757 research outputs found

    Seasonality of the Microbial Community Composition in the North Atlantic

    Get PDF
    Planktonic communities constitute the basis of life in marine environments and have profound impacts in geochemical cycles. In the North Atlantic, seasonality drives annual transitions in the ecology of the water column. Phytoplankton bloom annually in spring as a result of these transitions, creating one of the major biological pulses in productivity on earth. The timing and geographical distribution of the spring bloom as well as the resulting biomass accumulation have largely been studied using the global capacity of satellite imaging. However, fine-scale variability in the taxonomic composition, spatial distribution, seasonal shifts, and ecological interactions with heterotrophic bacterioplankton has remained largely uncharacterized. The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) conducted four meridional transects to characterize plankton ecosystems in the context of the annual bloom cycle. Using 16S rRNA gene-based community profiles we analyzed the temporal and spatial variation in plankton communities. Seasonality in phytoplankton and bacterioplankton composition was apparent throughout the water column, with changes dependent on the hydrographic origin. From winter to spring in the subtropic and subpolar subregions, phytoplankton shifted from the predominance of cyanobacteria and picoeukaryotic green algae to diverse photosynthetic eukaryotes. By autumn, the subtropics were dominated by cyanobacteria, while a diverse array of eukaryotes dominated the subpolar subregions. Bacterioplankton were also strongly influenced by geographical subregions. SAR11, the most abundant bacteria in the surface ocean, displayed higher richness in the subtropics than the subpolar subregions. SAR11 subclades were differentially distributed between the two subregions. Subclades Ia.1 and Ia.3 co-occurred in the subpolar subregion, while Ia.1 dominated the subtropics. In the subtropical subregion during the winter, the relative abundance of SAR11 subclades "II" and 1c.1 were elevated in the upper mesopelagic. In the winter, SAR202 subclades generally prevalent in the bathypelagic were also dominant members in the upper mesopelagic zones. Co-varying network analysis confirmed the large-scale geographical organization of the plankton communities and provided insights into the vertical distribution of bacterioplankton. This study represents the most comprehensive survey of microbial profiles in the western North Atlantic to date, revealing stark seasonal differences in composition and richness delimited by the biogeographical distribution of the planktonic communities

    Regional data assimilation of multi-spectral MOPITT observations of CO over North America

    Get PDF
    Chemical transport models (CTMs) driven with high-resolution meteorological fields can better resolve small-scale processes, such as frontal lifting or deep convection, and thus improve the simulation and emission estimates of tropospheric trace gases. In this work, we explore the use of the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system with the nested high-resolution version of the model (0.5° × 0.67°) to quantify North American CO emissions during the period of June 2004–May 2005. With optimized lateral boundary conditions, regional inversion analyses can reduce the sensitivity of the CO source estimates to errors in long-range transport and in the distributions of the hydroxyl radical (OH), the main sink for CO. To further limit the potential impact of discrepancies in chemical aging of air in the free troposphere, associated with errors in OH, we use surface-level multispectral MOPITT (Measurement of Pollution in The Troposphere) CO retrievals, which have greater sensitivity to CO near the surface and reduced sensitivity in the free troposphere, compared to previous versions of the retrievals. We estimate that the annual total anthropogenic CO emission from the contiguous US 48 states was 97 Tg CO, a 14 % increase from the 85 Tg CO in the a priori. This increase is mainly due to enhanced emissions around the Great Lakes region and along the west coast, relative to the a priori. Sensitivity analyses using different OH fields and lateral boundary conditions suggest a possible error, associated with local North American OH distribution, in these emission estimates of 20 % during summer 2004, when the CO lifetime is short. This 20 % OH-related error is 50 % smaller than the OH-related error previously estimated for North American CO emissions using a global inversion analysis. We believe that reducing this OH-related error further will require integrating additional observations to provide a strong constraint on the CO distribution across the domain. Despite these limitations, our results show the potential advantages of combining high-resolution regional inversion analyses with global analyses to better quantify regional CO source estimates

    Marked long-term decline in ambient CO mixing ratio in SE England, 1997–2014:Evidence of policy success in improving air quality

    Get PDF
    Atmospheric CO at Egham in SE England has shown a marked and progressive decline since 1997, following adoption of strict controls on emissions. The Egham site is uniquely positioned to allow both assessment and comparison of ‘clean Atlantic background’ air and CO-enriched air downwind from the London conurbation. The decline is strongest (approximately 50ppb per year) in the 1997–2003 period but continues post 2003. A ‘local CO increment’ can be identified as the residual after subtraction of contemporary background Atlantic CO mixing ratios from measured values at Egham. This increment, which is primarily from regional sources (during anticyclonic or northerly winds) or from the European continent (with easterly air mass origins), has significant seasonality, but overall has declined steadily since 1997. On many days of the year CO measured at Egham is now not far above Atlantic background levels measured at Mace Head (Ireland). The results are consistent with MOPITT satellite observations and ‘bottom-up’ inventory results. Comparison with urban and regional background CO mixing ratios in Hong Kong demonstrates the importance of regional, as opposed to local reduction of CO emission. The Egham record implies that controls on emissions subsequent to legislation have been extremely successful in the UK

    Phytoplankton surveys in the Arctic Fram Strait demonstrate the tiny eukaryotic alga Micromonas and other picoprasinophytes contribute to deep sea export

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bachy, C., Sudek, L., Choi, C. J., Eckmann, C. A., Nöthig, E.-M., Metfies, K., & Worden, A. Z. Phytoplankton surveys in the Arctic Fram Strait demonstrate the tiny eukaryotic alga Micromonas and other picoprasinophytes contribute to deep sea export. Microorganisms, 10(5), (2022): 961, https://doi.org/10.3390/microorganisms10050961.Critical questions exist regarding the abundance and, especially, the export of picophytoplankton (≤2 µm diameter) in the Arctic. These organisms can dominate chlorophyll concentrations in Arctic regions, which are subject to rapid change. The picoeukaryotic prasinophyte Micromonas grows in polar environments and appears to constitute a large, but variable, proportion of the phytoplankton in these waters. Here, we analyze 81 samples from the upper 100 m of the water column from the Fram Strait collected over multiple years (2009–2015). We also analyze sediment trap samples to examine picophytoplankton contributions to export, using both 18S rRNA gene qPCR and V1-V2 16S rRNA Illumina amplicon sequencing to assess the Micromonas abundance within the broader diversity of photosynthetic eukaryotes based on the phylogenetic placement of plastid-derived 16S amplicons. The material sequenced from the sediment traps in July and September 2010 showed that 11.2 ± 12.4% of plastid-derived amplicons are from picoplanktonic prasinophyte algae and other green lineage (Viridiplantae) members. In the traps, Micromonas dominated (83.6 ± 21.3%) in terms of the overall relative abundance of Viridiplantae amplicons, specifically the species Micromonas polaris. Temporal variations in Micromonas abundances quantified by qPCR were also observed, with higher abundances in the late-July traps and deeper traps. In the photic zone samples, four prasinophyte classes were detected in the amplicon data, with Micromonas again being the dominant prasinophyte, based on the relative abundance (89.4 ± 8.0%), but with two species (M. polaris and M. commoda-like) present. The quantitative PCR assessments showed that the photic zone samples with higher Micromonas abundances (>1000 gene copies per mL) had significantly lower standing stocks of phosphate and nitrate, and a shallower average depth (20 m) than those with fewer Micromonas. This study shows that despite their size, prasinophyte picophytoplankton are exported to the deep sea, and that Micromonas is particularly important within this size fraction in Arctic marine ecosystems.This research was supported by funding from the National Science Foundation (NSF) DEB-1639033, Gordon and Betty Moore Foundation Marine Investigator Award grant 3788, and fellowships from the Radcliffe Institute for Advanced Research at Harvard University and the Hanse-Wissenschaftskolleg for Marine and Climate Science, awarded to A.Z.W. Contribution to HGF POF-IV 6.1, 6.3, and 6.4

    Gene invasion in distant eukaryotic lineages: Discovery of mutually exclusive genetic elements reveals marine biodiversity

    Get PDF
    Inteins are rare, translated genetic parasites mainly found in bacteria and archaea, while spliceosomal introns are distinctly eukaryotic features abundant in most nuclear genomes. Using targeted metagenomics, we discovered an intein in an Atlantic population of the photosynthetic eukaryote, Bathycoccus, harbored by the essential spliceosomal protein PRP8 (processing factor 8 protein). Although previously thought exclusive to fungi, we also identified PRP8 inteins in parasitic (Capsaspora) and predatory (Salpingoeca) protists. Most new PRP8 inteins were at novel insertion sites that, surprisingly, were not in the most conserved regions of the gene. Evolutionarily, Dikarya fungal inteins at PRP8 insertion site a appeared more related to the Bathycoccus intein at a unique insertion site, than to other fungal and opisthokont inteins. Strikingly, independent analyses of Pacific and Atlantic samples revealed an intron at the same codon as the Bathycoccus PRP8 intein. The two elements are mutually exclusive and neither was found in cultured Bathycoccus or other picoprasinophyte genomes. Thus, wild Bathycoccus contain one of few non-fungal eukaryotic inteins known and a rare polymorphic intron. Our data indicate at least two Bathycoccus ecotypes exist, associated respectively with oceanic or mesotrophic environments. We hypothesize that intein propagation is facilitated by marine viruses; and, while intron gain is still poorly understood, presence of a spliceosomal intron where a locus lacks an intein raises the possibility of new, intein-primed mechanisms for intron gain. The discovery of nucleus-encoded inteins and associated sequence polymorphisms in uncultivated marine eukaryotes highlights their diversity and reveals potential sexual boundaries between populations indistinguishable by common marker genes. © 2013 International Society for Microbial Ecology

    Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China

    Get PDF
    During thermochemical sulfate reduction (TSR), H2S generated by reactions between hydrocarbons and aqueous sulfate back-reacts with remaining oil-phase compounds forming new organosulfur compounds (OSCs) that have similar δ34S values to the original sulfate. Using Compound Specific Sulfur Isotope Analysis (CSSIA) of alkylthiaadamantanes (TAs), alkyldibenzothiophenes (DBTs), alkylbenzothiophenes (BTs) and alkylthiolanes (TLs), we have here attempted to differentiate OSCs due to primary generation and those due to TSR in oils from the Tarim Basin, China. These oils were generated from Cambrian source rocks and accumulated in Cambrian and Ordovician reservoirs. Based on compound specific sulfur isotope and carbon isotope data, TAs concentrations and DBT/phenanthrene ratios, the oils fall into four groups, reflecting different extents of source rock signal, alteration by TSR, mixing events, and secondary generation of H2S. Thermally stable TAs, that were produced following TSR, rapidly dominate kerogen-derived TAs at low to moderate degrees of TSR. Less thermally stable TLs and BTs were created as soon as TSR commenced, rapidly adopted TSR-δ34S values, but they do not survive at high concentrations unless TSR is advanced and ongoing. The presence of TLs and BTs shows that TSR is still active. Secondary DBTs were produced in significant amounts, sufficient to dominate kerogen-derived DBTs, only when TSR was at an advanced extent. The difference in sulfur isotopes between (i) TLs and DBTs and (ii) BTs and DBTs and (iii) TAs and DBTs, represents the extent of TSR while the presence of TAs at greater than 20 μg/g represents the occurrence of TSR. The output of this study shows that compound specific sulfur isotopes of different organosulfur compounds, with different thermal stabilities and formation pathways, not only differentiate between oils of TSR and non-TSR origin, but can also reveal information about relative timing of secondary charge events and migration pathways

    Oceanic protists

    Get PDF

    Acceleration disturbances and requirements for ASTROD I

    Full text link
    ASTRODynamical Space Test of Relativity using Optical Devices I (ASTROD I) mainly aims at testing relativistic gravity and measuring the solar-system parameters with high precision, by carrying out laser ranging between a spacecraft in a solar orbit and ground stations. In order to achieve these goals, the magnitude of the total acceleration disturbance of the proof mass has to be less than 10−13 m s−2 Hz−1/2 at 0.1 m Hz. In this paper, we give a preliminary overview of the sources and magnitude of acceleration disturbances that could arise in the ASTROD I proof mass. Based on the estimates of the acceleration disturbances and by assuming a simple controlloop model, we infer requirements for ASTROD I. Our estimates show that most of the requirements for ASTROD I can be relaxed in comparison with Laser Interferometer Space Antenna (LISA).Comment: 19 pages, two figures, accepted for publication by Class. Quantum Grav. (at press

    Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    Get PDF
    This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation
    • …
    corecore