27,364 research outputs found

    Photochemical routes to silicon epitaxy

    Get PDF
    The photochemistry of Si2H6 adsorbed on a hydrogen terminated silicon surface and the subsequentreactions of the photolysis products were investigated using high resolution electron energy lossspectroscopy and by measuring time-of-flight distributions with a mass spectrometer. The crackingpattern of the products ejected directly into the gas phase without colliding with either the surfaceor other molecules indicates that the primary photolysis channels yield mostly fragments thatcontain one silicon atom. It is likely that silicon is added to the surface by insertion of SiH2 radicalsinto Si–H bonds at the surface but there is little evidence for reactions that remove excess hydrogenfrom the surface at 110

    The calibration of photographic and spectroscopic films: Reciprocity failure and thermal responses of IIaO film at liquid nitrogen temperatures

    Get PDF
    Reciprocity failure was examined for IIaO spectroscopic film. The results indicate reciprocity failure occurs at three distinct minimum points in time; 15 min, 30 min and 90 min. The results are unique because theory suggests only one minimum reciprocity failure point should occur. When incubating 70mm IIaO film for 15 and 30 min at temperatures of 30, 40, 50, and 60 C and then placing in a liquid nitrogen bath at a temperature of -190 C the film demonstrated an increase of the optical density when developed at a warm-up time of 30 min. Longer warm-up periods of 1, 2 and 3 hrs yield a decrease in optical density of the darker wedge patterns; whereas, shorter warm-up times yield an overall increase in the optical densities

    Full-time dynamics of modulational instability in spinor Bose-Einstein condensates

    Full text link
    We describe the full-time dynamics of modulational instability in F=1 spinor Bose-Einstein condensates for the case of the integrable three-component model associated with the matrix nonlinear Schroedinger equation. We obtain an exact homoclinic solution of this model by employing the dressing method which we generalize to the case of the higher-rank projectors. This homoclinic solution describes the development of modulational instability beyond the linear regime, and we show that the modulational instability demonstrates the reversal property when the growth of the modulation amplitude is changed by its exponential decay.Comment: 6 pages, 2 figures, text slightly extended, a reference adde

    QAA subject benchmark statement architecture : version for consultation December 2019

    Get PDF
    The Statement is intended to guide lecturers and course leaders in the design of academic courses leading to qualifications in architecture, it will also be useful to those developing other related courses. Higher education providers may need to consider other reference points in addition to this Statement in designing, delivering and reviewing courses. These may include requirements set out by the Architects Registration Board (ARB), the Royal Institute of British Architects (RIBA) and the Institute for Apprenticeships and Technical Education (IfATE). Providers may also need to consider industry or employer expectations. Individual higher education providers will decide how they use this information. The broad subject of architecture is both academic and vocational. The bachelor's award for architecture is the first stage of the typical education of an architect. This is typically either a BSc or a BA degree. The second stage of academic qualification is a master's level degree, typically in the form of a two-year MArch, which is defined as an undergraduate master's award. Architecture qualifications typically require a total of 360 (Credit Accumulation and Transfer Scheme, or CATS) credits at bachelor's level and 240 (CATS) credits within a master's level degree. While this may equate to five years of 120 (CATS) credits each, higher education providers may construct alternatives to enable flexibility in student learning. This Statement seeks to encapsulate the nature of a rich and diverse academic discipline. It is not intended to prescribe a curriculum, but rather describes the broad intellectual territory within which individual higher education providers will locate their courses of study in architecture

    Soil Characterization Using Textural Features Extracted from GPR Data

    Get PDF
    Soils can be non-intrusively mapped by observing similar patterns within ground-penetrating radar (GPR) profiles. We observed that the intricate and often indiscernible textural variability found within a complex GPR image possesses important parameters that help delineate regions of similar soil characteristics. Therefore, in this study, we examined the feasibility of using textural features extracted from GPR data to automate soil characterizations. The textural features were matched to a fingerprint database of previous soil classifications of GPR textural features and the corresponding ground truths of soil conditions. Four textural features (energy, contrast, entropy, and homogeneity) were selected for inputs into a neural-network classifier. This classifier was tested and verified using GPR data obtained from two distinctly different field sites. The first data set contained features that indicate the presence or lack of sandstone bedrock in the upper 2 m of a shallow soil profile of fine sandy loan and loam. The second data set contained columnar patterns that correspond to the presence or the lack of vertical preferential-flow paths within a deep loess soil. The classifier automatically grouped each of these data sets into one of the two categories. Comparing the results of classification using extracted textural features to the results obtained by visual interpretation found 93.6% of the sections that lack sandstone bedrock correctly classified in the first set of data, and 90% of the sections that contain pronounced columnar patterns correctly classified in the second set of data. The classified profile sections were mapped using integrated GPR and GPS data to show surface boundaries of different soil categories. These results indicate that extracted textural features can be utilized for automatic characterization of soils using GPR data

    Experimental assessment of skull aberration and transmission loss at 270 kHz for focused ultrasound stimulation of the primary visual cortex

    Get PDF
    Transcranial focused ultrasound is a rapidly emerging method for non-invasive neuromodulation and stimulation. However, the skull causes a significant acoustic barrier and can reduce the focal intensity and alter the position and shape of the focus compared to free-field. In this study, the insertion loss and focal distortion due to the skull bone were quantified using three ex vivo human skulls and a focused ultrasound transducer operating at 270 kHz targeted on the approximate positions of the left and right primary visual cortex. Compared to free-field, the average insertion loss was -9.8 dB (± 2.2 dB), while the average focal shift was 1.7 mm (± 0.56 mm) in the lateral direction and 2.8 mm (±4.2 mm) in the axial direction. Overall, the acoustic aberrations were small compared to the size of the focal volume, meaning effective stimulation at this frequency can likely be achieved without patient-specific targeting. However, the insertion loss was significant and should be considered when selecting the target focal intensity for human studies

    Chaotic properties of quantum many-body systems in the thermodynamic limit

    Full text link
    By using numerical simulations, we investigate the dynamics of a quantum system of interacting bosons. We find an increase of properly defined mixing properties when the number of particles increases at constant density or the interaction strength drives the system away from integrability. A correspondence with the dynamical chaoticity of an associated cc-number system is then used to infer properties of the quantum system in the thermodynamic limit.Comment: 4 pages RevTeX, 4 postscript figures included with psfig; Completely restructured version with new results on mixing properties added

    Evaluation Of Methods For Estimating Daily Reference Crop Evapotranspiration At A Site In The Humid Southeast United States

    Get PDF
    Estimated daily reference crop evapotranspiration (ETo) is normally used to determine the water requirement of crops using the crop factor method. Many ETo estimation methods have been developed for different types of climatic data, and the accuracy of these methods varies with climatic conditions. In this study, pair−wise comparisons were made between daily ETo estimated from eight different ETo equations and ETo measured by lysimeter to provide information helpful in selecting an appropriate ETo equation for the Cumberland Plateau located in the humid Southeast United States. Based on the standard error of the estimate (Syx), the relationship between the estimated and measured ETo was the best using the FAO−56 Penman−Monteith equation (coefficient of determination (r2) = 0.91, Syx = 0.31 mm d−1, and a coefficient of efficiency (E) = 0.87), followed by the Penman (1948) equation (r2 = 0.91, Syx = 0.34 mm d−1, and E = 0.88), and Turc’s equation (r2 = 0.90, Syx = 0.36 mm d−1, and E = 0.88). The FAO−24 Penman and Priestly−Taylor methods overestimated ETo, while the Makkink equation underestimated ETo. The results for the Hargreaves−Samani equation showed low correlation with lysimeter ETo data (r2 = 0.51, Syx = 0.68 mm d−1, and E = 0.20), while those for the Kimberly Penman were reasonable (r2 = 0.87, Syx = 0.40 mm d−1, and E = 0.87). These results support the adoption of the FAO−56 Penman−Monteith equation for the climatological conditions occurring in the humid Southeast. However, Turc’s equation may be an attractive alternative to the more complex Penman−Monteith method. The Turc method requires fewer input parameters, i.e., mean air temperature and solar irradiance data only

    Respecting Autonomy Over Time: Policy and Empirical Evidence on Re-Consent in Longitudinal Biomedical Research

    Get PDF
    Re-consent in research, the asking for a new consent if there is a change in protocol or to confirm the expectations of participants in case of change, is an under-explored issue. There is little clarity as to what changes should trigger re-consent and what impact a re-consent exercise has on participants and the research project. This article examines applicable policy statements and literature for the prevailing arguments for and against re-consent in relation to longitudinal cohort studies, tissue banks and biobanks. Examples of re-consent exercises are presented, triggers and non-triggers for re-consent discussed and the conflicting attitudes of commentators, participants and researchers highlighted. We acknowledge current practice and argue for a greater emphasis on ‘responsive autonomy,’ that goes beyond a one-time consent and encourages greater communication between the parties involved. A balance is needed between respecting participants' wishes on how they want their data and samples used and enabling effective research to proceed
    • …
    corecore