23 research outputs found

    Acting in Solidarity: Cross-group Contact Between Disadvantaged Group Members and Advantaged Group Allies

    Get PDF
    The actions of advantaged group activists (sometimes called “allies”) are admirable, and they likely make meaningful contributions to the movements they support. However, a nuanced understanding of the role of advantaged group allies must also consider the potential challenges of their participation. Both in their everyday lives and during their activist work, advantaged group allies are especially likely to have direct contact with disadvantaged group members. This paper considers when such contact may harm rather than help resistance movements by disadvantaged groups. We also suggest that to avoid these undermining effects, advantaged group allies must effectively communicate support for social change, understand the implications of their own privilege, offer autonomy-oriented support, and resist the urge to increase their own feelings of inclusion by co-opting relevant marginalized social identities

    Association of polygenic score for major depression with response to lithium in patients with bipolar disorder

    Get PDF
    Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18–2.01) and European sample: OR = 1.75 (95% CI: 1.30–2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61–4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD

    Climate and air pollution impacts of generating biopower from forest management residues in California

    No full text
    California faces crisis conditions on its forested landscapes. A century of aggressive logging and fire suppression in combination with conditions exacerbated by climate change have created an ongoing ecological, economic, and public health emergency. Between commercial harvests on California’s working forestlands and the increasing number of acres the state treats each year for fire risk reduction and carbon sequestration, California forests generate millions of tons of woody residues annually—residues that are typically left or burned in the field. State policymakers have turned to biomass electricity generation as a key market for woody biomass in the hope that it can support sustainable forest management activities while also providing low-carbon renewable electricity. However, open questions surrounding the climate and air pollution performance of electricity generation from woody biomass have made it difficult to determine how best to manage the risks and opportunities posed by forest residues. The California Biomass Residue Emissions Characterization (C-BREC) model offers a spatially-explicit life cycle assessment framework to rigorously and transparently establish the climate and air pollution impacts of biopower from forest residues in California under current conditions. The C-BREC model characterizes the variable emissions from different biomass supply chains as well as the counterfactual emissions from prescribed burn, wildfire, and decay avoided by residue mobilization. We find that the life cycle ‘carbon footprint’ of biopower from woody residues generated by recent forest treatments in California ranges widely—from comparable with solar photovoltaic on the low end to comparable with natural gas on the high end. This variation stems largely from the heterogeneity in the fire and decay conditions these residues would encounter if left in the field, with utilization of residue that would otherwise have been burned in place offering the best climate and air quality performance. California’s energy and forest management policies should account for this variation to ensure desired climate benefits are achieved
    corecore