2,797 research outputs found

    Disease recurrence and rejection following liver transplantation for autoimmune chronic active liver disease

    Get PDF
    Autoimmune chronic active liver disease (ACALD), a major indication for liver transplantation, is associated strongly with antigenic determinants HLA-B8 and DR3. A retrospective analysis of 43 patients who underwent OLTx for putative ACALD and who, as well as their tissue organ donors, were typed, was performed. Disease recurrence and graft rejection episodes were determined by chart review and histopathological review of all material available. Disease recurrence was histologically documented in 11 (25.6%) of these 43 cases. Graft rejection episodes occurred in 24 (66.8%). All recurrences were in recipients of HLA-DR3-negative grafts. Nine of the recurrences were in HLA-DR3-poeitive recipients (odds ratio: 6.14, P<0.03). Two of 11 cases of disease recurrence were in recipients who were HLA-DR3-negative. Nine of these 11 had received HLA-DR3-negative grafts. Rejection occurred in 13 HLA-B8-positive recipients, 12 of whom received HLA-B8-negative grafts. Eleven HLA-B8-negative recipients experienced at least one rejection episode and 9 of these had received HLA-B8-negative grafts. Based upon these data we conclude: 1) that recurrence of putative ACALD is more likely to occur in HLA-DR3-positive recipients of HLA-DR3-negative grafts; (2) that recurrences were not seen in recipients of HLA-DR3-positive grafts; (3) that BXA-B8 status does not affect disease recurrence; and (4) that neither the HLA-B8 nor the DR3 status of the graft or recipient has an effect on the observed frequency of rejection. ©1992 by Williams & Wilkins

    Photophysiological Responses of Canopy-Forming Kelp Species to Short-Term Acute Warming

    Get PDF
    The frequency of short-term oceanic warming events [“marine heatwaves” (MHWs) or heat spikes] has increased over the past century and is projected to further increase because of anthropogenic climate change. Given that marine organisms are strongly influenced by temperature, an increased occurrence of warming events could alter the structure of populations, communities, and ecosystems. The distribution and ecophysiological performance of kelp species – globally important foundation species that play significant roles in nutrient cycling and habitat creation in temperate coastal systems – is particularly constrained by temperature. However, their photophysiological responses to warming events remains unclear, which hinders attempts to understand, and predict the effects of ocean warming on kelp populations and the ecosystems they underpin. Here, we experimentally simulated a heat spike (+2 ◩C and +4 ◩C in magnitude, 3 days in duration, and compared with ambient controls) and examined the photophysiological responses of two canopy-forming kelp species widely distributed across the northeast Atlantic – Laminaria digitata and Laminaria hyperborea. Both species were resilient to the realistic warming treatments in terms of their photosynthetic characteristics. However, we found that L. digitata individuals, which were collected from populations found toward the upper limit of this species’ thermal range, exhibited increased oxygen production at higher temperatures, particularly after multiple days of exposure to the warming event. L. digitata also exhibited a greater poise for dissipating excess energy through non-photochemical pathways. In contrast, L. hyperborea, which extends further south into warmer waters and tends to occupy deeper reefs that are almost constantly submerged, appeared to be photo-physiologically insensitive to the heat spike. This study enhances our mechanistic understanding of the photophysiological and photoprotective responses of kelps to short-term acute warming events – features which are likely to emerge as important drivers of ecological change in coming decades

    A robust intracellular metabolite extraction protocol for human neutrophil metabolic profiling

    Get PDF
    Neutrophils are phagocytic innate immune cells that play essential roles in host defence, but are also implicated in inflammatory diseases such as rheumatoid arthritis (RA) where they contribute to systemic inflammation and joint damage. Transcriptomic analysis of neutrophils has revealed significant changes in gene expression in neutrophils activated in vitro by cytokines and in vivo during inflammation in RA. However, there are no reports on the global metabolomic changes that occur as a consequence of this activation. The aim of this study was to establish protocols for the study of changes in the metabolome of human neutrophils using 1H NMR spectroscopy. Sample preparation and spectral analysis protocols were optimised using neutrophils isolated by Ficoll-Paque, with decreased washing steps and inclusion of a heat-shock step to quench metabolite turnover. Cells were incubated ± PMA for 15 min in HEPES-free media and samples were analysed by NMR using a 700 MHz NMR Avance IIIHD Bruker NMR spectrometer equipped with a TCI cryoprobe. Chenomx, Bruker TopSpin and AMIX software were used to process spectra and identify metabolites. Principal Component Analysis (PCA) and signalling pathway analysis was carried out using Metaboanalyst. Cell number and number of scans (NS) were optimised as >3.6 million cells and 512 NS. 327 spectral bins were defined in the neutrophil spectra, of which 287 (87.7%) were assigned to 110 metabolites that included: amino acids, peptides and analogues; carbohydrates, carbonyls and alcohols; nucleotides, nucleosides and analogues; lipids and lipid-like molecules; benzenoids; and other organic compounds. 43 metabolites changed at least 1.5 fold (increase or decrease) after the addition of PMA for 5 or 15 min. Pathway analysis revealed that PMA affected nicotinate and nicotinamide metabolism, aminoacyl-tRNA biosynthesis and glycolysis, suggesting a redirection of glucose metabolism from glycolysis to the pentose phosphate pathway and production of NADPH for activation of the NADPH oxidase and subsequent respiratory burst. We have developed protocols for the study of human neutrophils by 1H NMR spectroscopy. Importantly, this methodology has sufficient sensitivity and reproducibility to detect changes in metabolite abundance from cell numbers typically collected from clinical samples or experiments with multiple assay conditions

    RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    No full text
    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs

    Human neutrophils activated via TLR8 promote Th17 polarization through IL-23

    Get PDF
    Human neutrophils contribute to the regulation of inflammation via the generation of a range of cytokines that affect all elements of the immune system. Here, we investigated their ability to express some of the members of the IL‐12 family after incubation with TLR8 agonists. Highly pure human neutrophils were thus incubated for up to 48 h with or without R848, or other TLR8 agonists, to then measure the expression levels of transcripts and proteins for IL‐12 family member subunits by RNA‐seq, reverse transcription quantitative PCR, and ELISA. We show a TLR8‐mediated inducible expression of IL‐12B and IL‐23A, but not IL‐12A, mRNA, which occurs via chromatin remodeling (as assessed by ChIP‐seq), and subsequent production of IL‐23 and IL‐12B, but no IL‐12, proteins. Induction of IL‐23 requires endogenous TNF‐α, as both mRNA and protein levels were blocked in TLR8‐activated neutrophils via a TNF‐α‐neutralizing Ab. We also show that supernatants from TLR8‐activated neutrophils, but not autologous monocytes, induce the differentiation of Th17 cells from naĂŻve T cells in an IL‐23‐dependent fashion. This study unequivocally demonstrates that highly pure human neutrophils express and produce IL‐23, further supporting the key roles played by these cells in the important IL‐17/IL‐23 network and Th17 responses

    The impact of inflation risk on forward trading and production

    Get PDF
    This paper examines the behavior of a competitive firm that faces joint price and inflation risk. Given that the price risk is negatively correlated with the inflation risk in the sense of expectation dependence, we show that the firm optimally opts for an over-hedge (under-hedge) if the firm’s coefficient of relative risk aversion is everywhere no greater (no smaller) than unity. We show further that banning the firm from forward trading may induce the firm to produce more or less, depending on whether the price risk premium is positive or negative, respectively. While the price risk premium is unambiguously negative in the absence of the inflation risk, it is not the case when the inflation risk prevails. In contrast to the conventional wisdom, forward hedging needs not always promote production should firms take inflation seriously.info:eu-repo/semantics/publishedVersio

    A Database of Wing Diversity in the Hawaiian Drosophila

    Get PDF
    Background. Within genus Drosophila, the endemic Hawaiian species offer some of the most dramatic examples of morphological and behavioral evolution. The advent of the Drosophila grimshawi genome sequence permits genes of interest to be readily cloned from any of the hundreds of species of Hawaiian Drosophila, offering a powerful comparative approach to defining molecular mechanisms of species evolution. A key step in this process is to survey the Hawaiian flies for characters whose variation can be associated with specific candidate genes. The wings provide an attractive target for such studies: Wings are essentially two dimensional, and genes controlling wing shape, vein specification, pigment production, and pigment pattern evolution have all been identified in Drosophila. Methodology/Principal Findings. We present a photographic database of over 180 mounted, adult wings from 73 species of Hawaiian Drosophila. The image collection, available at FlyBase.org, includes 53 of the 112 known species of picture wing\u27\u27 Drosophila, and several species from each of the other major Hawaiian groups, including the modified mouthparts, modified tarsus, antopocerus, and haleakalae (fungus feeder) groups. Direct image comparisons show that major wing shape changes can occur even between closely related species, and that pigment pattern elements can vary independently of each other. Among the 30 species closest to grimshawi, diverse visual effects are achieved by altering a basic pattern of seven wing spots. Finally, we document major pattern variations within species, which appear to result from reduced diffusion of pigment precursors through the wing blade. Conclusions/Significance. The database highlights the striking variation in size, shape, venation, and pigmentation in Hawaiian Drosophila, despite their generally low levels of DNA sequence divergence. In several independent lineages, highly complex patterns are derived from simple ones. These lineages offer a promising model system to study the evolution of complexity
    • 

    corecore