lj

( + |rij|)
)

+
k∑

i=

∣
∣
∣
∣Cov

(

Xi,
Sl

σl

)∣
∣
∣
∣ exp

(

–
u

ki + y

( + |Cov(Xi, Sl/σl)|)
)

+
l∑

j=k+

∣
∣
∣
∣Cov

(

Xj,
Sk

σk

)∣
∣
∣
∣ exp

(

–
u

lj + y

( + |Cov(Xj, Sk/σk)|)
)

+
∣
∣
∣
∣Cov

(
Sk

σk
,

Sl

σl

)∣
∣
∣
∣ exp

(

–
y

 + |Cov(Sk/σk , Sl/σl)|
)

:= H + H + H + H.
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By (), () to (),

H ≤
k∑

i=

l∑

j=

|rij| exp

(

–
v

k + v
l

( + δ)

)

� k
(ln l)/

ln Dl

(ln k)/(+δ)

k/(+δ)
(ln l)/(+δ)

l/(+δ)

≤ (ln l)/+/(+δ)

l/(+δ)– ln Dl
≤ 

lγ

for  < γ < /( + δ) – ,

H �
k∑

i=

∣
∣
∣
∣Cov

(

Xi,
Sl

σl

)∣
∣
∣
∣ exp

(

–
v

k
( + μ)

)

� k
(ln l)/

l/ ln Dl

(ln k)/(+μ)

k/(+μ) ≤ (ln l)/+/(+μ)

l/(+μ)–/ ln Dl
≤ 

lγ
,

H ≤
l∑

j=k+

∣
∣
∣
∣Cov

(

Xj,
Sk

σk

)∣
∣
∣
∣ exp

(

–
v

l
( + μ)

)

≤ 
σk

k∑

i=

l∑

j=

|rij| exp

(

–
v

l
( + μ)

)

� k
k/

(ln l)/

ln Dl

(ln l)/(+μ)

l/(+μ) ≤ 
lγ

and

H ≤
∣
∣
∣
∣Cov

(
Sk

σk
,

Sl

σl

)∣
∣
∣
∣ � k/

l/
(ln l)/

ln Dl
.

Hence () follows for γ = min(γ,γ) >  and thus () and () hold for γ = min(γ,
γ, ) > . �

Proof of Lemma . On applying (), it follows from the normal comparison lemma,
Lemma ., that

∣
∣
∣
∣
∣
P

( n⋂

i=

(Xi ≤ uni)

)

–
n∏

i=

�(uni)

∣
∣
∣
∣
∣
�

∑

≤i<j≤n

|rij| exp

(

–
u

ni + u
nj

( + |rij|)
)

� 
nγ

+


(ln Dn)+ε
→ .

Hence, by
∑n

i=( – �(uni)) → τ , we get

lim
n→∞P

( n⋂

i=

(Xi ≤ uni)

)

= lim
n→∞

n∏

i=

�(uni) = lim
n→∞ exp

( n∑

i=

ln
(
�(uni)

)
)

= lim
n→∞ exp

(

–
n∑

i=

(
 – �(uni)

)
)

= e–τ .
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That is, () holds. Using the proof of H and (), () follows from

lim
n→∞P

( n⋂

i=

(Xi ≤ uni),
Sn

σn
≤ y

)

= lim
n→∞P

( n⋂

i=

(Xi ≤ uni)

)

lim
n→∞P

(
Sn

σn
≤ y

)

= e–τ�(y). �
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