2,801 research outputs found

    Differential expression of centrosomal proteins at different stages of human glioma

    Get PDF
    BACKGROUND: High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. METHODS: A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. RESULTS: In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p < 0.05). CONCLUSIONS: Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies

    Complements and signed digit representations: Analysis of a multi-exponentiation-algorithm of Wu, Lou, Lai and Chang

    Full text link
    Wu, Lou, Lai and Chang proposed a multi-exponentiation algorithm using binary complements and the non-adjacent form. The purpose of this paper is to show that neither the analysis of the algorithm given by its original proposers nor that by other authors are correct. In fact it turns out that the complement operation does not have significant influence on the performance of the algorithm and can therefore be omitted

    A predicted protein, KIAA0247, is a cell cycle modulator in colorectal cancer cells under 5-FU treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) is the predominant gastrointestinal malignancy and the leading cause of cancer death. The identification of genes related to CRC is important for the development of successful therapies and earlier diagnosis.</p> <p>Methods</p> <p>Molecular analysis of feces was evaluated as a potential method for CRC detection. Expression of a predicted protein with unknown function, KIAA0247, was found in feces evaluated using specific quantitative real-time polymerase chain reaction. Its cellular function was then analyzed using immunofluorescent staining and the changes in the cell cycle in response to 5-fluorouracil (5-FU) were assessed.</p> <p>Results</p> <p>Gastrointestinal tissues and peripheral blood lymphocytes ubiquitously expressed KIAA0247. 56 CRC patients fell into two group categories according to fecal KIAA0247 mRNA expression levels. The group with higher fecal KIAA0247 (<it>n </it>= 22; ≥ 0.4897) had a significantly greater five-year overall survival rate than the group with lower fecal KIAA0247 (<it>n </it>= 30; < 0.4897) (66.0 ± 11.6%; <it>p </it>= 0.035, log-rank test). Fecal expression of KIAA0247 inversely related to CRC tumor size (Kendall's tau-b = -0.202; <it>p </it>= 0.047). Immunofluorescent staining revealed that the cytoplasm of CRC cells evenly expresses KIAA0247 without 5-FU treatment, and KIAA0247 accumulates in the nucleus after 40 μM 5-FU treatment. In HCT116 p53<sup>-/- </sup>cells, which lack p53 cell cycle control, the proportion of cells in the G2/M phase was larger (13%) in KIAA0247-silent cells than in the respective shLuc control (10%) and KIAA0247-overexpressing cells (7%) after the addition of low dose (40 μM) 5-FU. Expression of three cyclin genes (cyclin A2, cyclin B1, and cyclin B2) also downregulated in the cells overexpressing KIAA0247.</p> <p>Conclusions</p> <p>This is the first description of a linkage between KIAA0247 and CRC. The study's data demonstrate overexpression of KIAA0247 associates with 5-FU therapeutic benefits, and also identify the clinical significance of fecal KIAA0247 in CRC.</p

    The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation.

    Get PDF
    Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation

    Unfolding Collapsed Polyelectrolytes in Alternating-Current Electric Fields

    Full text link
    We investigate the unfolding of single polyelectrolyte (PE) chains collapsed by trivalent salt under the action of alternating-current (AC) electric fields through computer simulations and theoretical scaling. The results show that a collapsed chain can be unfolded by an AC field when the field strength exceeds the direct-current (DC) threshold and the frequency is below a critical value, corresponding to the inverse charge relaxation/dissociation time of condensed trivalent counterions at the interface of the collapsed electrolyte. This relaxation time is also shown to be identical to the DC chain fluctuation time, suggesting that the dissociation of condensed polyvalent counterion on the collapsed PE interface controls the polyelectrolyte dipole formation and unfolding dynamics under an AC electric field.Comment: 18 pages, 5 figures, submitte

    Discovery of New Eunicellins from an Indonesian Octocoral Cladiella sp.

    Get PDF
    Two new 11-hydroxyeunicellin diterpenoids, cladieunicellin F (1) and (–)-solenopodin C (2), were isolated from an Indonesian octocoral Cladiella sp. The structures of eunicellins 1 and 2 were established by spectroscopic methods, and eunicellin 2 was found to be an enantiomer of the known eunicellin solenopodin C (3). Eunicellin 2 displayed inhibitory effects on the generation of superoxide anion and the release of elastase by human neutrophils. The previously reported structures of two eunicellin-based compounds, cladielloides A and B, are corrected in this study

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Clinical meaning of age-related expression of fecal cytokeratin 19 in colorectal malignancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) is one of the leading causes of malignant death worldwide. Because young age of onset is often considered a poor prognostic factor for CRC, it is important to identify the poor outcomes of CRC in a younger population and to consider an aggressive approach by implementing early treatment. Our aim was to specifically quantify the fecal cytokeratin 19 (CK19) transcript from CRC patients and investigate its correlation with clinical stage, tumor malignancy, and age.</p> <p>Methods</p> <p>The quantitation of fecal CK19 transcript was determined by a quantitative real-time reverse transcription polymerase chain in 129 CRC patients (45 younger than 60 years at diagnosis) and 85 healthy controls. The levels of CK19 protein were examined both in colonic cell lines and tissues.</p> <p>Results</p> <p>The analysis of 45 younger CRC patients (age ≤ 60 years) revealed that patients at the M1 stage had significantly higher expression levels of fecal CK19 mRNA when compared with healthy controls (<it>p </it>< 0.001) and patients at the M0 stage (<it>p </it>= 0.004). Additionally, the degree of consistency between the mean level of fecal CK19 mRNA and the distant metastatic rate in each age interval was up to 89% (<it>p </it>= 0.042).</p> <p>Conclusion</p> <p>These results indicate that high levels of fecal CK19 mRNA represent a potential marker for colorectal malignancy and for aggressive treatment of younger CRC patients.</p

    Carijoside A, a Bioactive Sterol Glycoside from an Octocoral Carijoa sp. (Clavulariidae)

    Get PDF
    A new bioactive sterol glycoside, 3β-O-(3′,4′-di-O-acetyl-β-d-arabinopyranosyl) -25ξ-cholestane-3β,5α,6β,26-tetrol-26-acetate) (carijoside A, 1), was isolated from an octocoral identified as Carijoa sp. The structure of glycoside 1 was established by spectroscopic methods and by comparison with spectral data for the other known glycosides. Carijoside A (1) displayed significant inhibitory effects on superoxide anion generation and elastase release by human neutrophils and this compound exhibited moderate cytotoxicity toward DLD-1, P388D1, HL-60, and CCRF-CEM tumor cells
    corecore