
Northumbria Research Link

Citation: Kim, Rhae Sung, Kumar, Sujay, Vuyovich, Carrie, Houser, Paul, Lundquist, Jessica, Mudryk,  
Lawrence, Durand, Michael, Barros, Ana, Kim, Edward J., Forman, Barton A., Gutmann, Ethan D., 
Wrzesien, Melissa L., Garnaud, Camille, Sandells, Melody, Marshall, Hans-Peter, Cristea, Nicoleta, 
Pflug, Justin M., Johnston, Jeremy, Cao, Yueqian, Mocko, David and Wang, Shugong (2021) Snow 
Ensemble Uncertainty Project  (SEUP):  quantification of  snow water  equivalent  uncertainty across 
North America via ensemble land surface modeling. The Cryosphere, 15 (2). pp. 771-791. ISSN 1994-
0424 

Published by: European Geosciences Union

URL: https://doi.org/10.5194/tc-15-771-2021 <https://doi.org/10.5194/tc-15-771-2021>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/id/eprint/45526/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html




The Cryosphere, 15, 771–791, 2021
https://doi.org/10.5194/tc-15-771-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Snow Ensemble Uncertainty Project (SEUP): quantification of
snow water equivalent uncertainty across North America via
ensemble land surface modeling
Rhae Sung Kim1,2, Sujay Kumar1, Carrie Vuyovich1, Paul Houser3, Jessica Lundquist4, Lawrence Mudryk5,
Michael Durand6, Ana Barros7, Edward J. Kim1, Barton A. Forman8, Ethan D. Gutmann9, Melissa L. Wrzesien1,2,
Camille Garnaud10, Melody Sandells11, Hans-Peter Marshall12, Nicoleta Cristea4, Justin M. Pflug4,
Jeremy Johnston3, Yueqian Cao7, David Mocko1,13, and Shugong Wang1,13

1Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
2Universities Space Research Association, Columbia, MD, USA
3Department of Geography and Geoinformation Sciences, George Mason University, Fairfax, VA, USA
4Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
5Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
6School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
7Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
8Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
9National Center for Atmospheric Research, Boulder, Colorado, USA
10Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada
11Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
12Department of Geosciences, Boise State University, Boise, ID, USA
13Science Applications International Corporation, Reston, VA, USA

Correspondence: Rhae Sung Kim (rhaesung.kim@nasa.gov)

Received: 26 August 2020 – Discussion started: 15 September 2020
Revised: 15 December 2020 – Accepted: 3 January 2021 – Published: 17 February 2021

Abstract. The Snow Ensemble Uncertainty Project (SEUP)
is an effort to establish a baseline characterization of snow
water equivalent (SWE) uncertainty across North Amer-
ica with the goal of informing global snow observational
needs. An ensemble-based modeling approach, encompass-
ing a suite of current operational models is used to assess the
uncertainty in SWE and total snow storage (SWS) estimation
over North America during the 2009–2017 period. The high-
est modeled SWE uncertainty is observed in mountainous re-
gions, likely due to the relatively deep snow, forcing uncer-
tainties, and variability between the different models in re-
solving the snow processes over complex terrain. This high-
lights a need for high-resolution observations in mountains to
capture the high spatial SWE variability. The greatest SWS is
found in Tundra regions where, even though the spatiotempo-
ral variability in modeled SWE is low, there is considerable

uncertainty in the SWS estimates due to the large areal extent
over which those estimates are spread. This highlights the
need for high accuracy in snow estimations across the Tun-
dra. In midlatitude boreal forests, large uncertainties in both
SWE and SWS indicate that vegetation–snow impacts are a
critical area where focused improvements to modeled snow
estimation efforts need to be made. Finally, the SEUP results
indicate that SWE uncertainty is driving runoff uncertainty,
and measurements may be beneficial in reducing uncertainty
in SWE and runoff, during the melt season at high latitudes
(e.g., Tundra and Taiga regions) and in the western mountain
regions, whereas observations at (or near) peak SWE accu-
mulation are more helpful over the midlatitudes.
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1 Introduction

Seasonal snow plays an important role in Earth’s climate
and ecological systems and influences the number of water
resources available for agriculture, hydropower, and human
consumption, serving as the primary freshwater supply for
more than a billion people worldwide (Foster et al., 2011).
There is a critical need to better understand the role of snow
in global climate and land–atmosphere interactions (Brooks
et al., 2011; Robinson and Kukla, 1985; Stielstra et al., 2015)
and associated influences on soil moisture, vegetation health,
and streamflow (Berghuijs et al., 2014; Ryberg et al., 2016;
Stewart et al., 2005). Decreases in total snow water storage
can lead to increased droughts (Barnett et al., 2005; Fyfe et
al., 2017; Mahanama et al., 2012) and wildfires (Westerling
et al., 2006). In addition, snowmelt is a dominant driver of
flooding in many regions of the United States (Berghuijs et
al., 2016).

Though accurate and timely estimates of snow water
equivalent (SWE) are required for water and ecosystem
management, obtaining reliable, spatially distributed SWE
has been a challenge, particularly at continental and global
scales. At these scales, satellite observations are ideal, but
global SWE observations remain a major gap in snow re-
mote sensing (Dietz et al., 2012; Lettenmaier et al., 2015;
Nolin, 2010), and the US National Research Council com-
mittees of the Decadal Survey (National Academies of Sci-
ences, Engineering, and Medicine, 2018) identify SWE as
a missing component of spaceborne water cycle measure-
ments. This has motivated the advancement of models and
remote sensing techniques to estimate global snow charac-
teristics (e.g., NASA SnowEx; Durand et al., 2019; Kim et
al., 2017). Developing the necessary observational methods
for global coverage while also supporting local snow appli-
cations is a significant challenge facing the snow community
(Dozier et al., 2016; Lettenmaier et al., 2015). Both mod-
els and remote sensing techniques are impacted by numer-
ous factors, resulting in significant spatial or temporal errors
in SWE estimation.

A potential solution to reduce uncertainty associated with
any single technique is to combine models and remote sens-
ing in a data assimilation framework, but this requires an un-
derstanding of the underlying uncertainty to be employed.
In this study, called the Snow Ensemble Uncertainty Project
(SEUP), we apply an ensemble-based land surface model-
ing approach to establish a baseline characterization of SWE
and its corresponding uncertainty across North America. The
term “SWE uncertainty” used in this study will refer to the
range of SWE estimates across models and is quantified
as the ensemble spread. Compared to the use of a single
model realization, ensemble modeling is generally consid-
ered a better approach to characterize the inherent uncertain-
ties in modeling, with the ensemble spread providing a mea-
sure of the uncertainty in the predictions across models and
forcing data (Bohn et al., 2010; Dirmeyer et al., 2006; Franz

et al., 2008; Guo et al., 2007; Kumar et al., 2017; Mitchell et
al., 2004; Mudryk et al., 2015; Murphy et al., 2004; Xia et
al., 2012). An ensemble evaluation can also lead to increased
skill by combining a variety of model estimates and allowing
the individual model errors to cancel each other out (Xia et
al., 2012). We use the ensemble SWE estimates to assess the
general spatial and temporal North American SWE charac-
teristics.

The SEUP ensemble is comprised of 12 ensemble mem-
bers, created by the combination of four different land sur-
face models (LSMs) and three different forcing datasets. By
using a mix of different LSMs and boundary conditions, the
SEUP ensemble captures the uncertainties from both these
sources. The design of the SEUP ensemble is focused on cur-
rent snow capabilities in macroscale modeling, as the land
models and forcing datasets selected here represent mod-
els and datasets currently being employed at key operational
centers and systems (described in Sect. 2.2). The designed
experiment is conducted at a 5 km spatial resolution for mul-
tiple winter snow seasons (2009–2017). By using a range of
forcing products and commonly used operational models, we
assume that the SEUP ensemble implicitly provides a repre-
sentation of both sources of uncertainty. It is likely, however,
that the SEUP ensemble may be deficient in representing the
true uncertainty, given the possible errors in boundary condi-
tions, model parameters, and model structure. Nevertheless,
the SEUP ensemble establishes an important baseline over
the continental scales to characterize current capabilities and
inform global snow observational requirements. Toward this
goal, in this article we strive to address several gaps in our
current understanding of SWE uncertainty with our simu-
lation of snow states over the North American continental
domain, including the following questions. (1) Where are
the areas of significant uncertainty in SWE? (2) What is the
seasonality of SWE uncertainty and its spatial distribution?
(3) How does uncertainty in SWE vary with key land surface
characteristics such as vegetation, topography, and snow cli-
mate? (4) How do these regions of high SWE uncertainty
correlate with runoff uncertainties?

The paper is organized as follows: Sect. 2.1 introduces
the study area and time period, followed by the descrip-
tions of the LSMs and forcing datasets used in this study
in Sect. 2.2 and 2.3, respectively. Section 2.4 provides the
details about the experimental design, ensemble-based meth-
ods, and datasets used in the uncertainty evaluation. An eval-
uation of the SEUP ensemble against a number of reference
products is presented in Sect. 3.1. Section 3.2 provides the re-
sults of SWE uncertainty analysis over North America. The
influence of factors such as topography, snow regime, and
vegetation type on snow water equivalent/total snow water
storage (SWE/SWS) uncertainty is examined in Sect. 3.3.
Section 3.4 discusses how the snow modeling uncertainty
impacts the uncertainty in the terrestrial water budget com-
ponents. Finally, Sect. 4 provides the major findings and con-
clusions of this effort.
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2 Study area and ensemble configuration

2.1 Study area and time period

The study area is the North American continental domain
consisting of a 0.05◦ latitude by 0.05◦ longitude equidis-
tant cylindrical grid that extends from 24.875 to 71.875◦ N
and 168.625 to 51.875◦W (Fig. 1a). The glacier regions are
excluded from the study domain as the representations of
glacier processes are limited in the LSMs used here. These
glacier exclusions are developed using the Global Land
Ice Measurement from Space (GLIMS) geospatial glacier
database (Raup et al., 2007). The model integrations and
analyses are performed from 2000 to 2017, with the first
9 years (2000–2009) used as a model spin-up to initialize
the model’s thermal and hydraulic equilibrium states.

2.2 Land surface models (LSMs)

The National Aeronautics and Space Administration
(NASA) Land Information System (LIS; Kumar et al., 2006;
Peters-Lidard et al., 2007) is a comprehensive terrestrial
modeling infrastructure designed to facilitate the efficient
use and assimilation of terrestrial observations. This study
uses a modeling configuration within the NASA LIS that em-
ploys four different land surface models (LSMs) of varying
complexity at a 5 km spatial resolution over North Amer-
ica: (1) Noah version 2.7.1 (Noah2.7.1; Ek et al., 2003),
(2) Noah-MP version 3.6 (Noah-MP3.6; Niu et al., 2011;
Yang et al., 2011), (3) Catchment LSM-Fortuna 2.5 (CLSM-
F2.5; Ducharne et al., 2000; Koster et al., 2000), and (4) Joint
UK Land Environment Simulator (JULES, Best et al., 2011;
Blyth et al., 2006; Clark et al., 2011). These models are
selected because all are used operationally at major mod-
eling centers – e.g., Noah2.7.1 is used at the US National
Centers for Environmental Prediction (NCEP), Noah-MP3.6
at the National Water Model (NWM), CLSM-F2.5 at the
NASA Global Modeling and Assimilation Office (GMAO),
and JULES at the United Kingdom Met Office (UKMO)
– to provide a baseline of current operational capabilities.
Note that some of these models do not necessarily represent
the state-of-the-art approaches for snow modeling, and their
underlying parameterizations may share a similar legacy in
terms of code development. Despite these limitations, how-
ever, these models and their versions are representative of
systems that provide publicly available snow estimates over
continental and global scales. Though the outputs from these
models are used widely for a variety of water resource man-
agement applications, only a few studies have conducted a
careful examination of their differences and limitations, par-
ticularly over continental spatial scales.

All four LSMs are able to dynamically predict land surface
water and energy fluxes in response to surface meteorologi-
cal forcing inputs, but they differ in their structural repre-
sentation of surface and subsurface water, as well as energy

balance processes. As most land surface models were orig-
inally developed to provide the lower boundary conditions
for global atmospheric models, their applicability is largely
assumed to be at coarse spatial scales where the influence
of lateral interactions is negligible. Consequently, similar to
other model physics components, the snow physics schemes
in these models are not designed to resolve processes at fine
spatial scales (e.g., < 100 m), such as the influence of blow-
ing and drifting snow. Further, the complexity of snow meta-
morphic process representation varies across these models.
The snow schemes used in this analysis range from a sim-
ple single-layer scheme in both Noah2.7.1 and JULES to
three-layer intermediate complexity schemes in both Noah-
MP3.6 and CLSM-F2.5, which greatly influence the snow-
pack thermodynamics and the resulting timing and presence
of melt (Dutra et al., 2011). Note that the UKMO currently
uses a three-layer scheme in JULES, which was not avail-
able in NASA LIS at the time this study was devised. In or-
der to assess current configurations, initial model conditions
and model parameters used in the operational set-up were not
tuned in this study (Best et al., 2011; Blyth et al., 2006; Clark
et al., 2011; Ducharne et al., 2000; Ek et al., 2003; Koster et
al., 2000; Niu et al., 2011; Yang et al., 2011). The key details
of the model configurations with forcing datasets are sum-
marized in Table S1 in the Supplement.

2.3 Forcing datasets

Three different modern forcing datasets are used to drive
the models: (1) Modern-Era Retrospective Analysis for Re-
search and Applications, version 2 (MERRA2; Gelaro et al.,
2017; Molod et al., 2015), (2) Global Data Assimilation Sys-
tem (GDAS; Derber et al., 1991), and (3) European Centre
for Medium-Range Weather Forecasts (ECMWF; Molteni
et al., 1996). Original spatial and temporal resolutions for
these datasets are described in Sect. S2. All models are run
at 15 min time intervals. To improve the spatial representa-
tiveness of the coarse-resolution meteorological inputs, the
input forcing fields were downscaled to a 5 km grid as fol-
lows. Meteorological inputs of near-surface air temperature,
relative humidity, surface pressure, and downward longwave
radiation are downscaled by applying a lapse-rate and hyp-
sometric adjustments using the 5 km Shuttle Radar Topogra-
phy Mission (SRTM; south of 60◦ N) and the USGS Global
30 arcsec elevation (GTOPO30; north of 60◦ N) datasets. The
lapse-rate correction method follows the approach used in the
North American Land Data Assimilation System (NLDAS)-
1 and 2 projects (Cosgrove et al., 2003) where a static en-
vironmental lapse rate of 6.5 K km−1 is used to apply an el-
evation adjustment to the coarse meteorological fields. The
downwelling shortwave radiation fields are downscaled us-
ing terrain characteristics of slope and aspect as described in
Kumar et al. (2013). Over the east- and west-facing slopes,
the slope and aspect-based corrections lead to improvements
to diurnal processes. Kumar et al. (2013) demonstrated that
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Figure 1. Snow Ensemble Uncertainty Project (SEUP) domain: (a) domain with terrain elevation (gray areas indicate the excluded glacier
regions), (b) individual mountain domains, (c) individual snow class domains, and (d) land cover classification used in this study.

these adjustments are particularly important for improving
snow simulations over midlatitude domains in complex to-
pography and concluded that these adjustments should be in-
cluded in models with resolutions finer than 16 km, but the
adjustments are likely to be small at 5 km resolution. The pre-
cipitation fields are downscaled using a variant of the scaling
approach of Lenderink et al. (2007) with the high-resolution
monthly precipitation climatology dataset, WorldClim (Fick
and Hijmans, 2017). The downscaling is performed by fixing
the ratio of high-resolution precipitation climatology to that
of the same climatology at the coarser-scale resolution in or-
der to maintain the heterogeneity of the precipitation forcing
fields. The three global datasets are all derived using global
atmospheric models that assimilate a large collection of sur-
face and atmospheric observations and differ primarily in the
atmospheric model and assimilation system used.

2.4 Methods

2.4.1 SEUP ensemble evaluation methods

We use two metrics to evaluate the SEUP ensemble: (1) en-
semble rank (ER), which ranks the observation relative to
the ensemble providing a measure of how well the ensem-
ble encompasses a reference observation; and (2) continuous

rank probability score (CRPS; Matheson and Winkler, 1976),
which measures the difference between the model and the
reference distributions. For computing ER, the ensemble is
first organized in the following order: CLSM-F2.5 (ensem-
ble members 1 to 3), JULES (4 to 6), Noah-MP3.6 (7 to 9),
and Noah2.7.1 (10 to 12), with the order within each LSM
being the runs forced with ECMWF, GDAS, and MERRA2
data, respectively. The ensemble SWE at each grid point and
each temporal instance is then sorted and ordered first. The
rank of the reference data within this sorted array is then used
as the ER. If the observation is more than 10 % higher than
the highest ensemble member, then the rank is set to 13. As
a demonstrative example, if the ensemble SWE values are 1,
3, 7, 2, 4, 5, 6, 1, 3, 8, 1, 0 units and the observation has a
value of 5 units, the ER of the observation is set to 9 as the
sorted array will be 0, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8. Note that
the main objective of the ER metric is to examine whether
the ensemble encompasses the reference data.

CRPS is an often-used performance measure in probabilis-
tic forecasting, computed using Eq. (1). It provides a mea-
sure of the degree of difference between the model distribu-
tion and the observation. CRPS reduces to the mean absolute
error when used with deterministic (single-member) ensem-
bles.

The Cryosphere, 15, 771–791, 2021 https://doi.org/10.5194/tc-15-771-2021
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CRPS=

+∞∫
−∞

(Pm−Po)
2dx, (1)

where Pm represents the cumulative distribution function
(CDF) of the model and Po represents the Heaviside step
function at the observed value. Note that the SEUP ensemble
size (12) is relatively small, which may affect the resolution
of the CDF derived from it. Nevertheless, CRPS provides
an integrated way of capturing the error associated with the
SEUP ensemble when compared to reference measurements,
where a low (good) score indicates a small ensemble spread
that encompasses the reference observation and a high (bad)
score indicates a large spread and/or large difference from
the observation.

2.4.2 Reference and ancillary datasets used in the
uncertainty evaluation

The reference datasets used for evaluation in SEUP are
(1) the daily, gridded snow depth, and SWE analysis from
the NOAA National Weather Service’s National Operational
Hydrologic Remote Sensing Center (NOHRSC) Snow Data
Assimilation System (SNODAS; Barrett, 2003) available at
30 arcsec spatial resolution; (2) daily gridded estimates of
snow depth and SWE developed by the University of Ari-
zona (UA; Zeng et al., 2018) available at 4 km spatial resolu-
tion; and (3) the daily, gridded snow depth analysis from the
Canadian Meteorological Centre (CMC; Brown and Bras-
nett, 2010) available at 25 km spatial resolution. All three
datasets are model-based, but they incorporate in situ mea-
surements from various ground networks. SNODAS analyses
also encompass satellite and airborne measurements, meteo-
rological aviation reports, and special aviation reports from
the World Meteorological Organization (WMO). Though
these data are subject to errors, this product provides a con-
sistent, spatially distributed estimate of snowpack conditions
throughout the United States and has been used as a compar-
ison dataset in numerous studies (Guan et al., 2013; Meromy
et al., 2013; Vuyovich et al., 2014). The UA analysis is devel-
oped using an empirical temperature index snow model with
data from networks such as the National Resources Con-
servation Service’s SNOTEL and the National Weather Ser-
vice’s Cooperative Observer Program (COOP). The dataset
was developed to provide a high-resolution, long-term snow
mass product for use in assessing climate change impacts
(Zeng et al., 2018). SNODAS and UA datasets are available
only over the continental United States, whereas the CMC
data are used for snow evaluation over the entire domain.
While the CMC data have been frequently used for LSM
evaluation (Forman et al., 2012; Reichle et al., 2017; Takala
et al., 2011), and have been shown to capture interannual
variability well (Brown et al., 2018), several studies have pro-
vided evidence that the data underestimate SWE (Dawson et

al., 2016; Wrzesien et al., 2017). Despite providing an esti-
mate of SWE, in this analysis, we evaluate the CMC modeled
snow depth fields since the CMC only uses snow depth ob-
servations in its analysis.

A number of ancillary datasets representing topography,
vegetation type, and snow class are used in stratifying the
spatial dependence of snow uncertainty. First, to treat moun-
tainous and non-mountainous regions separately in our study,
we upscale Wrzesien et al.’s (2018) 1 km binary moun-
tain mask to our 5 km grid (see Fig. 1b). Wrzesien et
al. (2018) adopted the definition of “mountain” from Kapos
et al. (2000) based on the elevation, slope, and local relief. In
their work, the mask was divided into 11 individual moun-
tain domains, which we use here to evaluate SEUP results
over mountain areas. Table S2 shows the areas of these 11
individual mountain ranges.

An uncertainty analysis on SWE estimation is performed
across different snow class regions to understand which re-
gions account for the highest variability. To the best of our
knowledge, analyzing uncertainty in SWE estimation across
different snow classes at continental scales has not been ex-
plored in the literature. In this analysis we use a snow classifi-
cation at a higher (10 km) resolution proposed by Liston and
Sturm (A global snow classification dataset for Earth-system
applications, 2014, unpublished), which analyzes the rela-
tionships among textural and stratigraphic characteristics of
snow layers, climate variables (e.g., air temperature, precipi-
tation, and wind speed), and vegetation to globally categorize
terrestrial snow into seven classes: Tundra, Taiga, Maritime,
Ephemeral, Prairie, Warm forest, and Ice. We downscale this
global snow classification dataset to our 5 km model grid
(from the native 10 km spatial resolution). Figure 1c shows
the individual domains of seven snow classes over North
America, and Table S3 presents their individual areas.

The Moderate Resolution Imaging Spectroradiometer
(MODIS)-derived land cover employing the International
Geosphere-Biosphere Programme (IGBP) land cover classi-
fication method is used to examine the influence of SWE un-
certainty to vegetation. For simplicity of comparison, we re-
classify the original 17 different land cover classes into two
classes. These reclassified land cover classes (i.e., forested
vs. non-forested) are displayed in Fig. 1d, and their areas are
presented in Table S4.

3 Results and discussion

This section presents and discusses results from a range of
perspectives. Section 3.1 compares the ensemble with the
reference snow datasets. Section 3.2 considers spatial and
temporal variation in model uncertainty. Ensemble charac-
teristics are linked to land surface classification in Sect. 3.3.
Finally, the impact of model uncertainty on runoff estimation
is examined in Sect. 3.4.

https://doi.org/10.5194/tc-15-771-2021 The Cryosphere, 15, 771–791, 2021
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3.1 Evaluation of the SEUP ensemble

To evaluate the snow estimates from the SEUP ensemble,
three available reference products (described in Sect. 2.4.2)
are used. Figure 2 shows maps of average ensemble rank
(ER) and average continuous rank probability score (CRPS)
(see Sect. 2.4.1) for the SEUP ensemble compared to three
reference datasets during the time period of 2009 to 2017.
The examination of ER indicates that in general the SEUP
ensemble encompasses the three reference measurements. In
the SNODAS comparison, ER values larger than 12 can be
seen in regions with larger snowpacks, such as the Rockies,
indicating that over these areas the SEUP ensemble may be
biased low. The ER patterns are similar in both SNODAS and
UA comparisons, though the UA comparison shows more
spatial variability across different latitudes.

The CRPS comparison provides a measure of the dis-
crepancies between the SEUP ensemble and the reference
datasets. Over most of the domain, including the northeast
and Midwest United States and high plains, the CRPS val-
ues are low (0–100 mm), where a low (good) score indicates
a small ensemble spread that agrees with SNODAS and UA
data. As expected, the largest CRPS values are observed over
locations with deep snowpacks, such as the Rocky and Pa-
cific coastal mountains, where the SEUP ensemble spread is
greatest. Similar but more muted patterns of disagreement
are seen with the CMC data compared to SNODAS and UA
over mountainous regions, indicating that the SEUP simula-
tions are more consistent with CMC in those areas. In the
CMC comparison, larger errors are also observed at high lat-
itudes, which are likely caused by a combination of larger
uncertainties in the boundary conditions and model formu-
lations. Relatively good agreement of SEUP with SNODAS
and UA in the ER- and CRPS-based assessments is particu-
larly encouraging, as it provides a measure of confidence that
the ensemble encompasses reality.

3.2 SWE uncertainty analysis

3.2.1 Spatial variability of SWE

An overall assessment of the SWE results is shown in Fig. 3,
which presents the spatial distributions of ensemble mean
SWE, the coefficient of variation of ensemble mean SWE,
and the range of ensemble mean SWE. Because the seasonal
timing of the greatest SWE and the largest uncertainty in
SWE differ substantially across the North American study
domain, we first consider a simple annual mean averaged
SWE across the entire time period. Seasonal timing of when
the greatest uncertainty occurs is deferred to Sect. 3.2.2. For
each pixel, the annual ensemble mean SWE is computed by
taking an average of 3-hourly SWE from 12 ensemble mem-
bers over the entire study time period. We limit the range of
coefficient of variation displayed from 0 to 1 (including no-

snow time periods in the calculation) for reasons of visual
clarity.

The largest spread in ensemble mean SWE is found in re-
gions with the deepest snow (see Fig. 3a and c), particularly
along the northern Pacific coastline. Eastern Canada along
the northern Atlantic coastline and northern Rocky Moun-
tains also shows a high spread of SWE between ensemble
members. These highly complex terrains have relatively high
snowfall precipitation, and the large spread is partially due
to different rain–snow partitioning schemes in each LSM.
While Noah2.7.1, JULES, and CLSM-F2.5 use a simple tem-
perature threshold of 0 ◦C to distinguish rainfall and snowfall
precipitation, Noah-MP3.6 includes a transition temperature
range described in Jordan (1991) (see Table S1). While our
lapse-rate correction method is based on approaches used in
other products (see Sect. 2.3), the lack of considerations of
spatial variability in the snow–rain partition is a limitation,
particularly over mountainous areas. Similarly, the spatial
distribution of the coefficient of variation shows larger values
in areas with the higher ensemble mean SWE and ensemble
spread. This indicates that the larger spread is not only due
to the larger mean SWE in these areas. In addition, Fig. 3b
also shows significant variability across the middle of North
America, mostly collocated with boreal forest regions con-
taining denser vegetation, indicating the handling of vegeta-
tion on SWE simulations as another source of dissimilarity
among the SEUP ensemble members.

3.2.2 Timing of annual peak SWE

Figure 4 shows spatial maps of the peak SWE (panel a) and
the highest SWE spread (panel b) along with characteriza-
tions of the seasonality of the SWE uncertainty (panels c and
d). A measure of the spatial variability on the date of the
highest SWE uncertainty is determined by computing the day
of year (DOY) in each water year with the highest ensemble
spread and then averaging DOY across the years to identify
the times of high and low uncertainty in SWE over North
America. This average DOY of the highest spread is com-
pared with the average DOY of the peak SWE to determine
when the largest variability in the SWE spread occurs within
the snow season. The DOY with the greatest SWE spread
ranges from December–April time frame in the lower lati-
tudes to May–June months in the high latitudes (Fig. 4c). In
addition, the seasonality of the greatest SWE uncertainty at
higher elevations, such as over the Rocky Mountains and the
Pacific coastline, is shifted later in the season as compared to
the lower-elevation areas at the same latitude.

The largest SWE spread is along the northern Pacific
coastline and eastern Canada along the northern Atlantic
coastline (Fig. 4a). If the average DOY with the highest SWE
spread matches that of the peak SWE, it suggests that the
largest modeling uncertainty occurs in the peak winter time
period. From Fig. 4d, we find that DOYs with the highest
SWE spread and peak SWE are very close to each other in the
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Figure 2. Maps of average ensemble rank (a, c, e) and average continuous rank probability score (CRPS, mm; b, d, f) from the SEUP
ensemble compared to SNODAS (a, b), UA (c, d), and CMC (e, f). SWE is used for SNODAS and UA comparisons, whereas snow depth
is used for CMC comparison. Ensemble rank represents the rank of the reference data within the SEUP ensemble. Rank 13 represents more
snow than all ensembles, and rank 0 is less snow than all ensembles. CRPS, which is the extension of mean absolute error to ensemble
evaluation, provides a measure of the degree of agreement between the SEUP ensemble and the reference data.

United States over Canada, and the highest SWE spread has
a later DOY than that from the peak SWE, indicating that the
largest disagreements in the model estimates are during the
melt season. One reason for this could be that the input me-
teorology has larger differences over high latitudes, whereas
over the continental United States they are better constrained
due to the greater availability of ground and radar measure-
ments, resulting in better agreement in the determination of
snowmelt regimes.

3.2.3 Interannual variability of SWE

We compare the time series of domain-averaged daily mean
SWE for each ensemble to examine the temporal variability
among the ensemble members (Fig. 5). Interestingly, the in-
terannual variability in the peak SWE across the ensemble
is small (see Fig. 5), indicating that the simulated total snow
water storage in North America as a whole did not change
significantly year by year during this time period. Larger

spread in the years of 2010 and 2011 are seen when compar-
ing with other years. At a domain-averaged scale, the largest
spread in climatological SWE among the ensemble members
is seen during the months of February to April and varies by
as much as ∼ 60 %. In Fig. 5, variability due to model dif-
ferences (e.g., between solid lines) is generally larger than
variability due to forcing data (e.g., between blue lines), con-
sistent with Broxton et al. (2016). Figure S1 shows two time
series of domain-averaged daily mean SWE of the Rocky
Mountains and the Cascades in the United States (See Fig. 1b
and Sect. 3.3.1) where the annual snow behavior is known to
be well contrasted (Marshall et al., 2019). In the US Rock-
ies, the spread across the ensemble is smaller, and the annual
maximum SWE is relatively unchanged as compared to those
of higher elevations in the Cascades.
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Figure 3. (a) Spatial distributions of ensemble mean SWE, (b) the coefficient of variation of ensemble mean SWE, and (c) the range of
ensemble mean SWE. The ensemble mean SWE is computed by taking an average of 3-hourly SWE from 12 ensembles over the entire study
time period (from 2009 to 2017).

3.2.4 Impact between different LSMs and forcing data
on SWE uncertainty

We further examine the influence of models and forcing data
on SWE variability by comparing each ensemble grouped by
LSMs and forcing data. Figure 6 shows the distribution of
domain-averaged, annual mean SWE and indicates that there
are smaller differences in SWE across the forcing datasets
when driving a common LSM, whereas larger differences
are seen across the LSMs when driven with a common forc-
ing data. This finding, from both temporal and spatial analy-
ses, indicates that, within our ensemble set, the dominant fac-
tor driving uncertainty in SEUP SWE estimates over North
America is from the LSM. This result is consistent with that
from Mudryk et al. (2015) using an analogous but more lim-
ited ensemble of gridded snow products (cf. Fig. 12 in that
paper). Note that both conclusions are based on analysis at
the continental or hemispheric scale, and there could be dif-
ferences at smaller scales and/or in topographically complex
regions such as mountainous areas. For example, Raleigh
et al. (2016) and Günther et al. (2019) showed the forcing

data to be the primary driver of SWE uncertainty in their
study, with each using a single forcing dataset with added
uncertainty and focused on a limited number of relatively
small sites mostly in mountainous terrains. Similarly, Yoon
et al. (2019) recently showed that the forcing data drove
the uncertainty of model-simulated estimates (i.e., precipita-
tion, evaporation, and runoff) over High Mountain Asia due
to significant differences in the quality of reliable reference
measurements over the domain. Future efforts should fo-
cus on evaluating model parameterizations and snow physics
schemes such as sublimation, blowing and drifting snow, and
snow–vegetation interactions to identify how representations
of snow physical processes are driving the spread.

3.2.5 Observational needs

The above results are used to motivate recommendations
about the spatial and temporal extent to which satellite snow
observations may be beneficial. While additional analysis is
needed to understand and improve the model parameteri-
zations that are driving the ensemble spread, remote sens-
ing observations have the potential to reduce uncertainty
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Figure 4. Spatial distributions of (a) the peak SWE amount, (b) the highest SWE spread amount, (c) the average day of year (DOY) with the
highest ensemble SWE spread, and (d) the difference of average DOY between the highest ensemble SWE spread and the peak SWE (we
are only showing/examining places where the DOY differences exist).

Figure 5. Time series of domain-averaged mean SWE. Different colors and line style were used to represent each ensemble; a bold black
solid line represents the domain-averaged ensemble mean; the units are millimeters.

in global SWE and SWS estimation. For example, from
Sect. 3.2.1 and 3.2.2, the usefulness of observations for re-
ducing SWE uncertainty will be higher during the melt sea-
son in the high latitudes and western mountainous terrain,
whereas having observations in the peak winter is generally
more beneficial in the midlatitudes. Similarly, the timing of

snow observations for collecting peak SWE changes with lat-
itude. Finally, the results from Sect. 3.2.4 suggest that reli-
able SWE observations, rather than observations of boundary
conditions (such as precipitation), may do more to mitigate
the uncertainties in the current state of snow modeling.
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Figure 6. Distribution of North America mean annual average of SWE (i.e., interannual variability), grouped by the LSMs and forcing
datasets (e.g., the box of Noah-MP3.6 represents the distribution of mean SWE, averaged from Noah-MP3.6 runs with all forcing datasets;
the box of MERRA2 represents the distribution of mean SWE, averaged from all LSM runs with MERRA2 forcing data). For the LSM
group, we used eight annual averages of SWE (from 2009 to 2017) for three different forcing datasets (a total of 8× 3). For the forcing
dataset group, eight annual averages of SWE for four different LSMs (total of 8× 4) were used. The red line indicates SWE median; top and
bottom of box are the 75th and 25th percentiles, and top and bottom of whiskers represent the maximum and minimum SWE with outliers
(defined as more than 1.5 times the interquartile range, between 25 % and 75 %) omitted.

3.3 Uncertainty analysis for different land
classifications

In this section, we further explore the uncertainty in North
American SWE estimates based on different land and snow
classifications (described in Sect. 2.4.2).

3.3.1 Uncertainty analysis on different topography

We first evaluate the spatial variability of ensemble mean
SWE within each mountain range. In Fig. 7a, box plots no. 12
and 13 represent the spatial variability of mean SWE for to-
tal mountain areas and non-mountain areas, respectively. To-
tal mountain areas are computed by combining the 11 indi-
vidual mountain domains, and all remaining areas are con-
sidered non-mountain areas. Across the entire continent, the
mountain areas show higher spatial variability of SWE and
higher median SWE than in non-mountain areas (median
SWE: 50.17 mm vs. 23.03 mm, ∼ 118 % higher in mountain
areas). Figure 7a highlights the fact that SWE and its spa-
tial variability differ from range to range. For example, most
coastal mountain ranges (Coast, Alaska, and Torngat) have
higher SWE with greater spatial variability than that of con-
tinental ranges (Appalachian, Brooks, Great Basin, Macken-
zie, and US Rockies), excluding the Canadian Rockies. Com-
parisons of SWS in each mountain range (Fig. 7b) show that
∼ 50 % of all mountain snow in North America is located

in the Coast Mountains and the Canadian Rockies, which is
consistent with the findings of Wrzesien et al. (2018).

The variability in the SEUP ensemble spread (i.e., among
12 ensemble members) of SWE and SWS across different
mountain ranges is examined in Fig. 7c and d. Similar to
the spatial variability in SWE (Fig. 7a), the Coast Mountains
and Alaska Range have higher uncertainties in SWE among
ensemble members, followed by the Cascades, Torngat, and
the Canadian Rockies. Note that the second highest SWS un-
certainty is found in the Canadian Rockies once integrated
across the entirety of the mountain range.

To investigate the temporal variability of SWE over dif-
ferent mountain domains, we compared the mean seasonal
cycle of SWE and SWS. Figure 8a and b show the time se-
ries of daily ensemble mean SWE and SWS for each moun-
tain range, averaged for a water year. From both comparisons
of SWE and SWS, it can be noted that there is significant
variability in the timing of peak (and melt) SWE and SWS
across the mountain ranges. The northern mountain ranges
(e.g., Alaska, Brooks, Mackenzie, and Torngat) tend to have
later dates of peak SWE and SWS, from early April to early
May, while peak SWE in lower-latitude mountain ranges oc-
curs between February and March. When exploring the time
series of SWE and SWS for each ensemble, we find that
JULES simulates non-seasonal snow in the Alaska Range
and Coast Mountains (even after the glacier exclusions, not
shown), while other LSMs do not. These different estima-
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Figure 7. (a) Spatial variability of ensemble mean SWE (in millimeters) within each mountain range. Red line indicates SWE median; top
and bottom of box are the 75th and 25th percentiles, and top and bottom of whiskers represent maximum and minimum SWE with outliers
(defined as more than 1.5 times the interquartile range, between 25 % and 75 %) omitted. (b) Total snow water storage (SWS; in cubic
kilometers) within each mountain range, computed from the average of ensemble mean SWE over the entire time period. The spread of
ensembles for (c) domain- and time-averaged SWE and (d) time-averaged SWS for the different mountain ranges.

tions are likely due to the different snow physics and param-
eterizations used in each LSM (see Table S1). The snow sim-
ulated in the summer season could explain the higher spread
of SWE seen in the Alaska Range and the Coast Mountains.

Finally, we use the ensemble mean seasonal cycle of SWE
and SWS to evaluate differences between mountain areas and
non-mountain areas of North America. In Fig. 8c and d, we
find that the daily mean SWE is greater in mountain areas
than in non-mountain areas, while the total daily SWS is
greater in non-mountain areas than mountain areas. This con-
trast is due to the significant difference in total area between
the mountain regions and the non-mountain regions: non-
mountainous areas cover approximately 5 times more space
than mountainous areas. For total mountain areas, the max-
imum SWE is 202 mm and the maximum SWS is 616 km3.
Alternatively, total non-mountain areas have 79 mm of max-
imum SWE and 988 km3 of maximum SWS; i.e., mountain
areas have deeper snow, whereas more snow is stored in non-
mountainous areas.

Compared with previous mountain snow studies over
North America, the SEUP peak mountain SWS is 1.8 times
the estimate of 342 km3 from the Canadian Sea Ice and Snow
Evolution Network (CanSISE) data ensemble of Mudryk et
al. (2015) and 0.6 times the estimate of 1006 km3 in Wrze-
sien et al. (2018). For non-mountain areas, the SEUP peak
SWS is ∼ 1.5 times the estimate of 678 km3 of the Can-
SISE data product. The estimated peak SWS over all of North
America from SEUP is 1604 km3, which is 47.6 % more than
the previous CanSISE estimate (1087 km3) and 4.8 % less
than the Wrzesien et al. (2018) estimate (1684 km3). When
compared with our simulation results, most strikingly, these
studies find a lower estimation of SWS even in the non-
mountain areas, though additional analysis is needed to de-
termine if this is due to resolution differences or some other
influence. The CanSISE SWE estimate is produced using
a somewhat similar ensemble mean approach of SEUP, by
combining observations and model estimates at 1◦ spatial
resolution. Therefore, the lower estimate of SWS in the Can-
SISE data product might be explained by their coarser spa-
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Figure 8. (a) Climatological SWE (in millimeters) within each mountain range, computed from domain ensemble mean SWE over a water
year. (b) Total snow water storage (SWS; in cubic kilometers) climatology within each mountain range, computed from domain ensemble
mean SWS over a water year. The mean seasonal cycle of domain-averaged SWE (c) and SWS (d) for mountain areas, non-mountain areas,
and North America.

tial resolution compared to the simulation resolution of this
study (i.e., at 5 km). Studies such as Broxton et al. (2016)
have highlighted the systematic underestimation of SWE
from global reanalyses and continental-scale LDASs as a
key issue. Previous studies also highlighted the limitations
of coarse-resolution models, particularly in capturing snow
accumulation in mountain areas, and suggested using a reso-
lution of < 10 km (Ikeda et al., 2010; Kapnick and Delworth,
2013; Pavelsky et al., 2011; Wrzesien et al., 2017).

Despite similar identical total North American SWS esti-
mation between SEUP and Wrzesien et al. (2018), there are
significant differences in the partitioning between mountain
and non-mountain SWS. SEUP estimates that 60 % of all
continental snow is located in non-mountains, while Wrze-
sien et al. (2018) gave an estimation of 60 % of all continen-
tal snow in mountains. The CanSISE results suggested that
∼ 75 % of all continental snow is located in non-mountains,
though as noted above, CanSISE estimates may be under-

estimated due to the coarse modeling resolution, especially
in mountain areas. Since Wrzesien et al. (2018) used Can-
SISE for non-mountain SWS estimates, it is possible that
their partitioning of mountain versus non-mountain snow is
overestimated. In addition, while SEUP employs ensemble
model simulations over an 8-year time period, Wrzesien et
al. (2018) simulated the mountain snowpack using a single
regional climate model (i.e., the Weather Research and Fore-
casting Model, WRF version 3.6, Skamarock et al., 2008;
coupled to the Noah-MP3.6, Niu et al., 2011) forced by ERA-
Interim for a “representative year” (i.e., different single year
for each mountain range). This proposed “representative cli-
matology” was used at spatial resolutions of 27 and 9 km
for the outer and inner domains, respectively. One possi-
ble reason for their higher SWS estimates in mountain areas
(∼ 63 % greater than SEUP) is that their representative year
had more snow compared with our average climatology ap-
proach over the entire study period, which included low snow
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(drought) years. Another reason why Wrzesien et al. (2018)
had more snow in the mountain is because they used a high-
resolution (9 km) atmospheric model. The coarser-resolution
atmospheric models generally do not simulate enough snow-
fall in the mountains due to their inability to resolve the com-
plexity of the topography (Lundquist et al., 2019). The use of
a different glacier mask is another possible explanation for
this discrepancy. Note that any change in total water storage
from GRACE data is not solely due to snow accumulation or
melt. We also compare the variability of SWS among differ-
ent LSM simulations (not shown) and find that the highest
mountain SWS (812 km3) was estimated from Noah-MP3.6
simulations while Wrzesien et al. (2018) showed the SWS es-
timate of 1006 km3 from their simulation of WRF 3.6 using
Noah-MP. Note that the Noah-MP3.6 is the most recent and
advanced model among SEUP LSMs and has been shown
to perform better in previous studies (e.g., Wrzesien et al.,
2015).

Overall, the analysis of SWE uncertainty over different
topographical regimes confirms that mountain ranges have
greater SWE variability among ensemble members than non-
mountain regions, likely due to the methods used by the mod-
els to resolve the complex and spatially variable processes
over such terrain and the ability of forcing data to capture
orographic effects. These limitations should be addressed
through further evaluation of the differences and capabilities
of LSMs to simulate mountain snow and may also benefit
from observational data at a high spatio-temporal resolution
over such areas. Further, as noted above, there are still signif-
icant disagreements in the current understanding of the basic
partition of SWE and SWS between mountainous and non-
mountainous regions, caused by a variety of factors which
are not easy to resolve.

3.3.2 Uncertainty analysis stratified by snow classes

The distribution of ensemble mean SWE and SWS (Fig. 9a
and b) was computed over the entire time period using the
snow class definitions that are shown in Fig. 1. Across the
entire continent, the Ice region shows the highest estimate of
SWE with the highest spatial variability, followed by Tundra,
Taiga, Maritime, Warm Forest, Prairie, and Ephemeral re-
gions. Higher latitudes tend to have higher estimates of SWE
and greater spatial variability. Non-seasonal snow was esti-
mated in the Ice region, even though glaciers were excluded,
which may explain the highest SWE and its variability (as
discussed earlier in Sect. 3.3.1). However, the SWS in the
Ice regions makes up less than 2.6 % of the total over North
America. Most strikingly, we find that more than 50 % of
all continental snow is located in the Tundra region (SWS:
281 km3 with median SWE: 54 mm).

To evaluate SWE uncertainty by different snow regimes,
we compare the ensemble spread of mean SWE and SWS
for each snow class. Figure 9c and d show the spread of mean
SWE and SWS for all 12 ensemble members as a function of

different snow classes. Both our spatial variability analysis
and uncertainty analysis among ensemble members of SWE
and SWS estimates provide new insights on the relative im-
portance of different snow classes; the Tundra region has the
greatest total SWS and large ensemble spread in those esti-
mates between models; Taiga and Maritime regions also have
a significant fraction of the total North American SWS and
show high variability in SWE estimates likely due to LSM
handling of vegetation impacts, such as canopy interception
and sublimation. The SEUP results indicate that SWE es-
timates in the Tundra region are more consistent between
ensemble members, likely because the vegetation is sparse
there; however, given the large areal extent, accurate SWE
estimates are especially critical in estimating total SWS in
the Tundra region. Further, we note that the Tundra region
is subject to snow erosion and sublimation losses, two pro-
cesses that the LSMs used in this study do not explicitly sim-
ulate. These results point to the need for high accuracy in
shallow snow observations that cover large regions, such as
Tundra or Prairie, while high spatial resolution in these areas
may be less important; the high resolution of SWE observa-
tion is more suitable for vegetated areas such as Taiga and
Maritime.

3.3.3 Influence of vegetation on SWE uncertainty

An assessment of snow estimation uncertainty as a function
of vegetation is presented in this section. Here we focus pri-
marily on the differences in snow simulations over forested
and non-forested areas, since forest snow processes are a
model feature that is handled differently between models
(Rutter et al., 2009). The forest category includes the ever-
green forest, deciduous forest, and mixed forest land cover
classes, whereas the non-forest category captures the rest of
the land cover categories of Fig. 1d. The spatial variations
in ensemble mean SWE as well as the ensemble mean SWS
for forested and non-forested areas are shown in Fig. 10a and
b, respectively. Figure 10a indicates that the non-forested re-
gions have larger spatial variability than the forested areas.
The larger spatial variability in SWE over the non-forested
regions is likely explained by the differences in the areal cov-
erage of forests and non-forests (Fig. 1d). The bar plot in
Fig. 10b shows that 66 % of snow in North America is lo-
cated in the non-forested regions.

Figure 10c and d show the uncertainty in SWE and SWS
among the 12 ensembles for forests and non-forests. For both
SWE and SWS, the higher spread is seen in the forested re-
gions. This finding is consistent with previous studies that
showed the larger spread of snow estimates from model sim-
ulations in forested regions (Chen et al., 2014; Essery et al.,
2009; Feng et al., 2008; Kim et al., 2019; Rutter et al., 2009).
Therefore, these results indicate that future observational ef-
forts should, in part, focus on forested areas and further high-
light the need for better understanding the effect of forests on
snow simulations.
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Figure 9. Same as Fig. 7 but for each snow class.

3.4 Uncertainties in the runoff estimation

Since runoff (R) estimation, in particular, is significantly in-
fluenced by snow evolution, here we examine the impact of
uncertainty in SWE estimation on the R estimates and their
uncertainty across North America. Similar to Fig. 4, season-
ality of R estimates and their uncertainty are evaluated dur-
ing each winter season and over the entire time period and
quantified by computing the average DOY with the highest
ensemble spread and peak R. Figure 11 shows the average
DOY with the highest spread in order to identify the (a) times
of high uncertainty in R, (b) average DOY with the peak R,
(c) highest R ensemble spread, and (d) magnitude of the peak
R. Variability in the date of the peak R uncertainty and peak
R ranges from June–August in the high latitudes, whereas
at lower latitudes the dates can be outside this range. Sim-
ilar to the patterns in Fig. 4c and d, the largest spread and
peak R amounts are seen along the northern Pacific coastline
and in eastern Canada along the northern Atlantic coastline
(excluding the mid-Atlantic and southeastern United States).
Figure 11a and b indicate that the seasonality in the highest
R spread and highest R values is generally matched. In other
words, the largest uncertainty in R occurs at the same time
as the peak R, which is different from the patterns shown in
Fig. 4 where the largest SWE uncertainty is generally during
the melt season after peak SWE was achieved.

Overall, both Figs. 4 and 11 show the strong influence
of SWE on R over most of North America and, in particu-
lar, during the snowmelt season. In order to further exam-
ine this, we explore the difference between average DOY
of peak SWE and its spread and average DOY of peak R

and its spread. Figure 11e shows this date difference of av-
erage DOY of highest uncertainty (DOY of peak spread in
R minus the DOY of peak spread in SWE) and provides a
measure of the spatio-temporal dependence of SWE uncer-
tainty to R uncertainty. Figure 11f shows the date difference
between the average DOY of highest SWE and highest R,
which provides a measure of temporal dependence of high-
est SWE on the highest R. If this difference is negative, it
likely indicates that SWE is not a primary driver of runoff.
On the other hand, if this difference is positive, it suggests
that SWE has an influence on the runoff regime. The magni-
tude of this (positive) difference also provides a measure of
the timescale over which they are correlated.

We find, from both Fig. 11e and f, that the times of peak R

and uncertainty in peak R occur later in the year than those
of peak SWE and uncertainty in peak SWE over most of
the domain. Further, the places where we have the negative
values in both figures are the locations dominated by non-
snow R in the lower latitudes. Over the Tundra and Taiga
regions, the difference in the average DOY regimes of SWE
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Figure 10. Same as Fig. 7 but for forested areas vs. non-forested areas.

and R is about 20–40 d, whereas this lag increases to more
than 2 months over the Prairie regions. Over the mountain-
ous terrain, R uncertainty is more closely tied with the SWE
uncertainty (∼ 20 d).

This analysis reconfirms that there is generally explicit
snow runoff signal during the melt season, and increased
uncertainty in R appears related to uncertainty in preceding
SWE estimates. Figure 11e and f also provide a measure of
the spatio-temporal utility of SWE measurements when con-
sidering the objective of improving R estimation. For exam-
ple, these figures suggest that SWE estimates approximately
60–80 d prior to the peak flow are likely to provide the most
utility to R estimation over the Prairie regions. Since the
DOY differences are smaller over the Tundra region, the op-
timal times for SWE measurements (20 d prior to the peak
flow) are less offset relative to the time of peak R. While this
is a preliminary analysis that requires further exploration, it
helps to provide insight into the need for improved snow data
to improve streamflow estimation. A more detailed examina-
tion of the influence of SWE–runoff uncertainties, an inves-
tigation into the utility of SWE observations to reduce SWE
uncertainty, and thereby runoff uncertainty are left for future
work.

4 Summary and conclusions

This study employs an ensemble modeling approach to quan-
tify the spatial and temporal uncertainties in SWE over North
America, as estimated by operational LSMs and forcing data.
Specifically, the study quantifies how uncertainty in SWE
varies with key land surface characteristics such as topog-
raphy, vegetation, and snow climate and evaluates the spatio-
temporal influence of significant SWE uncertainty on runoff
estimation. A primary goal of this study is to establish a base-
line assessment of current global- or continental-scale opera-
tional capabilities and identify potential opportunities where
improvements or SWE observations could inform both sci-
ence and application needs.

The SEUP simulated snow estimates are compared against
a number of spatially distributed reference snow products,
which show a good match over the majority of the modeling
domain, with an underestimation over the mountainous re-
gions. The evaluation metrics provide confirmation that the
SEUP ensemble provides a reasonable representation of the
snow uncertainty in macroscale snow modeling. Over the
entire North American domain, the analysis of the SEUP
ensemble indicates that the uncertainty in SWE within this
ensemble is driven more by the LSM differences than the
choice of forcing data. This suggests that improvements in
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Figure 11. Spatial distributions of (a) the average day of year (DOY) with the highest ensemble R spread, (b) the average DOY with the
peak R, (c) the highest R spread amount, (d) the peak R amount, (e) the difference of average DOY between the highest R spread and the
highest SWE spread, and (f) the difference of average DOY between the peak R and the peak SWE.

model physics or increased observations of SWE (ground
or remote sensing) rather than improvement in meteorologi-
cal boundary conditions at this macroscale are likely to pro-
vide more benefit in reducing snow assessment uncertainty.
Though given the underestimation of SWE in mountains by
all ensemble members, and high SWE uncertainty found in
areas with the deepest snow, particularly the Pacific coast-

line, higher-resolution atmospheric models may be needed to
resolve topography and orographic effects in these regions.

Our analysis indicates that there is substantial uncertainty,
both SWE and SWS, within forested regions. The Taiga and
Maritime regions have a significant fraction of the total North
American SWS while also exhibiting high variability in SWE
estimation due to the influence of vegetation. The high spread
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in SWE and SWS seen over the forested areas suggests the
need for improved measurements and modeling of snow in
these areas. While these results suggest the need for ad-
ditional observational constraints to reduce the uncertainty
within the models, deep snow and forests also present diffi-
cult challenges for remote sensing. These areas continue to
be the greatest gaps for global SWE estimation.

The greatest SWS uncertainty is seen in the non-
mountainous areas. There are disagreements in the exist-
ing literature as to the relative attribution of snow stor-
age over the mountainous and non-mountainous regions in
North America. Though the mountain SWS estimates from
SEUP are similar to those generated in prior studies, we con-
clude that the current partitioning of SWE and SWS between
mountainous and non-mountainous areas merits further in-
vestigation. Our results provide new insights on the relative
importance of the Tundra snow regions where the greatest
total SWS is found and where snowmelt can have important
implications on permafrost, arctic ecosystems, and global
circulation models. Accurate SWE estimates in shallow snow
environments (i.e., Tundra and Prairie) are critical to devel-
oping an accurate estimate of global snow partitioning and
reducing SWS uncertainty over these regions.

There is significant variability in the seasonality of SWE
uncertainty and the uncertainty in peak SWE. At midlati-
tudes, the average DOY containing peak SWE and the largest
SWE uncertainty occurs in the December–April time frame.
At high latitudes, particularly in Tundra and Taiga regions,
the uncertainty in SWE is largest during May–June, after the
peak SWE. These results suggest that SWE measurements
collected during the melt season are likely to provide more
benefit in reducing SWE uncertainty at high latitudes and in
some western mountainous terrain, whereas observations at
(or near) peak SWE accumulation are valuable over the mid-
latitudes.

This study also examines the influence of SWE on runoff.
The first-order control of SWE on snowmelt runoff over
most of North America is highlighted in this study, which
points to the importance of improved SWE estimates to in-
form water supply and management applications. Overall,
this study provides a valuable benchmark on the uncertainties
in macroscale snow modeling, which can serve as a guide for
prioritizing model improvement needs and developing obser-
vational requirements. We acknowledge that the influence of
the sources of uncertainty such as the choice of model pa-
rameters and spatial resolution of topographic features are
not examined in this study. Additional work is needed to un-
derstand the specific drivers of uncertainty within the model
physics, better characterize the snow storage over the moun-
tain and non-mountainous regions, and quantify the regional
influence of SWE uncertainty on water availability. More de-
tailed requirements of snow observations (e.g., choice of ob-
servation types and sampling methods) will be focused on in
future efforts by conducting observing system simulation ex-
periments (OSSEs) that systematically quantify the worth of

the existing data and data yet to be collected. The results from
this future effort are expected to help in the choice and refine-
ment of sensors for the accurate characterization of global,
terrestrial snow mass.

Code and data availability. The Modern-Era Retrospective Anal-
ysis for Research and Applications, version 2 (MERRA2; Gelaro
et al., 2017; Molod et al., 2015), the meteorological dataset used
in this study is distributed by the NASA Goddard Global Model-
ing and Assimilation Office (GMAO, https://gmao.gsfc.nasa.gov/
reanalysis/MERRA-2/data_access/; Gelaro et al., 2017). The op-
erational Global Data Assimilation System (GDAS; Derber et al.,
1991) data are publicly available from the US National Cen-
ters for Environmental Prediction (NCEP) at https://nomads.ncep.
noaa.gov/pub/data/nccf/com/gfs/prod. The European Centre for
Medium-Range Weather Forecasts (ECMWF; Molteni et al., 1996)
data used in this study are not publicly available and are made avail-
able under license (https://www.ecmwf.int/en/forecasts/datasets).
The Snow Data Assimilation System (SNODAS; Barrett, 2003) data
products, the daily gridded estimates of snow depth and SWE de-
veloped by the University of Arizona (UA; Zeng et al., 2018), and
the daily, gridded snow depth analysis from the Canadian Meteoro-
logical Centre (CMC; https://doi.org/10.5067/W9FOYWH0EQZ3,
Brown and Brasnett, 2010) are available on the National Snow and
Ice Data Center’s (NSIDC) data site (https://nsidc.org/data, last ac-
cess: 5 February 2021).
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K., Grubišić, V., Thompson, G., and Guttman, E.: Simulation

of seasonal snowfall over Colorado, Atmos. Res., 97, 462–477,
https://doi.org/10.1016/j.atmosres.2010.04.010, 2010.

Jordan, R.: A one-dimensional temperature model for a snow cover:
Technical documentation for SNTHERM 89, Tech. Rep. Special
Report 91-16, U.S. Army Cold Regions Research and Engineer-
ing Laboratory, Hanover, NH, USA, 1991.

Kapnick, S. B. and Delworth, T. L.: Controls of global
snow under a changed climate, J. Climate, 26, 5537–5562,
https://doi.org/10.1175/JCLI-D-12-00528.1, 2013.

Kapos, V., Rhind, J., Edwards, M., Price, M. F., and Ravilious, C.:
Developing a map of the world’s mountain forests, in: Forests in
sustainable mountain development: A state-of knowledge report
for 2000, Task Force on Forests in Sustainable Mountain Devel-
opment, CAB International, Wallingford, UK, 4–19, 2000.

Kim, E., Gatebe, C., Hall, D., Newlin, J., Misakonis, A., Elder,
K., Marshall, H. P., Hiemstra, C., Brucker, L., De Marco, E.,
and Crawford, C.: NASA’s SnowEx campaign: Observing sea-
sonal snow in a forested environment, in: 2017 IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS),
23–28 July 2017, Fort Worth, TX, USA, IEEE, 1388–1390, 2017.

Kim, R. S., Durand, M., Li, D., Baldo, E., Margulis, S. A., Du-
mont, M., and Morin, S.: Estimating alpine snow depth by com-
bining multifrequency passive radiance observations with en-
semble snowpack modeling, Remote Sens. Environ., 226, 1–15,
https://doi.org/10.1016/j.rse.2019.03.016, 2019.

Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M.,
and Kumar, P.: A catchment-based approach to modeling
land surface processes in a general circulation model 1.
Model structure, J. Geophys. Res.-Atmos., 105, 24809–24822,
https://doi.org/10.1029/2000JD900327, 2000.

Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger,
J., Olden, S., Lighty, L., Eastman, J. L., Doty, B., Dirmeyer, P.,
Adams, J., Mitchell, K., Wood, E. F., and Sheffield, J.: Land in-
formation system: An interoperable framework for high resolu-
tion land surface modeling, Environ. Model. Softw., 21, 1402–
1415, https://doi.org/10.1016/j.envsoft.2005.07.004, 2006.

Kumar, S. V., Peters-Lidard, C. D., Mocko, D., and Tian, Y.: Multi-
scale evaluation of the improvements in surface snow simulation
through terrain adjustments to radiation, J. Hydrometeorol., 14,
220–232, https://doi.org/10.1175/JHM-D-12-046.1, 2013.

Kumar, S. V, Wang, S., Mocko, D. M., Peters-Lidard, C. D., and
Xia, Y.: Similarity assessment of land surface model outputs in
the north american land data assimilation system, Water Resour.
Res., 53, 8941–8965, https://doi.org/10.1002/2017WR020635,
2017.

Lenderink, G., Buishand, A., and van Deursen, W.: Estimates of fu-
ture discharges of the river Rhine using two scenario methodolo-
gies: direct versus delta approach, Hydrol. Earth Syst. Sci., 11,
1145–1159, https://doi.org/10.5194/hess-11-1145-2007, 2007.

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M.,
and Wood, E. F.: Inroads of remote sensing into hydrologic sci-
ence during the WRR era, Water Resour. Res., 51, 7309–7342,
https://doi.org/10.1002/2015WR017616, 2015.

Lundquist, J., Hughes, M., Gutmann, E., and Kapnick, S.: Our skill
in modeling mountain rain and snow is bypassing the skill of our
observational networks, B. Am. Meteorol. Soc., 100, 2473–2490,
https://doi.org/10.1175/BAMS-D-19-0001.1, 2019.

Mahanama, S., Livneh, B., Koster, R., Lettenmaier, D., and Re-
ichle, R.: Soil moisture, snow, and seasonal streamflow fore-

https://doi.org/10.5194/tc-15-771-2021 The Cryosphere, 15, 771–791, 2021

https://doi.org/10.1175/2009BAMS2629.1
https://doi.org/10.1175/2008JHM860.1
https://doi.org/10.1002/joc.5086
https://doi.org/10.1029/2011WR011239
https://doi.org/10.1080/01431160903548013
https://doi.org/10.1175/2008JHM995.1
https://doi.org/10.1038/ncomms14996
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://doi.org/10.1029/2018WR023403
https://doi.org/10.1002/qj.48
https://doi.org/10.1016/j.atmosres.2010.04.010
https://doi.org/10.1175/JCLI-D-12-00528.1
https://doi.org/10.1016/j.rse.2019.03.016
https://doi.org/10.1029/2000JD900327
https://doi.org/10.1016/j.envsoft.2005.07.004
https://doi.org/10.1175/JHM-D-12-046.1
https://doi.org/10.1002/2017WR020635
https://doi.org/10.5194/hess-11-1145-2007
https://doi.org/10.1002/2015WR017616
https://doi.org/10.1175/BAMS-D-19-0001.1


790 R. S. Kim et al.: Snow Ensemble Uncertainty Project (SEUP)

casts in the United States, J. Hydrometeorol., 13, 189–203,
https://doi.org/10.1175/JHM-D-11-046.1, 2012.

Marshall, A. M., Abatzoglou, J. T., Link, T. E., and Tennant, C. J.:
Projected Changes in Interannual Variability of Peak Snowpack
Amount and Timing in the Western United States, Geophys. Res.
Lett., 46, 8882–8892, https://doi.org/10.1029/2019GL083770,
2019.

Matheson, J. E. and Winkler, R. L.: Scoring rules for contin-
uous probability distributions, Manage. Sci., 22, 1087–1096,
https://doi.org/10.1287/mnsc.22.10.1087, 1976.

Meromy, L., Molotch, N. P., Link, T. E., Fassnacht, S. R., and Rice,
R.: Subgrid variability of snow water equivalent at operational
snow stations in the western USA, Hydrol. Process., 27, 2383–
2400, https://doi.org/10.1002/hyp.9355, 2013.

Mitchell, K. E., Lohmann, D., Houser, P. R., and Wood, E.
F.: The multi-institution North American Land Data As-
similation System (NLDAS): Utilizing multiple GCIP prod-
ucts and partners in a continental distributed hydrolog-
ical modeling system, J. Geophys. Res., 109, D07S90,
https://doi.org/10.1029/2003JD003823, 2004.

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development
of the GEOS-5 atmospheric general circulation model: evolution
from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356,
https://doi.org/10.5194/gmd-8-1339-2015, 2015.

Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.:
The ECMWF ensemble prediction system: Methodology
and validation, Q. J. Roy. Meteor. Soc., 122, 73–119,
https://doi.org/10.1256/smsqj.52904, 1996 (data available
at: https://www.ecmwf.int/en/forecasts/datasets, last access:
5 February 2021).

Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown,
R.: Characterization of northern hemisphere snow water
equivalent datasets, 1981–2010, J. Climate, 28, 8037–8051,
https://doi.org/10.1175/JCLI-D-15-0229.1, 2015.

Murphy, J. M., Sexton, D. M. H., Barnett, D. H., Jones,
G. S., Webb, M. J., Collins, M., and Stainforth, D. A.:
Quantification of modelling uncertainties in a large ensem-
ble of climate change simulations, Nature, 430, 768–772,
https://doi.org/10.1038/nature02771, 2004.

National Academies of Sciences, Engineering, and Medicine:
Thriving on Our Changing Planet: A Decadal Strategy for Earth
Observation from Space, The National Academies Press, Wash-
ington, D.C., USA, 2018.

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M.
B., Barlage, M., Kumar, A., Manning, K., Niyogi, D.,
Rosero, E., Tewari, M., and Xia, Y.: The community
Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-
scale measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.

Nolin, A. W.: Recent advances in remote sens-
ing of seasonal snow, J. Glaciol., 56, 1141–1150,
https://doi.org/10.3189/002214311796406077, 2010.

Pavelsky, T. M., Kapnick, S., and Hall, A.: Accumulation and melt
dynamics of snowpack from a multiresolution regional climate
model in the central Sierra Nevada, California, J. Geophys. Res.-
Atmos., 116, D16115, https://doi.org/10.1029/2010JD015479,
2011.

Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger,
J., Olden, S., Lighty, L., Doty, B., Dirmeyer, P., Adams, J.,
Mitchell, K., Wood, E. F., and Sheffield, J.: High-performance
earth system modeling with NASA/GSFC’s Land Information
System, Innovations in Systems and Software Engineering, 3,
157–165, https://doi.org/10.1007/s11334-007-0028-x, 2007.

Raleigh, M. S., Livneh, B., Lapo, K., and Lundquist, J. D.: How
does availability of meteorological forcing data impact physi-
cally based snowpack simulations?, J. Hydrometeorol., 17, 99–
120, https://doi.org/10.1175/JHM-D-14-0235.1, 2016.

Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong,
R., and Arnaud, Y.: The GLIMS geospatial glacier database: A
new tool for studying glacier change, Global Planet. Change, 56,
101–110, https://doi.org/10.1016/j.gloplacha.2006.07.018, 2007.

Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama,
S. P. P., Koster, R. D., and De Lannoy, G. J. M.: Assessment
of MERRA-2 land surface hydrology estimates, J. Climate, 30,
2937–2960, 2017.

Robinson, D. A. and Kukla, G.: Maximum surface albedo of sea-
sonally snow-covered lands in the northern hemisphere, J. Clim.
Appl. Meteorol., 24, 402–411, https://doi.org/10.1175/1520-
0450(1985)024<0402:MSAOSS>2.0.CO;2, 1985.

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K.,
Baker, I., Barr, A., Bartlett, P., Boone, A., Deng, H., Dou-
ville, H., Dutra, E., Elder, K., Ellis, C., Feng, X., Gelfan,
A., Goodbody, A., Gusev, Y., Gustafsson, D., HellströM, R.,
Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V., Kuragina, A.,
Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova,
O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M.,
SchäDler, G., Shmakin, A., Smirnova, T. G., StäHli, M., StöCkli,
R., Strasser, U., Su, H., Suzuki, K., Takata, K., Tanaka, K.,
Thompson, E., Vesala, T., Viterbo, P., Wiltshire, A., Xia, K.,
Xue, Y., and Yamazaki, T.: Evaluation of forest snow processes
models (SnowMIP2), J. Geophys. Res.-Atmos., 114, D06111,
https://doi.org/10.1029/2008JD011063, 2009.

Ryberg, K. R., Akyüz, F. A., Wiche, G. J., and Lin, W.: Changes in
seasonality and timing of peak streamflow in snow and semi-arid
climates of the north-central United States, 1910–2012, Hydrol.
Process., 30, 1208–1218, https://doi.org/10.1002/hyp.10693,
2016.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D.
M., Wang, W., and Powers, J. G.: A description of the Advanced
Research WRF version 3. Technical Note 475., Note NCAR/TN-
4751STR, 113 pp., https://doi.org/10.5065/D68S4MVH, 2008.

Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes toward
earlier streamflow timing across western North America, J. Cli-
mate, 18, 1136–1155, https://doi.org/10.1175/JCLI3321.1, 2005.

Stielstra, C. M., Lohse, K. A., Chorover, J., McIntosh, J. C., Barron-
Gafford, G. A., Perdrial, J. N., Litvak, M., Barnard, H. R., and
Brooks, P. D.: Climatic and landscape influences on soil mois-
ture are primary determinants of soil carbon fluxes in seasonally
snow-covered forest ecosystems, Biogeochemistry, 123, 447–
465, https://doi.org/10.1007/s10533-015-0078-3, 2015.

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyi-
nen, J., Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating
northern hemisphere snow water equivalent for climate research
through assimilation of space-borne radiometer data and ground-
based measurements, Remote Sens. Environ., 115, 3517–3529,
https://doi.org/10.1016/j.rse.2011.08.014, 2011.

The Cryosphere, 15, 771–791, 2021 https://doi.org/10.5194/tc-15-771-2021

https://doi.org/10.1175/JHM-D-11-046.1
https://doi.org/10.1029/2019GL083770
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.1002/hyp.9355
https://doi.org/10.1029/2003JD003823
https://doi.org/10.5194/gmd-8-1339-2015
https://doi.org/10.1256/smsqj.52904
https://www.ecmwf.int/en/forecasts/datasets
https://doi.org/10.1175/JCLI-D-15-0229.1
https://doi.org/10.1038/nature02771
https://doi.org/10.1029/2010JD015139
https://doi.org/10.3189/002214311796406077
https://doi.org/10.1029/2010JD015479
https://doi.org/10.1007/s11334-007-0028-x
https://doi.org/10.1175/JHM-D-14-0235.1
https://doi.org/10.1016/j.gloplacha.2006.07.018
https://doi.org/10.1175/1520-0450(1985)024<0402:MSAOSS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1985)024<0402:MSAOSS>2.0.CO;2
https://doi.org/10.1029/2008JD011063
https://doi.org/10.1002/hyp.10693
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1175/JCLI3321.1
https://doi.org/10.1007/s10533-015-0078-3
https://doi.org/10.1016/j.rse.2011.08.014


R. S. Kim et al.: Snow Ensemble Uncertainty Project (SEUP) 791

Vuyovich, C. M., Jacobs, J. M., and Daly, S. F.: Comparison of pas-
sive microwave and modeled estimates of total watershed SWE
in the continental United States, Water Resour. Res., 50, 9088–
9102, https://doi.org/10.1002/2013WR014734, 2014.

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swet-
nam, T. W.: Warming and earlier spring increase West-
ern U.S. forest wildfire activity, Science, 313, 940–943,
https://doi.org/10.1126/science.1128834, 2006.

Wrzesien, M. L., Pavelsky, T. M., Kapnick, S. B., Durand, M. T.,
and Painter, T. H.: Evaluation of snow cover fraction for regional
climate simulations in the Sierra Nevada, Int. J. Climatol., 35,
2472–2484, 2015.

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Howat, I. M., Mar-
gulis, S. A., and Huning, L. S.: Comparison of methods to esti-
mate snow water equivalent at the mountain range scale: A case
study of the California Sierra Nevada, J. Hydrometeorol., 18,
1101–1119, https://doi.org/10.1175/JHM-D-16-0246.1, 2017.

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Kapnick, S. B.,
Zhang, Y., Guo, J., and Shum, C. K.: A new estimate of North
American mountain snow accumulation from regional climate
model simulations, Geophys. Res. Lett., 45, 1423–1432, 2018.

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood,
E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Letten-
maier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko,
D.: Continental-scale water and energy flux analysis and vali-
dation for the North American Land Data Assimilation System
project phase 2 (NLDAS-2): 1. Intercomparison and applica-
tion of model products, J. Geophys. Res.-Atmos., 117, D03109,
https://doi.org/10.1029/2011JD016048, 2012.

Yang, Z. L., Niu, G. Y., Mitchell, K. E., Chen, F., Ek, M. B., Bar-
lage, M., Longuevergne, L., Manning, K., Niyogi, D., Tewari,
M., and Xia, Y.: The community Noah land surface model
with multiparameterization options (Noah-MP): 2. Evaluation
over global river basins, J. Geophys. Res.-Atmos., 116, D12110,
https://doi.org/10.1029/2010JD015140, 2011.

Yoon, Y., Kumar, S. V., Forman, B. A., Zaitchik, B. F., Kwon, Y.,
Qian, Y., Rupper, S., Maggioni, V., Houser, P., Kirschbaum, D.,
Richey, A., Arendt, A., Mocko, D., Jacob, J., Bhanja, S., and
Mukherjee, A.: Evaluating the uncertainty of terrestrial water
budget components over high mountain asia, Front. Earth Sci.,
7, 120, https://doi.org/10.3389/feart.2019.00120, 2019.

Zeng, X., Broxton, P., and Dawson, N.: Snowpack change from
1982 to 2016 over conterminous United States, Geophys. Res.
Lett., 45, 12940–12947, https://doi.org/10.1029/2018GL079621,
2018.

https://doi.org/10.5194/tc-15-771-2021 The Cryosphere, 15, 771–791, 2021

https://doi.org/10.1002/2013WR014734
https://doi.org/10.1126/science.1128834
https://doi.org/10.1175/JHM-D-16-0246.1
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1029/2010JD015140
https://doi.org/10.3389/feart.2019.00120
https://doi.org/10.1029/2018GL079621

	Abstract
	Introduction
	Study area and ensemble configuration
	Study area and time period
	Land surface models (LSMs)
	Forcing datasets
	Methods
	SEUP ensemble evaluation methods
	Reference and ancillary datasets used in the uncertainty evaluation


	Results and discussion
	Evaluation of the SEUP ensemble
	SWE uncertainty analysis
	Spatial variability of SWE
	Timing of annual peak SWE
	Interannual variability of SWE
	Impact between different LSMs and forcing data on SWE uncertainty
	Observational needs

	Uncertainty analysis for different land classifications
	Uncertainty analysis on different topography
	Uncertainty analysis stratified by snow classes
	Influence of vegetation on SWE uncertainty

	Uncertainties in the runoff estimation

	Summary and conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

