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This paper describes a series of six full-scale laboratory tests conducted on cold-

formed steel portal frame buildings in order to investigate the effects of joint 

flexibility and stressed skin diaphragm action. The frames used for the laboratory 

tests were of 6m span, 3 m height, 10
o 

pitch and the frame spacing was 3 m. 

Vertical loading was applied in two tests, and horizontal loading was applied in 

another four tests. The laboratory test set-up represented a building having two 

gable frames and two internal frames. Tests were conducted on frames having two 

joint types, both with and without roof sheeting. It was shown that as a result of 

stressed skin action, the internal frame with roof sheeting resisted approximately 

three times more horizontal load than the bare frame and the deflection of the 

internal frame was reduced by 90% relative to the bare frame. When the difference 

in loads between 2D (bare frame model) and 3D (stressed skin model) were 

considered, it was shown that the joint flexibility of the frame has a significant 

effect on the load transfer between frames through the roof sheeting.  It was found 

that the ‘true’ loads transferred to the gable frames are between three and seven 

times higher than the loads deriving from tributary area. By using stressed skin 

analysis, it is possible to assess the shear force in the roof sheeting so that damage 

to the fixings is prevented and a more economical design is possible.   

Keywords:  Cold-formed steel, portal frames, stressed skin action 
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 Introduction  1.

Portal frame buildings composed entirely of cold-formed steel (see Fig.1), with 

spans of up to 20 m, frame spacings up to  4m and subject to relatively light loading, can 

be a viable alternative to conventional hot-rolled steel frames  [1-6]. Uses of cold-formed 

steel portal frames include light industrial, sports and agricultural buildings. In such light-

weight steel portal frames, channel-sections are used for the column and rafter members, 

and top-hat sections may be used for the purlins and side rails (see Fig.2). Top-hat 

sections are considered to be more efficient than zed-purlins for cold-formed steel portal 

frames where the frame spacings (or purlin spans) are in the range of 3 - 4.5 m, compared 

with 6 m for conventional hot-rolled steel frames. They are also much stiffer than zed-

purlins in terms of transferring shear load to the roofing (see Fig.2) [7].  

Principally under horizontal load, the roof sheeting is known to act as a shear 

diaphragm (see Fig.3) [8] and by this means, loads are transferred to the end gables that 

should be designed to resist these forces. This stiffening effect, referred to as stressed 

skin or diaphragm action [9-14], explains why a clad frame behaves differently from a 

bare frame. Design recommendations on stressed skin action were first published by 

ECCS TC17 [15] and further extended by Davies and Bryan [11]. Other contributors  

were: Bates et al. [16], Bryan and Moshin [17], Strnad and Pirner [18] , Davies et al. 

[12], Heldt and Mahendran [19] and Mahendran and Moor [20].  It should be noted that 

this research focused on hot-rolled steel portal frames in which the haunched eaves and 

apex joints can be classified as rigid.  

In practice, however, the effects of stressed skin action are often ignored by 

designers of hot-rolled steel portal frames. However, cold-formed steel portal frames 

have more flexible joints [21] and also use relatively stiffer top-hat purlins, which means 

that not including the effects of stressed skin action could  lead to roof failure at 

https://ex2k7.qub.ac.uk/OWA/?ae=PreFormAction&a=ReplyAll&t=IPM.Note&id=RgAAAAAe8cqWcgywRJgSE%2fvu2r8CBwCRq8LioBPGTYkPwNcQXTdjAAdjihwLAACRq8LioBPGTYkPwNcQXTdjAC%2bUcCovAAAJ#_ENREF_1
https://ex2k7.qub.ac.uk/OWA/?ae=PreFormAction&a=ReplyAll&t=IPM.Note&id=RgAAAAAe8cqWcgywRJgSE%2fvu2r8CBwCRq8LioBPGTYkPwNcQXTdjAAdjihwLAACRq8LioBPGTYkPwNcQXTdjAC%2bUcCovAAAJ#_ENREF_1
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serviceability loads (see Fig.4) [22]. This could lead to excessive tearing of the fixings 

and water leakage into the building [13]. 

3D structural analysis is now a standard tool for designing complex structures as it 

gives a more accurate representation of the structural behaviour. However, portal frame 

buildings are still predominantly modelled as 2D bare frames [23]. An exception is where 

seismic actions have to be considered , which has been highlighted in research on seismic 

design of cold-formed steel frames [24-28]. 

Furthermore, for cold-formed steel portal frames, steel designers often refer to 

guidance for equivalent hot-rolled steel frames [29] in terms of deflection limits of bare 

frames, but these are discretionary. As a result, designers sometimes relax these 

deflection limits to achieve a more economical design under the assumption that the roof 

panel will reduce the deflections, possibly by as much as 50%. However, the effect of 

relaxing deflection limits can lead to lighter and more flexible internal frames based on 

2D design. This results in an underestimation of the forces in roofing and hence can lead 

to an under-design of the gable end-frames. Fig.4b shows the consequences of diaphragm 

action loads on the gable rafter. This is even more important when the joint rotation adds 

to frame flexibility. Joint rotation in cold-formed steel portal frames is associated with the 

bearing of the mechanical fasteners (generally bolts) acting in shear on relatively thin 

steel plates. Designers in the UK often use design guides [30] in which the moment 

resistance of connections between cold-formed sections is assumed to be governed by 

bearing resistance of fasteners. The rotational stiffness of a joint and slip due to 

tolerances in bolt hole is often neglected in the analysis [31]. Investigated joints are 

therefore similar to what can be found in the practice and the tests using these 

connections take account of initial slip in the bolts. 
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Experimental investigation on portal frames using back-to-back lipped channel 

sections and bolted joints had been already published [28] but was focused on developing 

full-strength connections of much greater rotational stiffness than those reported in this 

paper. The behaviour of a bare frame was investigated in the seismic design context and 

stressed skin action was not included in this study [28]. The study highlighted importance 

of component testing in establishing accurate strength and stiffness characteristic of joints 

which must be included in an analysis model.   

In this paper, the results of six full-scale tests on cold-formed steel portal frames are 

presented.  Details of the eaves and apex joints considered in this paper are shown in 

Fig.5; such joints are typical of those used for cold-formed steel portal frames in practice.  

As can be seen, the joints are formed using brackets that are bolted between the webs and 

outer flanges of the cold-formed steel channel-sections. Two different bolt-group sizes 

are considered for the joints, with each bolt-group size (and therefore bracket size) having 

a different rotational stiffness. Firstly, tests on frames without roof sheeting are described.  

Vertical loading was applied in two tests, and horizontal loading was applied in four tests. 

Secondly, for horizontal loading only, the frame tests were carried out with and without 

roof sheeting to determine the effect of stressed skin action. The component tests are 

described separately for both the roof panel and the beam-to-column connections.  

Finally, 3D non-linear frame analysis models are presented, which show that the 

frame behaviour can be predicted accurately if the experimentally determined joint 

strength and stiffness are used, as well as the stiffness of the roof sheeting. Using these 

models, the design of cold-formed steel portal frame buildings of 6m span, height to 

eaves of 3 m and frame spacing of 3 m are considered in which the design variables are 

the stiffness of the internal frames and the length of the building. The simplified 2D 

design assumption, of the load on the end gable being half that of an internal frame is 
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shown to be incorrect. It is demonstrated in Fig.20 that if horizontal deflection limits [29] 

are ignored, such assumption will under-predict the loads acting on end gables by as 

much as factor of seven. It is concluded that the horizontal loading acting on 1.7 bays 

should be used as the minimum to design the end gables. This is a factor of 3.4 higher 

than the simplified assumption that the load on the end gable is half that of an internal 

frame (see Fig.20c). It is estimated that for building of 12m length, 2D design (see 

Fig.18) requires 981kg of steel which is 42% more than a portal frame building with joint 

type B (see Fig.9b). The ‘true’ loads acting on clad buildings are a function of a length as 

well as span of the structure and are not accounted for in 2D design. Therefore, 3D 

analysis is recommended for the design of cold-formed steel portal frames with flexible 

joints. 

 Experimental investigation 2.

 Details of frames 2.1.

Table 1 summarises the six portal frame tests conducted, which are defined as 

Frames 1 - 6. The frames used in all buildings have a span of 6 m, height of 3 m, and 

pitch of 10˚ and the column bases are pinned. The results of the clad frame tests are 

intended to represent the behaviour of building of 9 m overall length, having two braced 

gable frames and internal frames, with a frame spacing of 3 m. Load cells located in the 

gable braces allowed the load distribution between frames to be determined. Fig.6 shows 

the nominal dimensions of the channel-sections used for the frames in all six tests. In the 

internal frames, the channel-sections are placed back-to-back and in the gable frames 

(including the gable posts) single channel-sections are used. Fig.6b shows the nominal 

dimensions of the single skin profile used for the roof sheeting. The roof profile has a 



6 

 

depth of 30 mm and a nominal thickness of 0.7 mm. Fig.6c shows the nominal 

dimensions of the top-hat purlins whose thickness is 1.0 mm.  

Details of the test general arrangement are shown in Fig.7 and the test setup is 

shown in Fig.8. Owing to symmetry and also due to laboratory space limitations, only 

one gable frame and one internal frame were used for each clad frame test. 

Frames 1 to 3 used a bolt-group arrangement of 160 mm x 80 mm for the eaves and 

apex joints, which are referred to as Joint A. Fig.9a shows details of Joint A and the size 

of the brackets suit this bolt-group size. Fully threaded M16 bolts were used in 18 mm 

diameter bolt-holes. Similarly, the joints in Frames 4 to 6 used a bolt-group size of 280 

mm x 80 mm (see Fig.9b). The eaves and apex joints of these buildings are referred to as 

Joint B. 

In Fig.7, the out-of-plane restraints to the gable frame were provided through a set 

of ties. Load was applied only to the internal frame. The reaction force in each tie was 

measured by load cells. Linear displacement transducers were used at positions around 

the frame. Table 2 shows the measured stiffness of the out-of-plane restraints. 

For each frame with Joints A and B, one test was conducted with vertical loading 

and two tests with horizontal loading. For vertical loaded frames, all tests were conducted 

without roof sheeting, as the effect of stressed skin action for this shallow roof slope can 

be expected to be negligible. For the case of horizontal loading, one test was conducted 

with sheeting and one without sheeting. 

It should be noted that for the tests conducted without sheeting, no load was 

transferred to the gable frames from the internal frames to which the load was applied. 

The results of the tests on the internal frame can therefore be assumed to be identical to a 

bare frame test. 
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2.1.1 Joint component tests 

Fig.10 shows details of the general arrangement of the four point bending tests used 

to determine the stiffness and strength of Joints A and B. The total length of each 

specimen was 3 m. A continuous beam of 3m length was also tested so the flexural 

rigidity of continuous back-to-back sections could be measured accurately rather than 

calculated from idealised properties. The test on a continuous beam showed that 

measured flexural rigidity was 33% less than calculated based on gross section geometry. 

In all tests, lateral restraints were provided at the supports, at the load points and at mid-

span. As for the frame test, fully threaded M16 bolts were used in 18 mm diameter bolt-

holes.  

For each test, a coupon was cut from a flat portion of a flange of each cold-rolled 

channel section. The coupons of members failing first were subject to tensile tests. The 

mechanical properties of steel are presented in Table 3 and a typical stress-strain curve is 

shown in Fig.11. 

Tests on Joint A were conducted in both the upwards and downwards direction. As 

the results for loading in both directions were shown to be similar for Joints A, only a 

single test in the downwards direction was conducted for Joint B. Fig.12 show the 

variation of moment with rotation of the point coinciding with centre of rotation for 

Joints A and B.  The same characteristic was also calculated using joint rotational 

stiffness predicted by Zadanfarrokh and Bryan (1992) [21] (see Fig.12).  Table 5 

summarises the experimental stiffness (Sj,ini,exp), failure load (FT) and moment capacity 

(MT) determined in each test.  

2.1.2 Roof panel tests 

Fig.13 shows the general arrangement of the laboratory test used to determine the 



8 

 

shear strength and stiffness of the roof panels. The test procedure was carried out in 

accordance with BS 5950-9 [9]. The panel was subjected to three initial loading and 

unloading cycles before being loaded to failure. The details of an experimental study are 

presented in Wrzesien et al. 2009 [7]. 

Self-drilling self-tapping screws of 5.5 mm diameter with washers and seals were 

used for fixing the sheeting to the purlins. Self-drilling self-tapping screws of 6.3 mm 

diameter, both with and without washers, were used to fix the seams and also to fix the 

purlin to the rafters. The shear strength and slip of sheet-to-purlin fasteners, seam 

fasteners and the design resistance and flexibility of the purlin-to-rafter connection were 

established experimentally as data for some of them were not covered by existing design 

recommendations [9, 32]. The characteristic values based on five repeated tests are given 

in Table 4.  The mechanical properties of steel are presented in Table 3 and typical stress-

strain curves are shown in Fig.11. 

Fig.14 shows the experimental load-deflection curve in which the shear stiffness of 

the roof panel is converted into an equivalent stiffness of a diagonal spring between the 

eaves and apex of the frame. The mode of failure observed was a combination of end 

sheet-to-purlin connection failure and seam failure.  

The prediction of a shear stiffness and resistance using design methods [9, 32] is 

also shown in Fig.14. The geometry of the panel and the fixing arrangement is presented 

in Fig.13. The experimental shear resistance was approximately three times greater than 

the calculated design value and the shear stiffness of a panel was approximately one and 

half times greater than calculated values using the design method [9, 32].  
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 Full-scale frame test results 2.2.

Load cycles to eliminate the initial bolt slip from the frame were not conducted, as 

any bolt-hole elongation would not be recoverable and it was considered that the first 

load cycle is representative of real portal frame structures. All bolts were lightly tightened 

with a spanner to minimise the effects of friction. 

The initial slope of the roof and verticality of the columns were measured using a 

digital inclinometer and the deflection was set to zero at this position. The values of 

initial sag of the rafter as well as horizontal displacement of the top of the column under 

self-weight were calculated based on the difference in angle between perfect and 

measured geometry. 

The same load was applied to each jack until the failure of the structure occurred. 

The load was applied in steps of approximately 0.5 kN and readings were recorded at the 

end of each load step. 

Fig.15 shows the variation of load against apex deflection for the case of vertical 

loading. As can be seen, the failure load is almost independent of the bolt-group size, as 

the frame with Joint B failed at a total load of only 4% greater than frame with Joint A. 

However, in terms of stiffness, the frame with Joint B was approximately 60% stiffer that 

the frame with Joint A. At the failure load, the eaves joint failed on the column side (see 

Fig.15), with a mode of failure similar to that observed in the joint component test (see 

Fig.12).  

Fig.16a and b show the variation of the total load against horizontal deflection of 

bare horizontally loaded frames with joint types A and B. Again, there is little difference 

in the failure load of the bare frames as the building with Joint A failed at a load of 18.0 

kN, while the building with Joint B failed at 17.5 kN. 

Fig.16 also shows the variation of load against horizontal deflection of horizontally 
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loaded frames with roof sheeting. There is again little difference in the failure load of the 

clad frames; the frame with Joint A failed at a total load of 54.3 kN, while the frame with 

Joint B failed at 58.8 kN. However, the failure load had increased by almost a factor of 

three compared with the failure load of the frame with no roof sheeting. Furthermore, the 

stiffness of the frame increased by almost a factor of ten relative to the bare frame. In 

both tests, failure of the roof panels occurred together with severe deformations of the 

purlins (as shown in Fig.4).  

 Frame analysis 3.

The non-linear elastic frame analysis program Robot Structural Analysis 

Professional 2010 [33] was used for the numerical studies. In general, cold-formed steel 

frames are not suitable for plastic design as they are made using Class 4 sections that are 

susceptible to local and distortional buckling. Fig.17 shows details of the beam 

idealization of the full-scale laboratory test that was used in the model. The beam element 

used had six degrees of freedom per node. Fifteen elements were used for the columns 

and thirty for the rafters.  

In the beam idealization, the rotational stiffness of joints was modelled using the 

experimentally determined moment-rotation curve of the joints (see Fig.12). This was 

idealised as a bi-linear rotational spring which was placed at the centre of gravity of the 

bolt-group following an elastic design method. The Instantaneous Centre of Rotations of 

eccentrically loaded bolt-groups [34] were ignored as they could not be included  in the 

beam idealisation. Stressed skin action was modelled using tension-only bracing 

members using the experimentally determined load-deflection curve of the roof panel 

(see Fig.14). As can be seen in Fig.17, the purlins and side rails were not modelled.  The 

edge beams connecting the gable frame to the internal frames were idealised as having no 
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bending stiffness and so only carry axial load. As the effect of the axial stiffness of the 

top-hat edge purlin on roof panel shear stiffness was already included in the test data, a 

high axial stiffness was used to represent the purlins in the beam idealisation, so this 

effect was not considered twice. The beam idealisation of the roof panel was calibrated 

against the results of the roof panel tests in shear. 

The frame analysis results for the case of the vertical loading are shown in Fig.15. 

Good agreement against the test results was obtained for the buildings with both joint 

type A and B. As may be expected, the frame analysis slightly over-predicted the failure 

load as the effect of axial forces was not considered. The experimentally determined 

bending resistances of the joints and continuous members were used as limiting factors in 

the frame analysis. Although the effect of axial load is not significant for the given 

geometry and lateral restraint conditions, the effect should be considered in a frame 

design using cold-formed steel members [28].    

Fig.16a and b also show the experimental and frame analysis results for the case of 

the horizontal loading with no roof sheeting, and in this case, the frame analysis results 

under-predicted both the stiffness and strength of the frames.  However, for an internal 

frame in a clad building with roof sheeting, the agreement in terms of deflections under 

horizontal load was good (see Fig.16). Good agreement was also observed between 

forces measured during experiments and those predicted by frame analysis. 

 Frame design 4.

4.1. Investigation of building geometry 

Using the beam idealization described in Section 3, six buildings having 3 to 8 

bays were analysed for both ultimate and serviceability limit state design in accordance 
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with Eurocode 1 loading. The span, height to eaves, roof pitch and frame spacing were 

the same and only the length of the building was increased. The building length is 

expressed as length-to-span ratio ranging from 1.5 (i.e. 3x3 m bay) to 4 (i.e. 8x3 m bay).  

The size of the sheeting panel was therefore kept similar to the component test so 

accurate experimental strength and stiffness characteristic can be used.  

The design process was repeated for each of joint types A, B and C, in which a 

new Joint C was designed to satisfy horizontal deflection requirement in bare frame 

analysis [29], and is shown in Fig.18 . Back-to-back channel sections of 300 mm depth 

and 2.5 mm thickness were used for columns and rafters of the internal frames. The gable 

frames were the same as those in buildings with Joint B. A bolt-group size of 620 mm x 

208 mm was used, comprising five bolts in two rows (see Fig.18). The rotational stiffness 

of such joint was calculated to be 7358 kNm/rad [21, 31]. The joint bending resistances 

were calculated as 71.4 kNm [22, 31, 35]. A 2D bare frame analysis of the internal and 

gable frames was also conducted for comparison with the clad frames.  

4.2. Load cases and load combinations 

Fig.19 shows the unfactored actions applied to the frame [29]. The permanent 

(gk), snow (sk) and live loads (qk) are based on loads of 0.18 kN/m
2
, 0.4 kN/m

2 
and 0.6 

kN/m
2
, respectively [36-39]. The wind action (wk) is based on a design pressure of 1.0 

kN/m
2
 on the side face of the building [40, 41]. Such loadings are typical of design to UK 

design practice.  

The internal and gable frames are checked at the ultimate limit state for the 

following ultimate load combinations (ULCs) [42, 43]: ܷܥܮͳ ൌ ͳǤ͵ͷ݃௞ ൅ ͳǤͷݍ௞    (1a) ܷܥܮʹ ൌ ͳǤ͵ͷ݃௞ ൅ ͳǤͷݏ௞ ൅ ͳǤͷ ൈ ͲǤͷݓ௞  (1b) 
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͵ܥܮܷ ൌ ͳǤ͵ͷ݃௞ ൅ ͳǤͷݓ௞ ൅ ͳǤͷ ൈ ͲǤͷݏ௞  (1c) ܷܥܮͶ ൌ ͳǤͲ݃௞ ൅ ͳǤͷݓ௞ሺ݂ݐ݂݈݅݌ݑ ݀݊݅ݓ ݎ݋ሻ  (1d) 

The internal frame and cladding are also checked at the serviceability limit state. 

For an internal frame, the serviceability deflection limits recommended by the Steel 

Construction Institute (SCI) [29] are: 

 Absolute horizontal deflection of column height/100 (30 mm for this case) 

 Differential horizontal deflection relative to adjacent frame of frame 

spacing/200 (15 mm for this case) 

 Differential ridge deflection relative to adjacent frame of frame spacing /100 

(30 mm for this case) 

It is assumed that the cladding fails the serviceability limit state when the shear 

force applied to it exceeds 60% of its shear resistance. This assumption is based on 

experimental investigations of the cladding panels and prevents permanent deformation 

of the roof panel at serviceability loads. [7]. The following serviceability load cases 

(SLCs) are selected as they are considered under vertical and horizontal loads [42, 43]: ܵܥܮͳ ൌ ͳǤͲݍ௞      (2a) ܵܥܮʹ ൌ ͳǤͲݓ௞     (2b) 

4.3. Unity factors based on the designs 

Fig.20 and Fig.21 summarise the unity factors at the ultimate limit state (ULS) for 

the internal frame, gable frame and sheeting panel. These are defined as the ratio of the 

applied load to the resistance for the critical mode of failure as follows: 

 Internal frame ܷܨଷ஽ ൌ ெೕǡಶ೏ǡ͵ವெ೅     (3a) 
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ଶ஽ܨܷ ൌ ெೕǡಶ೏ǡʹವெ೅     (3b) 

 Gable frame ܷܨଷ஽ ൌ ேಶ೏ǡ͵ವே೟ǡೃ೏      (3c) 

ଶ஽ܨܷ ൌ ேಶ೏ǡʹವே೟ǡೃ೏      (3d) 

 Sheeting panel ܷܨଷ஽ ൌ ௏೏ǡಶ೏ǡ͵D௏೏ǡ೅     (3e) 

where: 

Mj,Ed,3D, Mj,Ed,2D – bending moments acting on the bolt-group centre of 

rotation based on 3D and 2D frame analysis 

MT – connection moment resistance obtained in component test (see Table 

5) 

NEd,3D, NEd,2D – tension forces acting on the gable bracing based on 3D and 

2D frame analysis 

Nt,Rd – design resistance for uniform tension  of the bracing member 

(26.95kN) 

Vd,Ed,3D – shear force acting on a roof panel next to gable based on 3D 

analysis 

Vd,T – shear resistance of a panel obtained in component test (see Fig.14) 

The unity factors were calculated based on 3D analysis (UF3D) and the results for 

different length-to-span ratios of the building are marked by the solid lines on the plots. 

For comparison, the unity factors based on 2D design (UF2D) are also presented as 

horizontal dashed lines. The load under prediction can be identified when the solid line 

representing ‘true’ redistributed loads lies above a dashed line. The critical load 

combinations (see section 4.2) to which unity factors are calculated for both 3D and 2D 
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models are also presented. The loads ratios (r) obtained from the 3D model relative to the 

loads obtained in the 2D model are presented for the extremes of the analysis (see 

Fig.20): 

 Internal frame ݎூ ൌ ெ೤ǡಶ೏ǡ͵Dெ೤ǡಶ೏ǡʹD     (4a) 

 Gable frame ீݎ ൌ ேಶ೏ǡ͵Dேಶ೏ǡʹD     (4b) 

If the load ratio (r) is greater than 1, the 2D analysis model is unsafe and loads 

should be increased by the given factor (i.e. from Fig.20c rG=3.38 x 0.5 bay ≈ 1.7 bay). 

Hence in a 2D analysis, the gable frame should be designed to resist wind load resulting 

from 1.7 times that acting on a single bay between frames). 

An analogous approach was used in Fig.22 in order to demonstrate the effect of 

stressed skin action on building deflections. The serviceability limit state (SLS) unity 

factors and deflection ratios were calculated as follows:  

 Live load ܷܨଷ஽ ൌ ఋೌǡ͵DఋೌǡSCI     (5a) 

ଶ஽ܨܷ ൌ ఋೌǡʹDఋೌǡSCI     (5b) 

௅௅ݎ ൌ ఋೌǡ͵DఋೌǡʹD     (5c) 

 Wind load ܷܨଷ஽ ൌ ఋ೐ǡ͵Dఋ೐ǡSCI     (5d) 

ଶ஽ܨܷ ൌ ఋ೐ǡʹDఋ೐ǡSCI     (5e) 

ௐ௅ݎ ൌ ఋ೐ǡ͵Dఋ೐ǡʹD     (5f) 
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where: 

įa,3D, įa,2D – apex vertical deflection under the imposed load based on 3D 

and 2D frame analysis 

įa,SCI, įe,SCI  – apex and eaves deflection limits [29] 

įe,3D, įe,2D – eaves horizontal deflection under the wind load based on 3D 

and 2D frame analysis 

As can be seen, there is little difference between the ULS unity factors for the 

portal frames with Joint A and B. For the internal frame, the design of the bare frame is 

shown to be controlled by a combination of wind and snow load (ULC3), but the 3D 

model shows, that dependent on building length, the load combinations ULC1 and ULC2 

are actually critical for frames with Joint A and B. As expected, when stressed skin 

effects are taken into account, the frame design is controlled by the shear resistance of the 

roof panel next to the gable (see Fig.21). The critical load combination for shear forces 

acting on the roof cladding changes from a combination with leading action of snow 

(ULC2) to a combination with leading action of wind (ULC3) when the length-to-span 

ratio reaches three. As expected, the longer the building, the higher the shear forces in the 

roof panels. The shear force in the roof panel is reduced by between 12% and 5% when 

Joint B rather than Joint A is used. In order to meet the SCI deflection limits, the 

horizontal stiffness of the portal frame must be increased by approximately a factor of 

ten. By doing so, the shear force in the roof panel is reduced significantly (see Fig.21). 

For the gable frame, it can be seen from Fig.20 that the design of the frame is 

controlled by the resistance of the gable bracing irrespective of the joint stiffness in the 

frames. In all cases, a 2D analysis under-estimates the forces in the gable frame by a 

factor of three for a three bay building and a factor of seven for an eight bay building (see 
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Fig.20a and b). If the stiffness of the internal frames is increased to satisfy the SCI 

serviceability requirements, the shear forces transferred to gables through the roof panels 

are reduced by approximately 70%. In 3D analysis, the gable frame loading is still over 

three times higher than in a 2D analysis (see Fig.20c), so if diaphragm action is ignored, 

the stiffness of the internal frames should be increased further to reduce the forces 

transferred to the gable frames. Alternatively the gable frame should be designed 

conservatively for horizontal load resulting from the wind loading on an estimated 1.7 

bays regardless of length-to-span ratio. This also means that the in–plane bracing and the 

foundations to the bracing have to be designed for these higher loads. From Fig.21, it can 

be concluded that the permanent deformation of the roof cladding does not occur under 

the working load for buildings with an overall length-to-span ratio less than 2.0 and 2.5 

for Joint A and Joint B respectively.  

Fig.22 shows the unity factors at the serviceability limit state. As can be seen 

from Fig.22a and b, diaphragm action reduces the vertical deflection of a three bay 

building by 36% compared to that of a bare frame. For horizontal deflections, diaphragm 

action reduces deflections of a bare frame with Joint C by 73% (see Fig.22c). In the case 

of an eight bay building with the flexible joints (such as Joint A), the horizontal 

deflection is only 10% (see Fig.22a) of that calculated for a bare frame due the dominant 

effect of stressed skin action.   

4.4. Implication for design 

The end gable frames are often designed as braced frames as better economy can 

be obtained by not using frames with moment-resisting joints. It was shown that in such 

design cases, the bare gable frame will experience much higher forces due to the effects 

of diaphragm action and forces acting on it will be under-estimated even if SCI deflection 



18 

 

limits are adopted. The additional load due diaphragm action may lead to tearing of the 

roof sheeting or failure of purlin-to-rafter connections at the gable frame and potentially 

to failure of the end gable itself (see Fig.4b). From Fig.20c, it can be concluded that for 

buildings of 6 m span and height to the eves of 3 m it is appropriate to design end gable 

frames for wind loading resulting from one to two bays depending on the building length. 

It was also shown that the horizontal deflection limits in bare frame design must be 

satisfied as relaxing these limits will lead to even further under-estimation of loads in 

gable end frames.  

In comparison, for hot-rolled portal frames with rigid joints, stressed skin action is 

less important than in more flexible cold-formed frames and can be conservatively 

ignored when 2D frame analysis can be used.  If the design of portal frames is generally 

governed by horizontal deflections (e.g. for the design case with Joint C), then it is shown 

that stressed skin analysis must be carried out.  

As the roof construction is constantly evolving, it is also shown that existing 

design methods need be updated for modern roof systems, such as those with top-hat 

purlins and composite panels, so that relative flexibility ratio of the frame to the roof 

system can be accurately assessed (see Fig.14).   

Although the design methods [9, 44] were developed in the past, these were re-

examined in this paper in the context of cold-formed steel frames with flexible joints and 

it is recommended that 3D non-linear analysis model (FEA) is used for cold-formed steel 

portal frames for the following reasons: 

 Fig.15 and Fig.16 show that the sway and spread flexibilities of bare frames 

are non-linear relationships due to slip.  

 The reduction factors on sway forces (see Table 16 of [9]) are only suitable on 

the assumption that the gable frames are rigid both in and out-of-plane. The 



19 

 

flexibility of a gable frame was measured in the tests in this paper (see Table 

2) and should not be ignored.  

 The assumption in the design methods that  wind forces act as point loads at 

the eaves level, is a simplification, as when the wind load is modelled as a 

distributed load (see Fig.19c), the maximum bending moment may occur at 

mid-column height rather than eaves. 

A 3D analysis allows the designer to follow ‘true’ load paths and produce a 

design which is often more economical. In such designs, however roof sheeting may 

become a key structural component responsible for the building’s stability and so it 

follows that the stability of the structure can be compromised if the roof sheeting is 

removed or the stiffness of the roof panel is changed (e.g. by adding openings or 

replacing sheeting profiles). 

 Conclusions 5.

This paper describes a series of six full-scale laboratory tests conducted on cold-

formed steel portal frames in order to investigate the effects of joint flexibility and 

stressed skin diaphragm action. The buildings tested were of 6m span, 3m height, 10
o
 

pitch and 3 m frame spacing. Two different joints were considered: joint types A and B, 

and the stiffness of Joint B was approximately twice that of Joint A. 

From the full-scale tests on the bare frames, it was observed that the failure load of 

buildings with Joints A and B failed at approximately the same load. In terms of stiffness, 

the bare frame with Joint B was approximately 60% and 30% stiffer that the same case 

with Joint A under vertical load and horizontal load, respectively. However, for the frame 

with roof cladding, the horizontal stiffness of the building increased by approximately a 

factor of ten.  
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When the experimentally derived data was used to design the building in 

accordance with the relevant Eurocodes, it was shown that the cladding stiffness cannot 

be ignored in practice as the loading attracted to the gables may be under-estimated by as 

much as factor of seven (see Fig.20). This has an important effect on the gable frames 

which are usually designed for a wind load acting on half a bay according to bare frame 

model. In order for 2D design to be used safely, horizontal deflection limits more 

stringent than those recommended by SCI should be adopted or alternatively, the forces 

acting on the gables should be increased (see Fig.20c).   

It is shown that a lighter internal frame can be designed by including diaphragm 

action in the 3D analysis. For a typical building of 6m span and 12m length consisting of 

three internal frames and two end gables, 2D design requires 981kg of steel in the 

framework and when stressed skin action is considered, the overall weight of the steel 

framework can be reduced by 42%. In such designs, the roof cladding becomes an 

important structural component in providing lateral stability.  

The following general conclusions can be drawn: 

 The bare frame model identifies a wind load combination as being critical; 

including diaphragm action shows that the critical load combination 

depends on the length-to-span ratio of the building (see Fig.20) 

 The bare frame design model may not be safe for designing clad structures 

as it ignores the additional force in the edge purlins, end cladding and gables 

(see Fig.20) 

 It is proposed that to avoid failure of the end gables, they are designed to 

resist wind forces equivalent to 1.7 times that acting on a single bay 

between frames. 
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 The effect of the stiffness of the joints on the horizontal deflection of the 

system when sheeting action is taken into account is less than with a bare 

frame model that predicts the joint stiffness to be a dominant factor in 

lateral stiffness. Increasing the rotational stiffness of the joints has a larger 

effect on vertical deflections e.g. increasing their stiffness by the factor of 

two (Joints A to B) resulted in an approximately 40% reduction in apex 

deflections (see Fig. 22). 

Acknowledgements 

Financial support from EPSRC and Capital Steel Buildings is gratefully acknowledged. 

References 

 

[1] Phan DT, Lim JBP, Sha W, Siew CYM, Tanyimboh TT, Issa HK et al. Design 

optimization of cold-formed steel portal frames taking into account the effect of building 

topology. Engineering Optimization. 2013;45:415 - 33. 

[2] Lim JBP, Nethercot DA. Serviceability design of a cold-formed steel portal frame 

having semi-rigid joints. Steel & Composite Structures. 2003;3:451-74. 

[3] Wrzesien AM, Lim JBP, Nethercot DA. Optimum joint detail for a general cold-

formed steel portal frame. Advances in Structural Engineering. 2012;15:1623-39. 

[4] Rhodes J, Burns R. Development of a portal frame system on the basis of component 

testing.  18th International Specialty Conference in Cold-Formed Steel Structures. 

Orlando, Florida, USA2006. 

[5] Johnston RPD, Sonebi M, Lim JBP, Armstrong CG, Wrzesien AM, Abdelal G et al. 

The Collapse Behaviour of Cold-formed Steel Portal Frames at Elevated Temperatures. 

Journal of Structural Fire Engineering. 2015;6:77-101. 

[6] Johnston RPD, Lim JBP, Lau HH, Xu Y, Sonebi M, Armstrong CG et al. FE 

investigation of cold-formed steel portal frames in fire.  Proceedings of the ICE - 

Structures and Buildings 2015. p. 1-17. 

[7] Wrzesien AM, Lim JBP, Lawson RM. The ultimate strength and stiffness of modern 

roof systems with hat-shaped purlins. In: Chan SL, editor. Sixth International Conference 

on Advances in Steel Structures Hong Kong, China2009. p. 480-7. 

[8] Bryan ER. The stressed skin design of steel buildings, Constrado monographs. 

London: Crosby Lockwood Staples; 1973. 

[9] BS 5950-9. Structural use of steelwork in building.  Part 9: Code of practice for 

stressed skin design. London: British Standards Institution; 1994. 

[10] Davies JM. The plastic collapse of framed structures clad with corrugated steel 

sheeting. ICE Proceedings. 1973;55:23-42. 



22 

 

[11] Davies JM, Bryan ER. Manual of stressed skin diaphragm design. London: Granada; 

1982. 

[12] Davies JM, Engel P, Liu TTC, Morris LJ. Realistic modelling of steel portal frame 

behaviour. The Structural Engineer. 1990;68. 

[13] Davies JM, Lawson RM. Stressed skin action of modern steel roof systems. The 

Structural Engineer. 1999;77:30-5. 

[14] Davies JM. Development in stressed skin design. Thin-Walled Structures. 

2006;44:1250-60. 

[15] ECCS TC17. European recommendations for the stressed skin design of steel 

structures: European Convention for Constructional Steelwork, ECCS - XVII -77-1E; 

1977. 

[16] Bates W, Bryan ER, El-Dakhakhni WM. Full-scale tests on a portal frame shed. The 

Structural Engineer. 1965;43:199-208. 

[17] Bryan ER, Mohsin ME. The design and testing of a steel building taking account of 

the sheeting.  The International Association  of Bridge and Structural Engineering, 9th 

Congress, Preliminary Report. Amsterdam: 305-314; 1972. 

[18] Strnad M, Pirner M. Static and dynamic full-scale tests on a portal frame structure. 

The Structural Engineer. 1978;56:45-52. 

[19] Heldt TJ, Mahendran M. Full scale experiments of a steel portal frame building. 

Journal of the Australian Steel Institute,  Steel Construction. 1998;32:3-21. 

[20] Mahendran M, Moor C. Three-dimensional modeling of steel portal frame 

buildings. Journal of Structural Engineering. 1999;125 870-8. 

[21] Zadanfarrokh F, Bryan ER. Testing and design of bolted connections in cold-formed 

steel sections.  11th International Specialty Conference on Cold-Formed Steel Structures. 

St. Louis, Missouri, USA1992. p. 625-62. 

[22] Phan DT, Lim JBP, Tanyimboh TT, Wrzesien AM, Sha W, Lawson RM. Optimal 

design of cold-formed steel portal frames for stressed-skin action using genetic algorithm. 

Engineering Structures. 2015;93:36-49. 

[23] Hairsine RC. Simplified 3D analaysis of portal structures-observations, problems 

and solutions. The Structural Engineer. 2010;88:25-33. 

[24] Calderoni B, De Martino A, Landolfo R, Ghersi A. On the Seismic Resistance of 

Light  Gauge Steel Frames. In: Mazzolani F, Gioncu V, editors. Behaviour of Steel 

Structures in Seismic Areas STESSA '94. London: E & FN Spoon; 1995. p. 333-43. 

[25] Tremblay R, Stiemer SF. Seismic behavior of single-storey steel structures with a 

flexible roof diaphragm. Canadian Journal of Civil Engineering. 1996;23:49-62. 

[26] Dubina D, Fulop L, Nagy Z, Ungureanu V. Cold-formed Steel Structures for Single 

Storey Buildings.  International Conference on Steel Structures of the 2000's. Istanbul, 

Turkey2000. p. 191-6. 

[27] Dubina D, Ungureanu V, Fulop L, Nagy Z, Larsson H. LINDAB Cold-Formed Steel 

Structures for Small and Medium Size Non-Residential Buildings in Seismic Zones.  The 

9th Nordic Steel Construction Conference NSCC2001. Helsinki, Finland2001. p. 463-70. 

[28] Stratan A, Nagy Z, Dubina D. Cold-formed steel pitched-roof portal frames of back-

to-back plain channel sections and bolted joints.  Eighteenth International Specialty 

Conference on Cold-Formed Steel Structures. Orlando, Florida, U.S.A.2006. 

[29] SCI P397. Elastic Design of Single-Span Steel Portal Frame Buildings To Eurocode 

3. In: Koschmidder DM, Brown DG, editors. Ascot, UK, : The Steel Construction 

Institute; 2012. 

[30] SCI P125. Building Design using Cold Formed Steel Sections: Worked Examples to 

BS 5950: Part 5: 1987. Ascot, UK,: The Steel Construction Institute; 1993. 



23 

 

[31] Johnston RP, Wrzesien AM, Lim JBP, Sonebi M, Armstrong CG. The effect of 

semi-rigid joints on the design of cold-formed steel portal frame structures. Civil and 

Environmental Research. 2013;5:1-5. 

[32] ECCS. European recommendations for the application of metal sheeting acting as a 

diaphragm. Brussels: European Convention for Constructional Steelwork; 1995. 

[33] Autodesk Inc. Autodesk Robot Structural Analysis Professional 2010 Training 

Manual - Metric Version. 2009. 

[34] Crawford SF, Kulak  GL. Eccentrically Loaded Bolted Connections. Journal of the 

Structural Division, ASCE. 1971; 97:765–83. 

[35] Dubina D, Stratan A, Ciutina A, Fulop L, Zsolt N. Monotonic  and cyclic 

performance of joints of cold formed steel portal frames. In: Loughlan J, editor. 4th 

International Conference on Thin-walled structures. Loughborough, UK2004. p. 381-8. 

[36] BS EN 1991-1-1:2002. Eurocode 1: Actions on structures — Part 1-1: General 

actions — Densities, self-weight, imposed loads for buildings (Incorporating corrigenda 

December 2004 and March 2009). London: British Standard Institution; 2002. 

[37] BS EN 1991-1-3:2003. Eurocode 1 — Actions on structures — Part 1-3: General 

actions — Snow loads (Incorporating corrigenda December 2004 and March 2009) 

London: British Standard Institution; 2003. 

[38] NA to BS EN 1991-1-1:2002. UK National Annex to Eurocode 1: Actions on 

structures — Part 1-1: General actions — Densities, self-weight, imposed loads for 

buildings. London: British Standard Institution; 2005. 

[39] NA to BS EN 1991-1-3:2003. UK National Annex to Eurocode 1: Actions on 

structures — Part 1-3: General actions — Snow loads (Incorporating 

corrigendum no. 1). London: British Standard Institution; 2005. 

[40] BS EN 1991-1-4:2005+A1:2010. Eurocode 1: Actions on structures — Part 1-4: 

General actions — Wind actions (Incorporating corrigenda July 2009 and January 2010). 

London: British Standard Institution; 2005. 

[41] NA to BS EN 1991-1-4:2005+A1:2010. UK National Annex to Eurocode 1 – 

Actions on structures Part 1-4: General actions – Wind actions (Incorporating National 

Amendment No. 1). London: British Standard Institution; 2008. 

[42] BS EN 1990:2002+A1:2005. Eurocode - Basis of structural design ( Incorporating 

corrigenda December 2008 and April 2010). London: British Standard Institution; 2002. 

[43] NA to BS EN 1990:2002+A1:2005. UK National Annex for Eurocode - Basis of 

structural design (Incorporating National Amendment No. 1). London: British Standard 

Institution; 2004. 

[44] ECCS TC7. European recommendations for the application of metal sheeting acting 

as a diaphragm - stressed skin design: European Convention for Constructional 

Steelwork, ECCS No. 40; 1995. 

[45] BS EN 10002-1:2001. Metallic materials - Tensile testing.  Part 1: Method of test at 

ambient temperature. Brussels: European Committee for Standardization; 2001. 

 

 

 

 

 

 

 

 

 

 



24 

 

 

Table 1 Summary of full-scale frame tests 

Frame Joint 

type 

Direction 

of loading 

With roof 

sheeting 

1 A Vertical No 

2 Horizontal No 

3 Horizontal Yes 

4 B Vertical No 

5 Horizontal No 

6 Horizontal Yes 

Table 2  Measured stiffness kj, of bracing members modelled as bi-linear springs 

 Frame 3 Frame 6 

Spring 

position 

k1 D1 k2 k1 D1 k2 

 kN/mm mm kN/mm kN/mm mm kN/mm 

3A 1.57 3.19 0.69 0.89 5.51 0.66 

4A 0.64 3.77 0.85 0.96 5.07 0.94 

3B 1.13 0.84 1.39 0.89 2.37 1.73 

4B 1.77 1.25 1.93 1.65 2.03 2.00 

 
 k1 – stiffness in the initial phase of loading  

 D1 – displacement limiting initial phase of loading 

 k2 – stiffness in the second phase of loading 

Table 3  Steel properties obtained from tensile coupon tests [45] 

Component Position Number of 

tensile tests 

Proof 

strength 

Tensile 

strength 

Non-

proportional 

elongation  

at maximum 

stress  

 

Elongation 

after fracture 

    (MPa) (MPa)  (%) (%) 

Channel section Flat portion of a 

flange 

3 395 502 15 22 

Top-hat purlin Flat portion of a 

web 

3 590 608 4 5 

Sheeting profile Flat portion of a 

web 

3 301 380 23 44 

 

Table 4 Characteristic values established in component tests  

Screw connection type Shear 

resistance  

(kN) 

Shear 

flexibility 

(mm/kN) 

5.5mm dia. screw (sheet-to-purlin) 1.90 0.34 

6.3mm dia. screw (seam) 1.30 0.29 

4 x 6.3mm dia. Screws (purlin-to-rafter) 4.20 0.81 

Table 5 Summary of results of joint component tests  
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Joints Direction of 

loading 

Sj,ini,exp 

(kNm/rad) 

FT 

(kN) 

MT 

(kNm) 

A Downwards 601 36.33 18.17 

A Upwards 591 32.46  16.23 

B Downwards 1229 40.61 20.30 

 
  Sj,ini,exp – measured joint rotational stiffness due to bolt bearing 

  FT – maximum test load  

  MT - moment calculated from FT 

 

 

 Typical cold-formed steel portal framing system  Fig.1

   

a) Top- hat purlin 

b) Shear deformation 

due to diphragm 

action 

c) Failure of purlin-

to- end-rafter 

connection 

 Behaviour  of top-hat sections acting as purlins in a clad frame Fig.2
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 Stressed skin action under horizontal load on buildings (after BS 5950-Part Fig.3

9 [9])  

 

 

a) Buckling of the edge purlin 

b) Failure of purlin connection and 

deformation of the gable-frame 

rafter 

 Mode of failures observed in clad frame tests    Fig.4

            

    (a) Eaves joint                   (b) Apex joint  
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 Details of joints for  the cold-formed steel portal framing system  Fig.5

 

 
 

a) Column/rafter b) Sheeting profile c) Purlin 

 Nominal dimensions of components used for building tests  Fig.6

 

a) Vertical load 
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HF=2500 mm  and 2400 mm  for Frame A and Frame B respectively 

 

b) Horizontal load 

 General arrangement of full-scale test frame Fig.7

   
a) Building with no sheeting           b) Building with roof sheeting 

 Photograph of full-scale portal frame building tests Fig.8
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a) Joint  A 

 
b) Joint B 

 Details of joint eaves and apex joints types A and B Fig.9

 

= displacement, FT =  jacking force, lb = 145 mm  and 205 mm  for Joints A and B, respectively 

Total weight of 6m span portal – 160kg 

Total weight of 6m span portal – 174kg 
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 Details of general arrangement of joint component tests  Fig.10

 

 Typical stress-strain curves for the steel used in the components Fig.11

 



31 

 

 

 

a) Joint  A 

 
 

b) Joint  B 

 Variation of moment against rotation for joint A and B component tests  Fig.12
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 Plan view of the test arrangement of  the roof panel Fig.13

 

 Experimental shear stiffness of the roof panel expressed as diagonal Fig.14

spring stiffness  
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 Variation of load against  apex deflection for frames loaded in vertical Fig.15

direction (Frames 1 and 4) 

 
 a) Frames 2 and 3 

 

 
 

b) Frames 5 and 6 

 Variation of load against deflection for building with roof sheeting loaded Fig.16

in horizontal direction 
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 Frame idealisation of  the full-scale tests for modelling purposes  Fig.17

 

a) Eaves joint 

 

b) Apex joint 

 Details of  Joint C Fig.18

Total weight of 6m span portal – 351kg 
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All loads in kN/m 

a) Permanent action b) Imposed load 

(Snow load) 

c)  Wind action 

 Applied actions on the frames for design purposes Fig.19

 

a) Buildings with Joint A 

 

b) Buildings with Joint B 

(0.6) 

(1.20) 
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c) Buildings with two 300 mm x2.5 mm  C sections as intermediate columns, rafters 

and Joint  C 

 Ultimate limit state unity factors for critical frames  Fig.20

 

 Ultimate limit state unity factors for critical roof panel  Fig.21
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a) Buildings with Joint A 

 

b) Buildings with Joint B 

 

c) Buildings with two 300 mm x2.5 mm  C sections as intermediate columns, rafters 

and Joint  C 

 Serviceability limit state unity factors  Fig.22


