156 research outputs found

    Climbing the cosmic ladder with stellar twins

    Full text link
    Distances to stars are key to revealing a three-dimensional view of the Milky Way, yet their determination is a major challenge in astronomy. Whilst the brightest nearby stars benefit from direct parallax measurements, fainter stars are subject of indirect determinations with uncertainties exceeding 30%. We present an alternative approach to measuring distances using spectroscopically-identified twin stars. Given a star with known parallax, the distance to its twin is assumed to be directly related to the difference in their apparent magnitudes. We found 175 twin pairs from the ESO public HARPS archives and report excellent agreement with Hipparcos parallaxes within 7.5%. Most importantly, the accuracy of our results does not degrade with increasing stellar distance. With the ongoing collection of high-resolution stellar spectra, our method is well-suited to complement Gaia.Comment: published online on MNRA

    Stellar twins determine the distance of the Pleiades

    Get PDF
    © 2016 ESO.Since the release of the Hipparcos catalogue in 1997, the distance to the Pleiades open cluster has been heavily debated. The distance obtained from Hipparcos and those by alternative methods differ by 10 to 15%. As accurate stellar distances are key to understanding stellar structure and evolution, this dilemma puts the validity of some stellar evolution models into question. Using our model-independent method to determine parallaxes based on twin stars, we report individual parallaxes of 15 FGK type stars in the Pleiades in anticipation of the astrometric mission Gaia. These parallaxes give a mean cluster parallax of 7.42 ± 0.09 mas,which corresponds to a mean cluster distance of 134.8 ± 1.7 pc. This value agrees with the current results obtained from stellar evolution models

    The Gaia-ESO Survey: the selection function of the Milky Way field stars

    Get PDF
    The Gaia-ESO Survey was designed to target all major Galactic components (i.e., bulge, thin and thick discs, halo and clusters), with the goal of constraining the chemical and dynamical evolution of the Milky Way. This paper presents the methodology and considerations that drive the selection of the targeted, allocated and successfully observed Milky Way field stars. The detailed understanding of the survey construction, specifically the influence of target selection criteria on observed Milky Way field stars is required in order to analyse and interpret the survey data correctly. We present the target selection process for the Milky Way field stars observed with VLT/FLAMES and provide the weights that characterise the survey target selection. The weights can be used to account for the selection effects in the Gaia-ESO Survey data for scientific studies. We provide a couple of simple examples to highlight the necessity of including such information in studies of the stellar populations in the Milky Way.Comment: 18 pages, 19 figures, Accepted for publication in MNRAS (April 25, 2016

    The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge

    Full text link
    We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilises SkyMapper photometry to pre-select metal-poor candidates, which are subsequently confirmed using AAOmega spectroscopy. We describe the discovery and analysis of four bulge giants with -2.72<=[Fe/H]<=-2.48, the lowest metallicity bulge stars studied with high-resolution spectroscopy to date. Using FLAMES/UVES spectra through the Gaia-ESO Survey we have derived abundances of twelve elements. Given the uncertainties, we find a chemical similarity between these bulge stars and halo stars of the same metallicity, although the abundance scatter may be larger, with some of the stars showing unusual [{\alpha}/Fe] ratios.Comment: 7 pages, 5 figures. Accepted for publication by MNRA

    The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equivalent widths (EAGLES)

    Get PDF
    We present an empirical model of age-dependent photospheric lithium depletion, calibrated using a large, homogeneously-analysed sample of 6200 stars in 52 open clusters, with ages from 2--6000 Myr and −0.3<[Fe/H]<0.2-0.3<{\rm [Fe/H}]<0.2, observed in the Gaia-ESO spectroscopic survey. The model is used to obtain age estimates and posterior age probability distributions from measurements of the Li I 6708A equivalent width for individual (pre) main sequence stars with 3000<Teff/K<65003000 < T_{\rm eff}/{\rm K} <6500, a domain where age determination from the HR diagram is either insensitive or highly model-dependent. In the best cases, precisions of 0.1 dex in log age are achievable; even higher precision can be obtained for coeval groups and associations where the individual age probabilities of their members can be combined. The method is validated on a sample of exoplanet-hosting young stars, finding agreement with claimed young ages for some, but not others. We obtain better than 10 per cent precision in age, and excellent agreement with published ages, for seven well-studied young moving groups. The derived ages for young clusters (<1<1 Gyr) in our sample are also in good agreement with their training ages, and consistent with several published, model-insensitive lithium depletion boundary ages. For older clusters there remain systematic age errors that could be as large as a factor of two. There is no evidence to link these errors to any strong systematic metallicity dependence of (pre) main sequence lithium depletion, at least in the range −0.29<[Fe/H]<0.18-0.29 < {\rm [Fe/H]} < 0.18. Our methods and model are provided as software -- "Empirical AGes from Lithium Equivalent widthS" (EAGLES).Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The Gaia–ESO Survey: dynamical models of flattened, rotating globular clusters

    Get PDF
    We present a family of self-consistent axisymmetric rotating globular cluster models which are fitted to spectroscopic data for NGC 362, NGC 1851, NGC 2808, NGC 4372, NGC 5927 and NGC 6752 to provide constraints on their physical and kinematic properties, including their rotation signals. They are constructed by flattening Modified Plummer profiles, which have the same asymptotic behaviour as classical Plummer models, but can provide better fits to young clusters due to a slower turnover in the density profile. The models are in dynamical equilibrium as they depend solely on the action variables. We employ a fully Bayesian scheme to investigate the uncertainty in our model parameters (including mass-to-light ratios and inclination angles) and evaluate the Bayesian evidence ratio for rotating to non-rotating models. We find convincing levels of rotation only in NGC 2808. In the other clusters, there is just a hint of rotation (in particular, NGC 4372 and NGC 5927), as the data quality does not allow us to draw strong conclusions. Where rotation is present, we find that it is confined to the central regions, within radii of R ≤ 2rh. As part of this work, we have developed a novel q-Gaussian basis expansion of the line-of-sight velocity distributions, from which general models can be constructed via interpolation on the basis coefficients.This work was partly supported by the European Union FP7 programme through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. We acknowledge the support from INAF and Ministero dell’ Istruzione, dell’ Università’ e della Ricerca (MIUR) in the form of the grant ‘Premiale VLT 2012’

    The Gaia-ESO Survey: Hydrogen lines in red giants directly trace stellar mass

    Get PDF
    Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples - age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the "missing link in the chain", since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows to determine stellar masses and ages with the accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < Teff < 5000 K, 0.5 < log g < 3.5, -2.0 < [Fe/H] < 0.3, and luminosities log L/LSun < 2.5. Our analysis provides observational evidence that the Halpha spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows to obtain simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies like Andromeda or the Magellanic Clouds already with present instrumentation, like VLT and Keck facilities

    The Gaia-ESO Survey: Churning through the Milky Way

    Get PDF
    We attempt to determine the relative fraction of stars that have undergone significant radial migration by studying the orbital properties of metal-rich ([Fe/H]>0.1>0.1) stars within 2 kpc of the Sun using a sample of more than 3,000 stars selected from iDR4 of the Gaia-ESO Survey. We investigate the kinematic properties, such as velocity dispersion and orbital parameters, of stellar populations near the sun as a function of [Mg/Fe] and [Fe/H], which could show evidence of a major merger in the past history of the Milky Way. This was done using the stellar parameters from the Gaia-ESO Survey along with proper motions from PPMXL to determine distances, kinematics, and orbital properties for these stars to analyze the chemodynamic properties of stellar populations near the Sun. Analyzing the kinematics of the most metal-rich stars ([Fe/H]>0.1>0.1), we find that more than half have small eccentricities (e<0.2e<0.2) or are on nearly circular orbits. Slightly more than 20\% of the metal-rich stars have perigalacticons Rp>7R_p>7 kpc. We find that the highest [Mg/Fe], metal-poor populations have lower vertical and radial velocity dispersions compared to lower [Mg/Fe] populations of similar metallicity by ∼10\sim10 km s−1^{-1}. The median eccentricity increases linearly with [Mg/Fe] across all metallicities, while the perigalacticon decreases with increasing [Mg/Fe] for all metallicities. Finally, the most [Mg/Fe]-rich stars are found to have significant asymmetric drift and rotate more than 40 km s−1^{-1} slower than stars with lower [Mg/Fe] ratios. While our results cannot constrain how far stars have migrated, we propose that migration processes are likely to have played an important role in the evolution of the Milky Way, with metal-rich stars migrating from the inner disk toward to solar neighborhood and past mergers potentially driving enhanced migration of older stellar populations in the disk

    The Gaia-ESO Survey: the selection function of the Milky Way field stars

    Get PDF
    The Gaia-ESO Survey was designed to target all major Galactic components (i.e. bulge, thin and thick discs, halo and clusters), with the goal of constraining the chemical and dynamical evolution of the Milky Way. This paper presents the methodology and considerations that drive the selection of the targeted, allocated and successfully observed Milky Way field stars. The detailed understanding of the survey construction, specifically the influence of target selection criteria on observed Milky Way field stars is required in order to analyse and interpret the survey data correctly. We present the target selection process for the Milky Way field stars observed with Very Large Telescope/Fibre Large Array Multi Element Spectrograph and provide the weights that characterize the survey target selection. The weights can be used to account for the selection effects in the Gaia-ESO Survey data for scientific studies. We provide a couple of simple examples to highlight the necessity of including such information in studies of the stellar populations in the Milky Way
    • …
    corecore