100 research outputs found

    Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT

    Get PDF
    We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules

    Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model

    Get PDF
    A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicit

    Electron photoemission from sodium and carbon clusters

    Get PDF
    Des distributions angulaires (PAD) et des spectres (PES) de photoélectrons émis par des agrégats sous l'action des lasers à impulsions femtosecondes linéairement polarisées ou d'une impulsion instantanée sont calculés théoriquement dans un modèle basé sur la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT). Les systèmes finis étudiés sont de petits agrégats de sodium, des chaînes de carbone CN (N = 3, 5, 7), et le célèbre buckminsterfullerène C60. Le comportement de l'émission éléctronique est exploré en fonction de la taille, la forme, la structure électronique et ionique ainsi qu'en fonction des paramètres du laser. En outre, des procédures de détermination de la PAD d'un ensemble de molécules ou d'agrégats orientés de façon aléatoire, sont élaborées. Les résultats de la TDDFT sont de plus comparés aux modèles stationnaires et aux données expérimentales. Les méchanismes d'ionisation sont étudiés dans le régime à un photon et à multi-photon.Photoangular distributions (PAD) and spectra (PES) of electrons emitted from clusters after excitation with linearly polarized femtosecond laser pulses or with instantaneous boost are calculated theoretically in the framework of time-dependent density-functional theory. The studied finite systems are small sodium clusters, carbon chains CN (N = 3, 5, 7), and the famous buckminsterfullerene C60. The behaviour of emission observables is explored as a function of size, shape, electronic and ionic structure of the considered systems and as a function of laser parameters. Moreover, schemes for determination of the PAD of an ensemble of randomly orientated molecules and clusters are elaborated. The TDDFT results are compared to stationary models and experimental data. Ionization mechanisms are studied in one- as well as multiphoton regime

    Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT

    Get PDF
    We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules

    Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm.

    Get PDF
    Background Adults born very preterm have increased cardiac mass and reduced function. We investigated whether a hypertrophic phenomenon occurs in later preterm infants and when this occurs during early development. Methods Cardiac ultrasound was performed on 392 infants (33% preterm at mean gestation 34±2 weeks). Scans were performed during fetal development in 137, at birth and 3 months of postnatal age in 200, and during both fetal and postnatal development in 55. Cardiac morphology and function was quantified and computational models created to identify geometric changes. Results At birth, preterm offspring had reduced cardiac mass and volume relative to body size with a more globular heart. By 3 months, ventricular shape had normalized but both left and right ventricular mass relative to body size were significantly higher than expected for postmenstrual age (left 57.8±41.9 vs. 27.3±29.4%, P<0.001; right 39.3±38.1 vs. 16.6±40.8, P=0.002). Greater changes were associated with lower gestational age at birth (left P<0.001; right P=0.001). Conclusion Preterm offspring, including those born in late gestation, have a disproportionate increase in ventricular mass from birth up to 3 months of postnatal age. These differences were not present before birth. Early postnatal development may provide a window for interventions relevant to long-term cardiovascular health

    Angular asymmetry and attosecond time delay from the giant plasmon resonance in C-60 photoionization

    Get PDF
    This combined experimental and theoretical study demonstrates that the surface plasmon resonance in C-60 alters the valence photoemission quantum phase, resulting in strong effects in the photoelectron angular distribution and emission time delay. Electron momentum imaging spectroscopy is used to measure the photoelectron angular distribution asymmetry parameter that agrees well with our calculations from the time-dependent local density approximation (TDLDA). Significant structure in the valence photoemission time delay is simultaneously calculated by TDLDA over the plasmon active energies. Results reveal a unified spatial and temporal asymmetry pattern driven by the plasmon resonance and offer a sensitive probe of electron correlation. A semiclassical approach facilitates further insights into this link that can be generalized and applied to other molecular systems and nanometer-sized metallic materials exhibiting plasmon resonances

    Diverse molecular causes of unsolved autosomal dominant tubulointerstitial kidney diseases

    Get PDF
    Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation
    corecore