57 research outputs found

    Effect of Stressed-Skin Action on the Behaviour of Cold-Formed Steel Portal Frames

    Get PDF
    This paper describes six full-scale laboratory tests conducted on cold-formed steel portal frames buildings in order to investigate the effects of joint flexibility and stressed-skin diaphragm action. The frames used for the laboratory tests were of span of 6 m, height of 3 m and pitch of 10⁰; the frame spacing was 3 m. The laboratory test setup represented buildings of length of 9 m, having two gable frames and two internal frames. Tests were conducted on frames having two joint sizes, both with and without roof cladding. It was shown that as a result of stressed-skin diaphragm action, under horizontal load the bending moment at the eaves was reduced by approximately a factor of three, relative to the bare frame. It was also shown that as a result of stressed-skin action, the deflection of the internal frame reduced by 90%, and that the stiffness was independent of joint flexibility. On the other hand, owing to redistribution of bending moment from the eaves to the apex, the effect of joint flexibility was shown not to be significant on the overall failure load of the frame

    Stressed Skin Design of Steel Sheeting Panels – Part 1: Shear Resistance and Flexibility of Screw Lapped Joists

    Get PDF
    The shear resistance and flexibility of a steel roof diaphragm depend largely on shear resistance and slip flexibility of the single screw lap joint. In this paper, screw connections relevant to modern roof construction are investigated. The tests provided experimental values of shear/tearing resistance and joint flexibility of seam connections, cladding/purlin connections and purlin/rafter connections. The novel aspects of the experimental research include investigation of the behaviour of shear connections in 0.5mm thick sheeting and thick-to-thin connections in S550 high tensile steel. Overall, six series of tests were conducted and each test was repeated five times in order to demonstrate a scatter of test results. Test results were examined against existing semi-empirical formulas for predicting the shear resistance of screw joints. It was demonstrated that the design equation presented by Toma et al. (1993), without the additional condition included in Eurocode 3, offers the closest prediction in terms of joint shear resistance. In terms of joint flexibility, it was demonstrated that existing formulas developed for bolted connection (Zadanfarrokh and Bryan (1992) and Dubina and Zaharia (2006)) can be successfully used for screw connections. The flexibility reduction factor npf=0.4 was also proposed to take account of perfect fit screw connections

    Stressed Skin Design of Steel Sheeting Panels – Part 2: Shear Panels with Sheeting Fixed on all 4 Sides

    Get PDF
    In this paper, the strength and stiffness of different roof panels were investigated, in order to establish their ability to act as in-plane diaphragms for stressed skin design of cold-formed steel portal frames. A total of 6 roof panels, approximately 3 x 3m, were examined by testing with sheeting profiles fixed on 4 sides. A variety of sheeting profiles in two industry standard thicknesses of 0.5 and 0.7mm were tested, all using top-hat shaped purlins fixed with self-drilling, self-tapping screws. The experimental strength and stiffness of each panel were then compared against existing design methods. The Finite Element Analysis (FEA) modelling techniques were also presented and validated against series of full-scale tests. The FEA results have shown that the ‘true’ level of loading transferred via shear connector screws was on average 13% lower than that assumed by standard design methods. On the contrary, seam connections failure, according to FEA results, have governed a design in all of the analysed cases and the analytical method overestimated shear resistances of the panels by 45% and 35% in case of 0.5mm and 0.7mm thick sheeting profiles respectively. It was demonstrated that FEA results have represented the upper bound of experimental shear stiffness, with a very close prediction for 0.5mm thick sheeting profiles. Overall all, the tested panels demonstrated an average 41% greater flexibility then this predicted using FEA models

    Effect of stressed skin action on the behaviour of cold-formed steel portal frames

    Get PDF
    This paper describes a series of six full-scale laboratory tests conducted on cold-formed steel portal frame buildings in order to investigate the effects of joint flexibility and stressed skin diaphragm action. The frames used for the laboratory tests were of 6 m span, 3 m height, 10° pitch and the frame spacing was 3. m. Vertical loading was applied in two tests, and horizontal loading was applied in another four tests. The laboratory test set-up represented a building having two gable frames and two internal frames. Tests were conducted on frames having two joint types, both with and without roof sheeting. It was shown that as a result of stressed skin action, the internal frame with roof sheeting resisted approximately three times more horizontal load than the bare frame and the deflection of the internal frame was reduced by 90% relative to the bare frame. When the difference in loads between 2D (bare frame model) and 3D (stressed skin model) were considered, it was shown that the joint flexibility of the frame has a significant effect on the load transfer between frames through the roof sheeting. It was found that the 'true' loads transferred to the gable frames are between three and seven times higher than the loads deriving from tributary area. By using stressed skin analysis, it is possible to assess the shear force in the roof sheeting so that damage to the fixings is prevented and a more economical design is possible

    The effect of semi-rigid joints on the design of cold-formed steel portal frame structures

    Get PDF
    This paper investigates the effect of semi-rigid joints and finite connection length on the design of cold-formed steel portal frames. The performance of frames sized using a rigid joint and full joint strength assumption is compared with frames having semi-rigid joints and partial strength. It goes on to describe whether it can offset the fact that the joints cannot sustain the full moment capacity of the sections. Experimental, analytical and finite element modelling techniques have been used. They demonstrate that frames of modest span sized using a rigid joint and full joint strength assumption, are unsafe under gravity load and do not satisfy the ultimate limit state. Designers should therefore take the semi-rigidity and partial strength of the joints into consideration when analysing cold-formed steel portal frames

    Bias Correction of Hydrologic Projections Strongly Impacts Inferred Climate Vulnerabilities in Institutionally Complex Water Systems

    Get PDF
    Water-resources planners use regional water management models (WMMs) to identify vulnerabilities to climate change. Frequently, dynamically downscaled climate inputs are used in conjunction with land-surface models (LSMs) to provide hydrologic streamflow projections, which serve as critical inputs for WMMs. Here, we show how even modest projection errors can strongly affect assessments of water availability and financial stability for irrigation districts in California. Specifically, our results highlight that LSM errors in projections of flood and drought extremes are highly interactive across timescales, path-dependent, and can be amplified when modeling infrastructure systems (e.g., misrepresenting banked groundwater). Common strategies for reducing errors in deterministic LSM hydrologic projections (e.g., bias correction) can themselves strongly distort projected climate vulnerabilities and misrepresent their inferred financial consequences. Overall, our results indicate a need to move beyond standard deterministic climate projection and error management frameworks that are dependent on single simulated climate change scenario outcomes

    Adaptive hypermedia driven serious game design and cognitive style in school settings: an exploratory study

    Get PDF
    The potential value of adaptive hypermedia and game based learning to education and training has long been recognised, numerous studies have been undertaken in both those areas investigating its potential to improve learner performance. In particular research has indicated that tailoring content to match the prior knowledge of the user has the power to increase the effectiveness of learning systems. Recent studies have begun to indicate that Adaptive Hypermedia Learning Systems (AHLS) based on cognitive styles have the power to improve learner performance. Recent examples of research exploring avenues for effectively incorporating serious games into AHLS indicated that integrating serious games into a personalized learning environment has the potential educational benefits of combining a personalized delivery with increased learner motivation. The exploratory study presented in this paper here developed an Adaptive Hypermedia Driven Serious Game (AHDSG) based around Pask’s Holist-Serialist dimension of cognitive style. A prototype AHDSG was designed and developed to teach students about Sutton Hoo and archaeological methods. Sixty-six secondary school students participated in this study. Overall the findings of this study show that there was an improvement in performance among all participants. Although the participants that used the system which adapted to their preferred cognitive style achieved a higher mean gain score, the difference was not significant

    Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling

    Get PDF
    The Snow Ensemble Uncertainty Project (SEUP) is an effort to establish a baseline characterization of snow water equivalent (SWE) uncertainty across North America with the goal of informing global snow observational needs. An ensemble-based modeling approach, encompassing a suite of current operational models is used to assess the uncertainty in SWE and total snow storage (SWS) estimation over North America during the 2009–2017 period. The highest modeled SWE uncertainty is observed in mountainous regions, likely due to the relatively deep snow, forcing uncertainties, and variability between the different models in resolving the snow processes over complex terrain. This highlights a need for high-resolution observations in mountains to capture the high spatial SWE variability. The greatest SWS is found in Tundra regions where, even though the spatiotemporal variability in modeled SWE is low, there is considerable uncertainty in the SWS estimates due to the large areal extent over which those estimates are spread. This highlights the need for high accuracy in snow estimations across the Tundra. In midlatitude boreal forests, large uncertainties in both SWE and SWS indicate that vegetation–snow impacts are a critical area where focused improvements to modeled snow estimation efforts need to be made. Finally, the SEUP results indicate that SWE uncertainty is driving runoff uncertainty, and measurements may be beneficial in reducing uncertainty in SWE and runoff, during the melt season at high latitudes (e.g., Tundra and Taiga regions) and in the western mountain regions, whereas observations at (or near) peak SWE accumulation are more helpful over the midlatitudes

    Cord Blood Stem Cell-Mediated Induction of Apoptosis in Glioma Downregulates X-Linked Inhibitor of Apoptosis Protein (XIAP)

    Get PDF
    XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant gliomas

    Improving the impact resistance of glass-fibre composites

    No full text
    corecore