13 research outputs found

    Hydrothermal activity lowers trophic diversity in Antarctic sedimented hydrothermal vents

    Get PDF
    Sedimented hydrothermal vents are those in which hydrothermal fluid vents through sediment and are among the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermally active and off-vent areas of the Bransfield Strait (1050–1647 m depth). Microbial composition, biomass and fatty acid signatures varied widely between and within vent and non-vent sites and provided evidence of diverse metabolic activity. Several species showed diverse feeding strategies and occupied different trophic positions in vent and non-vent areas and stable isotope values of consumers were generally not consistent with feeding structure morphology. Niche area and the diversity of microbial fatty acids reflected trends in species diversity and was lowest at the most hydrothermally active site. Faunal utilisation of chemosynthetic activity was relatively limited but was detected at both vent and non-vent sites as evidenced by carbon and sulphur isotopic signatures, suggesting that the hydrothermal activity can affect trophodynamics over a much wider area than previously thought

    Sedimentary carbon on the continental shelf : emerging capabilities and research priorities for Blue Carbon.

    Get PDF
    This work was supported by Cefas internal Seedcorn self-investment funding under the project DP440: Blue carbon within climate mitigation and ecosystem service approaches to natural asset assessments, and by Cefas’ Ecosystem Theme science theme.Continental shelf sediments store large amounts of organic carbon. Protecting this carbon from release back into the marine system and managing the marine environment to maximize its rate of accumulation could both play a role in mitigating against climate change. For these reasons, in the context of an expanding ‘Blue Carbon’ concept, research interest in the quantity and vulnerability of carbon stored in continental shelf, slope, and deep ocean sediments is increasing. In these systems, carbon storage is physically distant from carbon sources, altered between source and sink, and disturbed by anthropogenic activities. The methodological approaches needed to obtain the evidence to assess shelf sea sediment carbon manageability and vulnerability within an evolving blue carbon framework cannot be transferred directly from those applied in coastal vegetated ‘traditional’ blue carbon habitats. We present a ‘toolbox’ of methods which can be applied in marine sediments to provide the evidence needed to establish where and when marine carbon in offshore sediments can contribute to climate mitigation, focusing on continental shelf sediments. These methods are discussed in the context of the marine carbon cycle and how they provide evidence on: (i) stock: how much carbon is there and how is it distributed? (ii) accumulation: how rapidly is carbon being added or removed? and (iii) anthropogenic pressures: is carbon stock and/or accumulation vulnerable to manageable human activities? Our toolbox provides a starting point to inform choice of techniques for future studies alongside consideration of their specific research questions and available resources. Where possible a stepwise approach to analyses should be applied in which initial parameters are analysed to inform which samples, if any, will provide information of interest from more resource-intensive analyses. As studies increasingly address the knowledge gaps around continental shelf carbon stocks and accumulation – through both sampling and modelling – the management of this carbon with respect to human pressures will become the key question for understanding where it fits within the blue carbon framework and within the climate mitigation discourse.Publisher PDFPeer reviewe

    Patterns of carbon processing at the seafloor: the role of faunal and microbial communities in moderating carbon flows

    Get PDF
    Marine sediments, particularly those located in estuarine and coastal zones, are key locations for the burial of organic carbon (C). However, organic C delivered to the sediment is subjected to a range of biological C-cycling processes, the rates and relative importance of which vary markedly between sites, and which are thus difficult to predict. In this study, stable isotope tracer experiments were used to quantify the processing of C by microbial and faunal communities in two contrasting Scottish estuarine sites: a subtidal, organic C rich site in Loch Etive with cohesive fine-grained sediment, and an intertidal, organic C poor site on an Ythan estuary sand flat with coarse-grained permeable sediments. In both experiments, sediment cores were recovered and amended with 13C labelled phytodetritus to quantify whole community respiration of the added C and to trace the isotope label into faunal and bacterial biomass. Similar respiration rates were found in Loch Etive and on the Ythan sand flat (0.64 ± 0.04 and 0.63 ± 0.12 mg C m−2h−1, respectively), which we attribute to the experiments being conducted at the same temperature. Faunal uptake of added C over the whole experiment was markedly greater in Loch Etive (204 ± 72 mg C m−2) than on the Ythan sand flat (0.96 ± 0.3 mg C m−2), and this difference was driven by a difference in both faunal biomass and activity. Conversely, bacterial C uptake over the whole experiment in Loch Etive was much lower than that on the Ythan sand flat (1.80 ± 1.66 and 127 ± 89 mg C m−2, respectively). This was not driven by differences in biomass, indicating that the bacterial community in the permeable Ythan sediments was particularly active, being responsible for 48 ± 18 % of total biologically processed C. This type of biological C processing appears to be favoured in permeable sediments. The total amount of biologically processed C was greatest in Loch Etive, largely due to greater faunal C uptake, which was in turn a result of higher faunal biomass. When comparing results from this study with a wide range of previously published isotope tracing experiments, we found a strong correlation between total benthic biomass (fauna plus bacteria) and total biological C processing rates. Therefore, we suggest that the total C-cycling capacity of benthic environments is primarily determined by total biomass

    Evaluating the use of testate amoeba for palaeohydrological reconstruction in permafrost peatlands

    Get PDF
    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a new testate amoeba-based water table transfer function and thoroughly test it for the effects of spatial autocorrelation, clustered sampling design and uneven sampling gradients. We find that the transfer function has good predictive power; the best-performing model is based on tolerance-downweighted weighted averaging with inverse deshrinking (performance statistics with leave-one-out cross validation: R2 = 0.87, RMSEP = 5.25 cm). The new transfer function was applied to a short core from Stordalen mire, and reveals a major shift in peatland ecohydrology coincident with the onset of the Little Ice Age (c. AD 1400). We also applied the model to an independent contemporary dataset from Stordalen and find that it outperforms predictions based on other published transfer functions. The new transfer function will enable palaeohydrological reconstruction from permafrost peatlands in Northern Europe, thereby permitting greatly improved understanding of the long-term ecohydrological dynamics of these important carbon stores as well as their responses to recent climate change

    Sedimentary carbon on the continental shelf:emerging capabilities and research priorities for Blue Carbon

    No full text
    Continental shelf sediments store large amounts of organic carbon. Protecting this carbon from release back into the marine system and managing the marine environment to maximize its rate of accumulation could both play a role in mitigating against climate change. For these reasons, in the context of an expanding ‘Blue Carbon’ concept, research interest in the quantity and vulnerability of carbon stored in continental shelf, slope, and deep ocean sediments is increasing. In these systems, carbon storage is physically distant from carbon sources, altered between source and sink, and disturbed by anthropogenic activities. The methodological approaches needed to obtain the evidence to assess shelf sea sediment carbon manageability and vulnerability within an evolving blue carbon framework cannot be transferred directly from those applied in coastal vegetated ‘traditional’ blue carbon habitats.We present a ‘toolbox’ of methods which can be applied in marine sediments to provide the evidence needed to establish where and when marine carbon in offshore sediments can contribute to climate mitigation, focusing on continental shelf sediments. These methods are discussed in the context of the marine carbon cycle and how they provide evidence on: (i) stock: how much carbon is there and how is it distributed? (ii) accumulation: how rapidly is carbon being added or removed? and (iii) anthropogenic pressures: is carbon stock and/or accumulation vulnerable to manageable human activities? Our toolbox provides a starting point to inform choice of techniques for future studies alongside consideration of their specific research questions and available resources. Where possible a stepwise approach to analyses should be applied in which initial parameters are analysed to inform which samples, if any, will provide information of interest from more resource-intensive analyses. As studies increasingly address the knowledge gaps around continental shelf carbon stocks and accumulation – through both sampling and modelling – the management of this carbon with respect to human pressures will become the key question for understanding where it fits within the blue carbon framework and within the climate mitigation discourse

    Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses

    No full text
    The activities of sediment-dwelling fauna are known to influence the rates of and pathways through which organic matter is cycled in marine sediments, and thus to influence eventual organic carbon burial or decay. However, due to methodological constraints, the role of faunal gut passage in determining the subsequent composition and thus degradability of organic matter is relatively little studied. Previous studies of organic matter digestion by benthic fauna have been unable to detect uptake and retention of specific biochemicals in faunal tissues, and have been of durations too short to fit digestion into the context of longer-term sedimentary degradation processes.Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay.This aim was approached through microcosm experiments in which selected polychaetes were fed with 13C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over ~6weeks. Samples were analysed for their 13C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS.Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria.Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers than those from afaunal controls. Aldose suite alterations were similar in faunated microcosms and afaunal controls, however the impact of faunal gut passage on sedimentary aldose compositions may be observable over longer timescales. Therefore this study provides direct evidence that polychaete gut passage influences OM composition both through taxon-specific selective assimilation and retention in polychaete tissues, and also through interactions with the microbial community
    corecore