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Résumé substantiel

La première partie de ce texte présente l’approche théorique et les méthodes nu-
mériques utilisées tout au long des travaux. Le fondement théorique, basé sur la
théorie de la fonctionnelle de la densité dépendante du temps (dans l’approxima-
tion de la densité locale dépendante du temps avec correction d’auto-interaction),
fournit un outil convenable et efficace pour décrire l’état fondamental ainsi que
les propriétés dynamiques des systèmes à N corps finis. Dans cette approche,
la dynamique éléctronique de petits agrégats de sodium, de chaînes de carbone,
et de buckminsterfullerènes C60 sont étudiés, en se concentrant notamment sur
les distributions angulaires (PAD) et les spectres (PES) de photoélectrons émis
par les systèmes considérés sous l’action d’un laser à impulsions femtosecondes
linéairement polarisées ou sous l’action d’une impulsion instantanée. Des condi-
tions aux limites absorbantes et des points de mesure permettent de déterminer
la PAD et le PES. Alors qu’en théorie, l’agrégat/la molécule est fixe dans l’espace
(la boîte de simulation) avec une orientation donnée par rapport à l’axe de pola-
risation du laser, les expériences se déroulent plutôt avec un ensemble d’agrégats
orientés de façon aléatoire. Il s’avère que la PAD moyennée sur les orientations
différentes (OA-PAD) se réduit en coordonnées sphériques à une forme très simple
∼ 1 + β2P2(cosϑ) + β4P4(cos ϑ) + . . . , où P2l sont les polynômes de Legendre, ϑ
est l’angle d’émission des électrons mesuré par rapport à l’axe de polarisation du
laser, et β2l sont les paramètres d’anisotropie. L’ordre maximal d’un β2l non nul
est lié à l’ordre du processus de photons. Dans le régime à un photon, un seul
paramètre d’anisotropie permet de décrire l’OA-PAD : dσ/dΩ = σ/(4π)(1+β2P2),
avec β2 variant de −1 à 2. Ainsi, l’OA-PAD montre une dépendance anisotrope
de la forme cos2 ϑ pour β2 = 2, tandis que pour β2 = −1 une dépendance sin2 ϑ
est observée. Pour β2 = 0 la distribution est isotrope. La valeur de β2 n’est pas
seulement liée à l’ordre du processus de photons, mais aussi au moment angulaire
de l’état initial et de l’état final. Pour un état initial s parfaitement sphérique,
par exemple, β2 est toujours égal à 2.

Afin de compenser l’écart entre théorie et expérience, des procédures de calcul
de l’OA-PAD ont été mis au point. Le premier schéma de calcul de la moyenne
est basé sur la théorie des perturbations au premier ordre et est dérivé par des ro-
tations d’Euler. Ici, trois calculs linéairement indépendants sont nécessaires pour
déterminer la section efficace σ moyennée sur les orientations et six pour l’ani-
sotropie β2. Dans la pratique, l’agrégat reste fixé dans la boîte de simulation,
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mais la polarisation du laser est modifiée. En revanche, le second schéma fait
varier l’orientation de l’agrégat, mais fixe l’axe de polarisation. L’OA-PAD est
donc calculée par sommation sur un ensemble fini d’orientations différentes. Cette
procédure conceptuellement plus simple est plus générale car elle peut être appli-
quée aussi dans le régime multiphotonique ou non-linéaire. Toutefois, le nombre
d’orientations différentes nécessaires pour la convergence est, en principe, inconnu
au détriment éventuel d’un coût de calcul élevé.

Dans la deuxième partie de cet ouvrage, les procédures développées sont d’abord
appliquées à une sélection de petits agrégats de Na(+)

N neutres ou positivement
chargés avec N = 3 − 19. Deux modèles différents pour la description du fond
ionique sont comparés : les pseudopotentiels locaux et le modèle du jellium sphé-
rique/déformé. Le premier modèle tient compte explicitement de la structure io-
nique de l’agrégat alors que dans le second modèle les cœurs ioniques sont consi-
dérés comme uniformes. Les différences dans le calcul de l’OA-PAD dans ces deux
modèles sont frappantes. Alors que dans le modèle du jellium les paramètres d’ani-
sotropie prennent pour la plupart des agrégats une valeur proche du maximum de
deux, le fond ionique les réduit substantiellement. La déformation des fonctions
d’onde des états initiaux et finaux imposée par les pseudopotentiels, introduit un
mélange de composantes à haut moment angulaire qui contient toujours quelques
éléments provoquant une émission latérale.

Des analyses détaillées ont été effectuées pour une meilleure compréhension du
comportement de β2 en fonction des paramètres du laser, en particulier, en fonc-
tion de la fréquence du laser ωlas. Un modèle de jellium sphérique pour Na8 sert
ici de point de départ. Dans ce cas une comparaison directe de la théorie des
perturbations stationaires et les résultats de la théorie de la fonctionnelle de la
densité dépendante du temps est possible. Dans le modèle stationaire plusieurs
hypothèses pour les états initiaux et finaux ont été proposées et insérées dans la
formule de Bethe-Cooper-Zare. Dans tous les cas, l’anisotropie monoéléctronique
β
(i)
2 (ωlas) dépend du contenu de moment angulaire de l’état initial i considéré. Par

exemple, le modèle d’ondes planes montre une baisse caractéristique de l’anisotro-
pie de l’état p près du potentiel d’ionisation. Des chutes abruptes vers des valeurs
négatives qui sont associées aux passages par zéro des éléments de la matrice
de transition, suivent aux plus grandes énergies cinétiques. Cependant, de pe-
tites variations des deux fonctions d’onde ont des effets généralement énormes sur
β
(i)
2 (ωlas), ce qui est en accord avec la comparaison précédente du fond ionique ex-

plicite et du modèle de jellium. Par conséquent, la prise en compte de la structure
ionique semble rebattre les cartes. Les tendances de l’anisotropie en fonction de la
fréquence du laser sont maintenant très lisses avec une émission de préférentielle
le long de la polarisation du laser, plus un certain fond isotrope. Une exception ap-
paraît dans les agrégats négativement chargés, ici Na−7 , où l’hypothèse onde plane

8



pour l’onde sortante est légitime en raison du faible potentiel de liaison. Du coup,
la tendance générale pour une émission latérale prévaut aux fréquences proches
du seuil. Néanmoins, les modèles statiques ne peuvent pas décrire intégralement
le processus d’ionisation, car ils ne tiennent pas compte des effets dynamiques tels
que la polarisation et le réarrangement de l’agrégat résiduel.

Les résultats sur les agrégats de sodium montrent que la distribution angulaire
est très sensible à tous les détails de la modélisation. Cela exige une description
théorique sans compromis. Ainsi, l’approche dynamique la plus sophistiquée avec
des potentiels non-locaux de type Goedecker pour le fond ionique est utilisée
pour le buckminsterfullerène C60 et pour les chaînes de carbone linéaires C3, C5,
et C7. Pour C60, l’application des pseudopotentiels est d’autant plus important
qu’une surface sphérique de type jellium ne peut même pas donner l’état fon-
damental correct avec une fermeture de couche éléctronique à 240 électrons de
valence. L’utilisation des pseudopotentiels cependant rompt la sphéricité, met en
oeuvre la symétrie icosaédrique de la molécule, et une fermeture de couche est
obtenue pour Nval = 240 électrons. Le spectre d’états monoélectroniques occu-
pés se réduit de façon significative à un nombre de bandes beaucoup plus bas,
ce qui est lié à la symétrie et à la dégénérescence de haut niveau. Egalement, la
symétrie du fullerène se révèle utile pour trouver un procédé direct de calcul de
la distribution moyenne et des paramètres d’anisotropie β2, β4, . . . Ainsi régimes
différents sont considérés : le régime à un photon employant des fréquences du
laser comme généralement utilisées au synchrotron, et le régime multiphotonique
avec des fréquences bien inférieures au seuil d’ionisation. Il s’avère que ces deux
régimes donnent des PAD et des PES complètement différents. Dans le régime à
un photon, le PES reflète le spectre monoélectronique ressemblant à un spectre
moléculaire. La PAD montre la dépendance attendue de la forme 1 + β2P2. Par
contre, dans le domaine multiphotonique le PES décroit exponentiellement et est
superposés avec des oscillations importantes alors que la PAD possède des aniso-
tropies non nulles β2l d’ordres supérieurs. Les deux comportements différents, en
particulier du PES, sont liés à la déplétion des niveaux monoéléctroniques.

La thèse s’achève sur une brève étude de petites chaînes de carbone linéaires C3,
C5, et C7. Contrairement à C60, ces petites molécules possèdent une résonance dis-
tincte de plasmon longitudinal ωpl qui peut être excitée par une impulsion forte
et instantanée simulant un ion rapide passant l’agrégat. L’énergie déposée est
d’abord stockée dans le plasmon et plus tard transféré aux particules individuelles.
Comme la fréquence de plasmon ωpl est inférieure au potentiel d’ionisation, deux
ou plusieurs modes doivent être absorbés pour ioniser le système. Le PES reflète
donc le spectre monoéléctronique doublement ou triplement excité. Les compo-
santes du moment angulaire du PAD augmentent toujours par une unité lors de
l’absorption d’un mode dipôle supplémentaire.
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1 Introduction

Electrons emitted from clusters contain rich information. Hence, photoelectron
spectroscopy (PES) has been used since long in cluster physics. First experiments
were performed on iron and cobalt clusters in 1986 [1], a few years later also on
sodium clusters [2] and C60 [3, 4]. PES helps to distinguish ionization mechanisms
(e.g., direct vs. thermal emission [5]). For direct emission processes, molecular-like
spectra reflecting the single-particle and excited-state spectrum, can be observed
up to cluster sizes of several hundreds of atoms. Shell closings and openings are
clearly seen and estimations about the relative degeneracy of the single-particle
states can be made. Furthermore, PES measurements as a function of photon
energy give insight into spatial matrix elements of initial and final states. But
PES is not only used to elucidate the electronic structure. In combination with
theoretical predictions it also allows to make assumptions about the ionic structure
of the investigated species [6, 7].

Information can also be gathered when resolving the direction of the outgoing
electrons, thus measuring photoangular distributions (PAD), see, e.g., [8] on C60.
The PAD depends on the angular momentum coupling of initial and final state
and is, in a direct process, strongly anisotropic. Similar to the PES, the behaviour
of the PAD as a function of excitation parameters can indicate different ioniza-
tion mechanisms. However, spectroscopic experiments are often performed in gas
phase, i.e., on an ensemble of randomly orientated clusters. Measured PAD and
PES are so orientation-averaged observables which complicates comparison with
theory. One of the purposes of this work is therefore to provide efficient averaging
procedures.

The achievements obtained in experimental techniques in the last decades boost-
ed the progress is cluster physics anew. The velocity map imaging technique de-
veloped in 1997 by Eppink and Parker [9] enables a combined measurement of
PES and PAD [10–14]. One may thus determine the order of the photon pro-
cess and assign main angular momentum components to each feature seen in the
PES [15]. One can also conclude about the general shape of the cluster. Deforma-
tion splits single-particle shells into several subshells of same angular momentum
exhibiting thus similar PAD. Combined PES/PAD is nowadays applied even in
a time-resolved manner [16]. Several competing ionization mechanisms acting on
different time scales can so be discriminated fully in time, energy and space.

Also recent advances in attosecond physics [17–19] are expected to give an
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1 Introduction

important contribution to cluster physics. Benefitting from the effect of high-
harmonic generation, one is now able to produce ultrashort laser pulses in the
sub-femtosecond regime consisting of only a few cycles of the electromagnetic field,
and so to resolve electron dynamics taking place on this time scale. Research in
this currently strongly evolving field is still in its infancy.

From the theoretical perspective, the description of quantum many-body sys-
tems has experienced major changes, too. Starting with phenomenological shell
models like the Clemenger-Nilsson model [20] for simple metal clusters, static
many-body [21] and time-dependent perturbative approaches [22], full time-de-
pendent many-body calculations [23, 24] determining the dynamical response of
clusters are commonly performed today. This was, of course, made possible only
by the enormous evolution of computing facilities in the past decades. A theoreti-
cal tool of choice is the time-dependent density-functional theory (TDDFT). The
method derived in 1964 by Hohenberg and Kohn [25], is nowadays widely used
to describe the electronic structure and dynamics in atoms, molecules, clusters
and bulk material. This thesis deals with the calculation of PES and PAD from
sodium and carbon clusters using TDDFT. It is outlined as follows:

• Chapter 2 gives an introduction into the theoretical framework: the many-
body Schrödinger equation is separated into an ionic and electronic part.
Several models for the ions (jellium, pseudo-potentials) and main features
of density-functional theory for the description of electron dynamics are
presented.

• Chapter 3 introduces tools and theory behind for numerical implementation
of a laser field and for an efficient calculation of PAD and PES.

• Two procedures for determination of the orientation-averaged angular dis-
tribution are worked out in Chapter 4. The first analytical method is based
on first-order perturbation theory. Euler rotations are needed.

• In Chapter 5 the developed methods are tested and first results are pre-
sented. Calculations in the one-photon regime using the jellium model and
pseudo-potentials are directly compared for a variety of small sodium clus-
ters. Moreover, emission observables are studied when laser frequencies
below the ionization threshold are applied.

• Detailed analysis of the behaviour of the PAD as a function of the laser
frequency is carried out in Chapter 6. The dependence of the PAD on initial
and final state wavefunctions is studied within a spherical jellium model for
Na8 described by stationary perturbation theory. Increasingly refined levels
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of theory are then considered up to the full time-dependent TDLDA using
pseudo-potentials. Comparison with experimental results is performed for
the negatively charged cluster Na−7 .

• In the following Chapters 7 and 8 the fully fledged approach is finally applied
to the buckminsterfullerene C60 and carbon chains. Basic properties like
dipole response and electronic structure of these systems are studied. PES
and PAD of C60 are calculated systematically as a function of laser intensity
and frequency in one- as well as multiphoton regime. The chains are excited
by an instantaneous boost.
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2 Many-body theory in cluster physics

A single-element cluster XN is a complex, quantum mechanical many-body system
consisting of N nuclei of mass M and of charge Z·e each and W = N ·Z electrons.
The Schrödinger equation of the given system reads

i~∂tΨ(R1, . . . ,RN , r1, . . . , rW , t) = ĤΨ(R1, . . . ,RN , r1, . . . , rW , t) , (2.1)

where R1, . . . ,RN and r1, . . . , rW are the coordinates of the nuclei and the elec-
trons, respectively. The Hamiltonian is given by:

Ĥ =

W∑

i=1

p̂2
i

2me
+

1

2

W∑

i6=j

e2

|ri − rj|
−

W∑

i=1

N∑

I=1

Ze2

|ri −RI |

+

N∑

I=1

P̂
2

I

2M
+

1

2

N∑

I 6=J

Z2e2

|RI −RJ |
.

The exact solution of the 3·(N+W )-dimensional equation (2.1) is already for small
particle numbers only numerically possible and computational highly demanding.
This is all the more so as soon as an external potential V̂ext(t) is applied to
the system and the Hamiltonian and its solution become time-dependent. In
practice, the external potential may be, e.g., a laser pulse, in theory it is usually
a time-dependent, one-particle potential: V̂ext =

∑
l=i,I v̂l. For the description

of dynamical processes, it is therefore unavoidable to undergo approximations.
Depending on the physical property of interest, two basic approximations can
usually be applied without losing too much accuracy, but crucially simplify the
problem:

• The decoupling of ionic and electronic motion:
The mass of a nucleus is much larger than the electron mass, M ≫ me. As
a consequence, when forces are applied to the many-body system, electrons
can react on a scale of attoseconds (10−18 s) while the ionic motion is much
slower on the picosecond time scale (10−12 s). It is therefore justified to treat
electronic and ionic motion separately. For electrons quantum mechanics is
still used. The treatment of the ions, however, may differ from problem to
problem. In many cases, in particular when dynamical processes within fem-
toseconds are considered, it is sufficient to treat the nuclei as point charges
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2 Many-body theory in cluster physics

fixed in space or – at the next level of accuracy – following the classical
equations of motion.

• The valence electron approximation:
Covalent and metallic clusters exhibit an electronic structure which permits
to clearly divide the bound electrons into two groups, the core and the va-
lence electrons. The core electrons are deep lying, localized electronic states
while the valence electrons are less bound and, in particular in metallic clus-
ters, strongly delocalized and shared among all nuclei. In these clusters the
valence electrons establish the chemical bonding and determine the dynam-
ical response after excitation, while the core electrons remain rather inert
and insensitive to the molecular environment. It is therefore legitimate to
treat the core electrons of each nucleus together with the latter as one in-
ert core. This assumption applies of course only as long as the excitation
energy/laser frequency remains below a certain threshold.

The above two assumptions simplify the original equation (2.1) to the 3·Nval-di-
mensional problem with the electronic (time-dependent) Hamiltonian

Ĥel =

Nval∑

i=1

p̂2
i

2me

+
1

2

Nval∑

i6=j

e2

|ri − rj|
+ V̂ext(t) + V̂back(t) ,

where the background potential V̂back represents the positively charged cores. The
quantum mechanical treatment is restricted to the valence electrons, for instance,
in sodium to the 3s electrons and in carbon to the 2s and 2p electrons. The elim-
inated 2p state in Na lies at about −2Ry, the 1s state in C at about −20Ry [26].
Below these excitation thresholds, ionization out of the core states may be ne-
glected.

2.1 Ionic background

The potential which is generated by each core is not a simple, attractive Coulomb
potential −Nval ·e2/r since the core electrons induce also a repulsive force (Pauli
repulsion) to the valence electrons. Moreover, even if the Pauli repulsion might
be neglectable like in hydrogen, e.g., where it even vanishes completely, the singu-
larity of the Coulomb-like core potential is still numerically hard to handle. Core
pseudo-potentials represent here a helpful tool for accounting for both aspects,
1) considering the effect of the core electrons and ionic structure, and 2) provid-
ing an expression which is suitable for implementation on a three-dimensional
numerical grid. Many realizations for pseudo-potentials already exist. They all
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2.1 Ionic background

depend on the element X in question. Since this work also intends to study the
impact of the ionic structure on electron dynamics, different approaches have been
used.

Woods-Saxon potential In simple metals like alkali metals, valence electrons
are very weakly bound. The ionic background which is seen by the valence elec-
trons can then be considered as a smooth function, i.e., the point charges of the
cores are smeared out and the charge distribution becomes homogeneous and time-
independent. This kind of background model is called “jellium”. The most simple
jellium approach is to assume a homogeneously charged sphere of a certain width
Rjel (spherical potential well). A more refined jellium model which is widely used
in this work, is the so-called Woods-Saxon profile for the charge distribution [23]:

ρjel(r) =
3

4πr3s

[
1 + exp

(
r − ̺(ϑ, ϕ)

σjel

)]−1

,

with

̺(ϑ, ϕ) = Rjel

(
1 +

∑

lm

αlmYlm(ϑ, ϕ)

)
.

The only material quantities in this model are rs and σjel. The parameter σjel

gives the steepness of the charge distribution at |r| = Rjel, e.g., the limit σjel → 0
yields the step function. rs is the Wigner-Seitz radius. The parameters αlm allow
also for a deformed distribution. Axial (prolate and oblate) systems are described
by a non-zero parameter α20, triaxial clusters by modification of α20 and α22. The
potential V̂back = V̂jel is determined by solving the Poisson equation.

Although a very rough approximation, the jellium model was widely used for
sodium clusters [21] and is still in use, nowadays even for more complex clusters
like C60. In this case, ions are smeared out over a spherical shell with a certain
outer and inner radius [27]. In this specific case, however, the jellium model does
not deliver the correct shell closings1. Hence, it has been applied throughout this
work only for the sodium clusters with rs ≈ 4 a0 and σjel ≈ 1 a0 (depending on
size and shape of the cluster).

Local soft pseudo-potentials The Woods-Saxon potential neglects most of
the effects which are caused by the explicit ionic structure. Therefore, a more
sophisticated model has been developed by Kümmel et al. [28]. Here, the charge
distribution of the cationic cores are described by two Gaussians, one representing

1 Within the jellium model by Bauer et al. [27], a closed electron shell is obtained for a system
of 250 valence electrons.
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2 Many-body theory in cluster physics

the attractive force of the positive charge of the cores, the other one representing
the Pauli repulsion of the core electrons. The potential has then the form:

Vback = Vsps(r) = −
Ze2

r

2∑

i=1

ci erf

(
r√
2σi

)
,

with

erf(x) =
2√
π

x∫

0

dy exp(−y2) .

The advantage of this approach is that on the one hand it considerably improves
agreement with experiments, on the other hand it is still numerically efficient due
the locality of the potential. Moreover, it is now possible to propagate the cores.
The ionic motion is described classically by molecular-dynamical methods. The
short time spans studied in this work, however, allow to neglect dynamic effects
due to the ions. Thus, the cores are always considered as fixed in space.

For sodium, the following parameters have been used: Z = 1, c1 = −2.292,
c2 = 3.292, σ1 = 0.681 a0, and σ2 = 1.163 a0.

Goedecker-Teter-Hutter potentials Even more accurate pseudo-potentials
have been provided by Goedecker et al. [29], here for all elements of the first two
rows of the periodic table. The Goedecker potentials consist of a local and a
non-local part:

Vback = Vgoe(r, r
′) = Vloc(r) + Vnloc(r, r

′) ,

with

Vloc(r) = −
Z

r
erf

(
r√
2rloc

)
+ Γ exp

(
− r2

2r2loc

)
,

and

Γ = C1 + C2

(
r

rloc

)2

+ C3

(
r

rloc

)4

+

(
r

rloc

)6

,

for the local part, and

Vnloc(r, r
′) =

2∑

i=1

Y00(Ωr)p
(0)
i (r)h

(0)
i p

(0)
i (r′)Y ∗

00(Ωr′)

−
1∑

m=−1

Y1m(Ωr)p
(1)
1 (r)h

(1)
1 p

(1)
1 (r′)Y ∗

1m(Ωr′) .

for the non-local part. The functions p
(0)
1 , p(0)2 , and p

(1)
1 are basically Gaussians

of width r(0) and r(1), respectively. This gives ten parameters: rloc, C1, C2, C3,
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2.2 Electron dynamics: Density-functional theory

C4, r(0), r(1), h
(0)
1 , h(0)

2 , and h
(1)
1 . However, at most, seven free coefficients are nec-

essary to specify the entire analytical form (in many cases even less are needed).
Goedecker potentials fully realized with two s-projectors and one p-projector are
in very good agreement with results obtained by all-electron calculations. Errors
arising from the pseudo-potential approximation are often much lower than er-
rors arising from DFT assumptions (e.g., from the local-density approximation).
Nevertheless, the potential is non-local and reduces the speed of the calculation
significantly. They are thus used only for calculations on carbon clusters where
high precision is inquired.

So, the following values have been chosen: Z = 4, rloc = 0.7 a0, C1 = 0.0628,
C2 = −0.7079, r(0) = 0.7 a0, and h

(0)
1 = 0.7380Ry. The remaining coefficients are

zero or obsolete, so that only one projector with l = 0 has been used here.

2.2 Electron dynamics: Density-functional theory

Since its development in 1964 by Hohenberg and Kohn2 density-functional theory
(DFT) has become a multi-disciplinary key tool for the theoretical description
of electronic structure and dynamics in atoms and molecules, clusters and bulk
material. As there exist many textbooks dealing with DFT in detail [30–33],
this chapter provides only a basic introduction to the theoretical framework. For
the sake of simplicity, the following considerations are at first restricted to the
stationary problem.

2.2.1 Stationary density-functional theory

The stationary Schrödinger equation of any system of N interacting electrons3 is
given by:

{
T̂ + Ŵ + V̂

}
|Ψ〉 = E|Ψ〉 , (2.2)

with

T̂ = −
N∑

i=1

~
2

2me
∆i = kinetic energy and

Ŵ =
1

2

N∑

i6=j

e2

|r̂i − r̂j |
= Coulomb interaction (2-particle interaction).

2 1998 Nobel Prize in Chemistry for W. Kohn and J. A. Pople [30].
3 The discussion is furthermore restricted to Coulomb-interacting many-electron systems. Ac-

tually, the formalism can also be developed for different interacting as well as bosonic systems.
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2 Many-body theory in cluster physics

V̂ is an external (one-particle) potential representing for example the interaction
of the valence electrons with the cores, and 〈r|Ψ〉 = Ψ(r1, . . . , rN) is the many-
body wavefunction. The Schrödinger equation (2.2) constitutes a 3N -dimensional
differential equation. Its numerical solution becomes highly sophisticated even for
small N . An alternative approach is therefore provided by the Hohenberg-Kohn
theorem [25] which is the basis of DFT. The main statements of this theorem are:

1. The ground-state (g.s.) expectation value of any observable is a unique func-
tional of the density, in particular,

E = E[n] = 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉︸ ︷︷ ︸
=FHK[n]

+

∫
d3r V (r)n(r) .

For a non-degenerate ground-state, also the wavefunction |Ψ〉 is determined
by the density n, i.e., |Ψ〉 = |Ψ[n]〉. For a degenerate ground-state this map
does not exist, obviously. In this case, however, one can show that E is still
a functional of n and |Ψ[n]〉 denote any of the possible g.s. wavefunctions
related to the density n.

2. If the kinetic energy T̂ and the two-particle interaction Ŵ are specified,
the g.s. density n determines the external, local potential V̂ , thus the full
Hamiltonian.

From the first statement one could, in principle, find the ground-state of a given
system by variation of the energy functional with respect to the density.4 The
problem is that the functional FHK is not known, in general. One therefore goes
further by combining the two statements:

3. For any interacting system there exists an auxiliary system of non-interact-
ing particles moving in an effective, local single-particle potential (mean-
field potential):5

Es[n] = Ts[n] +

∫
d3r Vs(r)n(r) ,

with

Ts[n] = 〈Ψs[n]|T̂ |Ψs[n]〉 , and Ws ≡ 0 .

The auxiliary many-body wavefunction |Ψs〉 delivers the exact g.s. density
n = Ψ†Ψ = Ψ†

sΨs and the exact energy E = Es.

4 By construction, the Hohenberg-Kohn theorem is only valid for g.s. densities which are solu-
tions of the Hamiltonian in Eq. (2.2) with a local, external potential V . In order to derive a
variational principle, one has to ascertain that V exists for each trial density, i.e., the trial
density is V -representable. For details, see [31].

5 This implies V -representability of the g.s. density in both systems.
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2.2 Electron dynamics: Density-functional theory

Assuming furthermore that the electronic density n(r) can be written in terms
of single-particle orbitals (i.e., the density is N -representable),

n(r) =
∑

α

ϕ†
αϕα , 〈ϕα|ϕβ〉 = δαβ ,

which is possible for any non-negative density [34], one can derive a variational
scheme in the auxiliary system with respect to the single-particle orbitals (under
condition of ortho-normalization of the ϕα), the so-called Kohn-Sham scheme [35].
The Kohn-Sham scheme decouples the 3N -dimensional differential equation (2.2)
into N three-dimensional equations and the kinetic energy functional can be given
exactly:

{
− ~

2

2me
∆+ VK.S.[n](r)

}
ϕα[n](r) = ǫαϕα[n](r) , ∀α ∈ {1, . . . , N} .

The potential VK.S. = Vs is conventionally decomposed into a Hartree term, i.e.,
the mean Coulomb interaction between the particles, an external potential and
an exchange-correlation term which accounts for the exchange energy and the
two-particle character of the Coulomb interaction,

V̂K.S. = V̂ext + V̂H + V̂xc ,

with

Vxc[n](r) =
δExc[n

′]

δn′(r)

∣∣∣∣
n′=n

, and VH[n](r) =

∫
d3r′

e2

|r− r′|n(r
′) .

Unfortunately, an analytical expression for V̂xc is not known up to present times.
The development of suitable, approximate exchange-correlation functionals/po-
tentials remains as the main task in DFT.

A word on the physical meaning of the Kohn-Sham orbitals: from the above
derivation of the Kohn-Sham (K.S.) equations, it is clear that the K.S. orbitals and
eigenvalues are just constructed auxiliary quantities which have, in general, little
physical meaning. Nevertheless, it can be shown (in case that V̂xc is exact) that
the highest occupied eigenvalue ǫHOMO of the N -particle K.S. system corresponds
to the exact ionization potential (Koopmans’ theorem [36]):6

IP = EN [nN ]− EN−1[nN−1] ≃ −ǫHOMO , (2.3)

6 The ionization potential of the non-interacting K.S. system is by definition IPK.S. = −ǫHOMO.
However, for any finite system the density decays exponentially as nK.S. → exp(−α

√
IPK.S.r)

for large r [37, 38]. Since nK.S. = n, real and auxiliary system have the same ionization
potentials IP = IPK.S..
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2 Many-body theory in cluster physics

where nN and nN−1 are the g.s. densities of the systems with N or N − 1 elec-
trons, respectively. Moreover, the deeper lying eigenvalues can be interpreted
as approximate vertical ionization potentials [39–41] (if the exchange-correlation
functional is accurate enough), eigenvalue differences as approximations for exci-
tation energies. Anyway, the static K.S. eigenvalues cannot account for dynamic
and collective effects in the course of photoionization. These effects require time-
dependent calculations.

The energy functional is also defined for fractional particle numbers [42]. If Exc

is exact, the ground-state energy EN as a function of fractional particle numbers N
consists of a straight line between integers, and possible derivative discontinuities
at integers [31]. Hence, following Koopmans’ theorem the gradient of the energy
functional EN between N and N − 1 corresponds then to the IP.

2.2.2 Local-density approximation

Since the exact exchange-correlation functional is not known, it has to be ap-
proximated. Vxc[n](r) is local in space, but in general highly non-local in the
density,

Vxc[n](r) = Vxc(n(r),∇n(r), . . . ; r) ,

as it depends on the density at all coordinates r ∈ R
3. The most common used

approximation is therefore to truncate this dependence, i.e.,

V (LDA)
xc [n](r) = Vxc(n(r); r) , and E(LDA)

xc [n] =

∫
d3r n(r)Vxc(n(r); r) .

This approximation is called the local-density approximation (LDA), since the
potential depends only on the density at the coordinate where it is evaluated.
Obviously, the approximation is legitimate for weakly varying n. Nevertheless, it
is also often used for strongly inhomogeneous systems like atoms and molecules
where it produces remarkable good results.

The LDA exchange-correlation potential is conventionally separated into an
exchange term vx and the correlation vc. Within the LDA approximation vx can
be given exactly (Slater-Dirac exchange). Since vx depends only on the density n
at r, it can be considered as piecewise function defined on infinite small intervals in
which the density remains constant, i.e., homogeneous. The exchange energy per
particle of an homogeneous electron gas has the simple, analytical form [43, 44]:

vx(n) = −
3e2

4

(
3

π

)1/3

n1/3 .
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2.2 Electron dynamics: Density-functional theory

Analytical expressions for vc are not known, thus plenty of different correlation
functionals are available nowadays. In this work the (local) representation by
Perdew and Wang [45] (PW92) is used consistently.

2.2.3 Self-interaction correction

One major problem of LDA is that the mean-field falls off exponentially at large
r and not like 1/r is it should be, in short is does not produce a physical po-
tential. As a consequence, the ionization potential is always underestimated and
Koopmans’ theorem is violated (EN as a function of fractional particle numbers
is usually convex) [33]. However, especially for ionization processes, a correct
long-range description is all the more important, since outgoing electrons surely
feel the Coulomb tail of the potential.

In contrast, the Hartree-Fock theory (HF) shows the right asymptotic behaviour.
The reason for this is that HF accounts for the fact that an electron cannot interact
with itself. The self-interaction in the Hartree energy,

ESI =
∑

α

∫
d3r

∫
d3r′ nα(r)

e2

|r− r′|nα(r
′) , nα = ϕ†

αϕα ,

is cancelled by the Fock term. In order to overcome this problem in LDA self-
interaction corrections (SIC) has been developed over the years. An obvious
scheme has been proposed by Perdew and Zunger [46] by simply subtracting the
contribution produced by a single electron:

ESIC
xc = E(LDA)

xc [n]−
∑

α

EH[nα]−
∑

α

E(LDA)
xc [nα] .

The problem is now that the exchange-correlation functional depends not only on
the full density n, but also on nα. Variation under the condition of ortho-normality
of the ϕα leads to a set of coupled equations [47],

ĥ
(α)
K.S.|ϕα) =

∑

β

λαβ |ϕβ) ,

which again is computationally expensive to solve.
Perdew and Zunger [46] also referred to an alternative, much simpler SIC, the

average density SIC (ADSIC) [48]. The single-orbital density nα is here approxi-
mated by n/N and the same for all orbitals,

EADSIC
xc [n](r) = E(LDA)

xc [n]−N ·EH

[ n
N

]
−N · E(LDA)

xc

[ n
N

]
.
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2 Many-body theory in cluster physics

The exchange-correlation functional depends then on the density only, conse-
quently the variational principle yields again decoupled differential equations like
for bare LDA. It turned out that this SIC is especially suited for systems in
which the considered electrons occupy the same spatial and energetic range, e.g.,
in simple metal clusters [49]. On the other hand, it does not correctly describe
phenomena in inhomogeneous systems, e.g., dissociation and polarization, and in
large systems where n/N → 0. Nevertheless, ADSIC restores the correct asymp-
totic behaviour of the exchange-correlation potential and Koopmans’ theorem [46].
The single-particle energies are downshifted compared to LDA and calculated IPs
agree better with experiments.

All in all, ADSIC appears favorable compared to other correction schemes for
the description of the photoionization processes considered here. In combination
with LDA it provides a reasonable and efficient approximation of the exchange-
correlation functional. It has been used throughout this work.

2.2.4 Time-dependent density-functional theory

In 1984, Runge and Gross [50] extended the stationary DFT to time-dependent
problems. The proof of the time-dependent analogous to the Hohenberg-Kohn
theorem is more involved. The reason for this is that the total energy is not
conserved in time-dependent systems. Thus, there is no variational principle on
the basis of the total energy functional. On the other hand, the time-dependent
Schrödinger equation can be derived through the calculation of the stationary
points of the action:

S =

∫
dt 〈Ψ(t)|Ĥ − i~∂t|Ψ(t)〉 .

Runge and Gross [50] showed now that S is a unique functional of the time-
dependent density n(r, t) and derived the time-dependent equations of an auxil-
iary, non-interacting system upon condition of V -representability of n:

i~∂tϕα(r, t) =

[
− ~

2

2me
∆+ VK.S.[n](r, t)

]
ϕα(r, t) .

The auxiliary density equals again the exact one. The exchange-correlation poten-
tial Vxc[n](r, t) is not the same than in the stationary case, since it depends also
on the densities at all past times (”memory“ effect). To circumvent this difficulty
one often uses an adiabatic approximation at this point:

V ad
xc [n](r, t) = Vxc[n](r)|n=n(t) .

This is acceptable if the considered processes are slow compared to the correlation
effects.
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2.3 Summary

2.3 Summary

Time-dependent density-functional theory augmented by a self-interaction correc-
tion provides a versatile tool to describe dynamics of molecules and clusters. The
work in hand uses TDDFT at the level of TDLDA with the correlation functional
”PW92“ improved by ADSIC, all in adiabatic approximation so that memory ef-
fects are neglected. The exchange-correlation functional thus remains fully local
and decouples the 3N -dimensional Schrödinger equation into N three-dimensional
time-dependent K.S. equations. All functionals are actually used as functionals
of spin-densities, so that spin-unpaired systems can be calculated likewise. The
set of g.s. single-particle wavefunctions ϕα(t = 0) is found by standard iterative
techniques [51] on a numerical grid in three-dimensional coordinate space. The
time-evolution ϕα(t) −→ ϕα(t+δt) is performed for sufficiently small time steps δt
by splitting the quantum mechanical, exponential propagator (T -V -splitting) [52].
The kinetic energy is evaluated in Fourier space via fast Fourier transformation.
The ionic background (nuclei plus core electrons) is either described through the
jellium model or through pseudo-potentials. The cluster ions (if explicit ionic
background) are frozen which is legitimate for the short time spans used here.
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3 Excitation and analysis tools

This chapter provides insight into the numerical tools used and developed in this
work. The discussion is focused on the photoemission observables obtained after
laser excitation, i.e., the numerical calculation of PES and PAD.

3.1 Gauges and dipole approximation

The classical Hamiltonian of an electron in an electromagnetic field is [53, 54]

H =
1

2me

(
p− e

c
A
)2

+ eΦ , (3.1)

with p being the kinetic momentum of the electron. The vector potential A(r, t)
and the scalar potential Φ(r, t) of the radiation field are defined by:

E = −1
c

∂A

∂t
−∇Φ , B = ∇×A . (3.2)

Electric and magnetic part of the radiation field solve Maxwell’s equations in
vacuum and the wave equation:

[
1

c2
∂2

∂t2
−∆

]
E(r, t) = 0 .

Assuming a linearly polarized field, E is then given by E(r, t) = epolE0 sin(ωlast−
kr), where epolk = 0 and ωlas = c·k. k is the wave vector and k = |k| the wave
number. In first quantization one replaces in Eq. (3.1)

p −→ p̂ =
~

i
∇ , H −→ Ĥ = i~∂t ,

and obtains the Schrödinger equation:

i~∂tΨ(r, t) =

[
1

2me

(
p̂+

e

c
A
)2

+ eΦ

]
Ψ(r, t) .

In contrast to the physical observables E and B, the potentials A and Φ are not
unique in the sense that E and B remain unchanged when applying a so-called
gauge transformation of the following form:

A −→ A′ = A+∇χ , Φ −→ Φ′ = Φ− 1

c
χ̇ ,
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3 Excitation and analysis tools

where χ = χ(r, t) is an arbitrary scalar potential. In order to retain the form of
the Schrödinger equation, the wavefunction transforms simultaneously like

Ψ −→ Ψ′ = exp

(
ie
~c

χ

)
Ψ .

The gauge freedom allows to choose certain constraints for A and Φ. For
example in vacuum, one often makes use of the Coulomb gauge ∇A(c) ≡ 0. The
scalar potential Φ(c) is then given by

Φ(c)(r, t) =

∫
d3r′

ρ(r′, t)

|r− r′|

and vanishes because of absence of charges. For charged particles in an electro-
magnetic field, however, Φ(c) becomes zero only far away from the particles. In
this case, it is better to use other gauges. One suitable gauge is the so-called veloc-
ity gauge: Φ(v) ≡ 0. Inserting Φ(v) into Eq. (3.2) determines the vector potential
A(v)(r, t). Furthermore, if the system is small compared to the wavelength of the
radiation light, i.e., kr ≪ 1, the electric field can be approximately considered
as space-independent: E(t) = epolE0 sin(ωlast). A(v) becomes then a function of
time only:

A(v)(t) = −cepolE0F (t) ,

with

F (t) =

t∫

−∞

dt′ f(t′) =

t∫

−∞

dt′ sin(ωlast
′) .

Another possible gauge is the length gauge (also known as temporal or Weyl
gauge). Here the vector potential is set to zero A(r) ≡ 0. Equation (3.2) gives
now the scalar potential and interaction term in the dipole approximation:

Φ(r) = −epolE0 sin(ωlast)r and Ĥ
(r)
int = −eepolE0 sin(ωlast)r .

A third, but rarely used gauge is the acceleration gauge (Kramers-Henneberger
frame), for details see Sect. 6.2.2.3. All gauges are fully equivalent. The gauge
transformation, e.g., from velocity to length gauge reads as follows:

A(v) = ∇χ =⇒ χ = −cE0epolrF (t)

check: Φ(r) =
1

c
χ̇ =⇒ Φ(r) = −E0epolr sin(ωlast)

=⇒ Ψ(r) = Ψ(v)eiE0epolrF (t)

(3.3)
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3.2 Pulse profile
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Figure 3.1: Intensity spectrum |Ĩ(ω)| of a laser pulse of the form (3.4) with ωlas = 20 eV
and Tpulse = 200 fs. The resolution σlas for some sample pulse lengths is shown in the
right table. There exists an exponential relation between Tpulse and σlas. The intensity
is given by I(t) = c

8π |E(t)|2.

In the dipole approximation the electric field is active in the whole numerical
box. This might lead to problems in the analysis of the kinetic energy of the
outgoing electrons since one actually assumes that the electrons are field-free
with the Hamiltonian Ĥ = p2/2me. In length gauge, a simple solution is to apply
a radial cut-off of the electric field in coordinate space. However, it is not clear
how to choose the cut-off radius. In contrast, in velocity gauge as it is shown
in Sect. 3.5, the wavefunction of the outgoing electron moving in the external
electromagnetic field basically corresponds to the field-free solution augmented
by a simple phase factor. This factor can be easily eliminated in the analysis.

3.2 Pulse profile

As already mentioned above, the electric field E(t) is described in dipole approx-
imation:

E(t) = epolE0 sin(ωlast) · g(t) , (3.4)

with

g(t) = sin2

(
t

Tpulse
π

)
Θ(t)Θ(Tpulse − t) . (3.5)

The time dependence is augmented by the pulse envelope function g(t). In this
work a sin2-shape is used consistently. The relation between total pulse length
Tpulse and full width at half maximum (FWHM) is then: FWHM = Tpulse/3 .
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3 Excitation and analysis tools

Figure 3.1 shows the intensity spectrum |Ĩ(ω)| for a sample laser pulse of Tpulse =
200 fs and ωlas = 20 eV. As it is the case for all finite pulses in time, the frequency
content is not a sharp δ(ω − ωlas)-function, but broadened. The width σlas as a
function of ωlas is given by,

σ2
las =

∞∫

0

dω (ω − ω)2 |Ĩ(ω)| ,

with ω being the expectation value for the laser frequency (ω = ωlas). The table
in Fig. 3.1 gives the resolution σlas for some pulse lengths at ωlas = 20 eV.

3.3 Determination of the emitted density

After excitation of the system, electrons eventually reach the edge of the numerical
box. In order to prevent reflection, absorbing boundaries are applied. After each
time step from t to t + δt, ϕα(r, t) −→ ϕ̃α, the electronic wavefunctions ϕ̃α are
multiplied by a mask function M(r), ϕα(r, t + δt) = M(r)ϕ̃α. This procedure
was found to be equivalent to the addition of an imaginary potential to the time-
evolution Hamiltonian. Moreover, it turned out to be an efficient and reliable
method for simulating absorbing boundaries [55] and has been extensively tested
[24, 56, 57]. A spherical symmetric function of kind

M(r) = Θ(rmin − r) + Θ(r − rmin)Θ(rmax − r) cosp
(
π

2
· r − rmin

rmax − rmin

)

is especially suitable for determination of angular distributions, see Fig. 3.2 for
illustration. rmax is the distance from the origin to the box edge, rmin the distance
from the origin to the point where absorption starts. Typical values are between
0.0635−0.25 for the power p, and nabsorb ≈ 8−12 for the width of the absorbing
layer in units of ∆x. The absorbed s.p. densities are accumulated after each time
step at each grid point:

nabso,α(r) =

Tend∫

0

dt |ϕ̃α(r, t)|2 − |ϕα(r, t)|2 .

Summation over all states gives finally the total emitted density nabso(r) =
∑

α nabso,α,
while integration over the numerical box yields the total number of emitted elec-
trons, Nesc =

∫
d3r nabso.

The above real-space mask function is a very efficient tool to simulate absorbing
boundaries at low computational cost. However, it has also some disadvantages,
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Figure 3.2: Illustration
of the spherical absorbing
boundaries. The parameter
nabsorb = (rmax − rmin)/∆x
gives the width of the absorb-
ing layer. The cross-section
dσ/dΩ can be calculated
through representation of
each absorption point with a
weight function W (in the fig-
ure box-like). The measuring
points rm of the PES are just
before the boundary starts.

e.g., its energy-dependent absorption: while emitted electrons with high kinetic
energy are well absorbed, parts of the low-energy electrons may be reflected. The
reason for this is that electrons with low kinetic energy have also a large wave-
length. As a consequence, they do not “see” the smooth transition of the mask
function from one to zero, but rather an instantaneous step which leads to the
reflection of the wave.

Another aspect is that the mask function ensures in any case absorption of
electronic density near the edge of the numerical box. However, this is not always
a wanted feature. In particular, weakly bound states close to the continuum
generally have wavefunctions with long-ranging Coulomb tails. The same applies
for electrons excited into a long-ranging bound state or strongly excited clusters
with high electronic density close to the numerical edge. Although this electronic
density would not be emitted and might, in reality, return to the center of the
numerical box, the mask function removes it.

Concluding, for the here considered systems and ionization regimes the use of
a real-space mask function is legitimate. In general, however, one should exer-
cise caution when considering less bound systems like negatively charged clusters
and/or excitations which are strong or close to the ionization threshold. In these
cases, one better uses either very large boxes or other absorbing boundaries which
distinguish between bound and continuum states and adapt to the kinetic energy
of the emitted electron.
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3 Excitation and analysis tools

3.4 Determination of photoangular distributions

The spherical absorbing mask gives an accumulated absorbed density nabso(r) on
the three-dimensional Cartesian grid of the numerical box:

nabc = nabso(rabc) ,

rabc = a ·∆x ex + b ·∆y ey + c ·∆z ez , a, b, c = [−L/(2∆x), . . . , L/(2∆x)] .

In order to transform the Cartesian into an angular distribution dσ/dΩ, Ω =
(ϑ, ϕ), one has to define a mapping procedure M : nabso(r) −→ dσ/dΩ. One
possibility is to use a weight function W acting on each grid point rabc:

Nesc = ∆V
∑

abc

nabc = ∆V
∑

abc

nabc

∫
d3rWabc(r) = ∆V

∑

abc

nabc

∫
d3rW(r; rabc) ,

∆V = ∆x∆ y∆ z. The function W(r; rabc) = W(r − rabc) has to be normalized
to unity, ∫

d3rW(r)
!
= 1 .

Using Nesc =
∫
dΩ dσ/dΩ, the angular distribution becomes:

dσ

dΩ
= ∆V

∑

abc

nabc

∫
dr r2 · W(rer − rabc) ,

where er = (sinϑ cosϕ, sinϑ sinϕ, cosϑ). It is convenient to use a regular grid in
r, ϑ and ϕ. Several sampling functions are possible, for example:

• δ-function: W(r) = δ(3)(r) ,

• box-like function:

W(r) =
1

∆V
Θ(|x| −∆x/2)Θ(|y| −∆y/2)Θ(|z| −∆z/2) ,

• tent-like function:

W(r) =
1

(∆V )2
max(∆x− |x|, 0)max(∆y − |y|, 0)max(∆z − |z|, 0) ,

• Gaussian function:

W(r) =

(
λ

π

)3/2

e−λ(x2+y2+z2) .
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3.5 Determination of photoelectron spectra

In this work the tent-function is used since it delivers very smooth pictures. In
fact, the box-like (see also Fig. 3.2) and tent-like function perform quite similarly
in this way. The δ-function is irregular and noisy, briefly not suitable, while the
Gaussian function adds isotropic background to the distribution.

Another possibility to determine the angular distribution dσ/dΩ is to expand
nabso(r) into spherical harmonics. The expansion coefficients are then given by:

clm =

∫
dΩYlm(ϑϕ)

dσ

dΩ
= ∆V

∑

abc

nabc

∫
d3r
Ylm(r)

rl
W(r− rabc) .

In the last expression Ylm(ϑϕ) has been replaced by its corresponding harmonic
polynomial Ylm = rlYlm which is a function of Cartesian coordinates. For W one
may choose the δ-function since its delivers already accurate results when inte-
grating over a sufficiently large absorbing layer. This yields the closed expression:

clm = ∆V
∑

abc

nabc
Ylm(rabc)

rabc
.

The summation can be restricted to the absorbing layer excluding the singularity
at the origin. Depending on the ionization regime, the spherical expansion may
be truncated after a few clm.

3.5 Determination of photoelectron spectra

Photoelectron spectra are calculated at a measuring point rm right before the
absorbing boundaries, see Fig. 3.2. The measuring point rm is far away from the
cluster so that the Kohn-Sham potential is negligible there. Since the laser field is
described in dipole approximation, photoelectrons are basically charged particles
in an electromagnetic field whose Hamiltonian reads in length gauge:

ĤΨ(rm, t) =

[
− ~

2

2me
∆− eE0 epol · rmf(t)

]
Ψ(rm, t) . (3.6)

Assuming that the laser pulse already stops long before photoelectrons reach the
measuring point and the boundaries, the second term in Eq. (3.6) vanishes and
photoelectrons are purely free particles. For the sake of simplicity, the following
considerations are made in one dimension.

A specific solution of the one-dimensional time-dependent Schrödinger equation
at zm is the plane wave, a general solution is then:

Ψ(zm, t) =

∫
dkΦm(k)e

i(kzm−ǫkint/~) , ǫkin =
(~k)2

2me
.

37



3 Excitation and analysis tools

|Φm(k)|2 is the probability to find a particle with wave number k at point zm, i.e.,
the cross-section dσm/dǫkin = |Φm(k)|2. The exact procedure to find |Φm(k)|2 is
a Fourier transformation in space:
∫

|z−zm|=δ

dzΨ(z, t)e−ikz = Φm(k)e
−iǫkint/~ =⇒

∣∣
∫

|z−zm|=δ

dzΨ(z, t)e−ikz
∣∣2 = |Φm(k)|2 .

The Fourier transformation in space has to be restricted to a volume around zm
where the particle propagates freely so that the spectral decomposition of the
wave remains more or less constant7. The volume should be large in order to
have enough resolution in k-space. In three dimensions, however, even for a small
volume around the measuring point it is numerically too expensive to evaluate
the PES in this way, since the wavefunction has to be stored for every time step
at every needed point. PES are thus calculated by a Fourier transformation in
the time domain:

Ψ̃(zm, ω) =

∫
dt eiωt

∫
dkΦm(k)e

i(kzm−ǫkint/~) =

∫
dk δ

(
ω − ~k2

2me

)

︸ ︷︷ ︸
=δ(k−

√
2meω/~)+δ(k+

√
2meω/~)

Φm(k)e
ikzm .

(3.7)

The second term in the last expression vanishes, if assuming only outgoing waves,
k > 0. Hence, the transformation yields:

|Ψ̃(zm, ω)|2 = |Φm(kω)e
ikωzm|2 = |Φm(kω)|2 ,

with ω = ~k2
ω/2me. The Hamiltonian is time-independent, thus one can identify

ǫkin = ~ω, k = kω and dσm/ǫkin = |Ψ̃(zm, ω)|2. The wavefunction needs so to be
stored at one measuring point only in order to get the PES in this direction.

The derivation in three dimension is straightforward. The Fourier transforma-
tion in time-domain yields here:

Ψ̃(rm, ω) =

∫
dΩdk k2

[
δ(k −

√
2meω/~) + δ(k +

√
2meω/~)

]
Φm(k)e

ikrm ,

with k = kek. Since k > 0 is positive by definition, the second term vanishes
without assumption:

Ψ̃(rm, ω) = k2

∫
dΩΦm(kek)e

ikekrm .

7 In order to be defined, the FT has to be evaluated, in fact, at a time t at which the wave-
function has not reached the boundaries of the volume element so that the integration can be
truncated to this volume. Otherwise, one has to ensure, e.g., by an exponential decay factor
that the wavefunction goes to zero at the boundaries.
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3.6 Integrated photoelectron spectra

Supposing at rm only waves with k ‖ rm, i.e., ek = em, yields then:

Ψ̃(rm, ω) = 4πk2Φm(kem)e
ikrm =⇒ |Ψ̃(rm, ω)|2 ∼ |Φm(kem)|2 =

dσm

dǫkin

,

again with ~ω = ǫkin.
The above results are valid under the condition that the laser pulse vanishes

before photoelectrons pass the measuring point rm. However, this is generally
not the case. Furthermore, if the laser field is active during measurement, it
can be included to the Hamiltonian and to the wavefunction Ψ either in length
gauge like in Eq. (3.6) or in velocity gauge. In principle, the result should not
depend on the choice of the gauge. Reminding however, that the wavefunction
can easily transformed from one gauge into the other by multiplication of the time-
dependent factor exp(iE0zF (t)), Eq. (3.3). The evaluation of the PES through
Fourier transformation in the time domain, Eq. (3.7), makes the choice of the
gauge now a relevant issue. In this aspect, it was found [58, 59] that the velocity
gauge is to be preferred as soon as the laser signal overlaps with the flow signal
of emitted electrons or when strong laser fields are used. Due to the time-locality
of the electric field operator in Eq. (3.6), the wavefunctions ϕα are in practice
still propagated in length gauge and for evaluation of the PES transformed into
velocity gauge.

3.6 Integrated photoelectron spectra

All wavefunctions ϕα are recorded at several measuring points rm, m = 1, . . . ,M ,
with angles Ωm on a sphere with radius r ≤ rmin (before the absorbing mask).
Each measuring point rm represents then one photoelectron spectrum dσm/dǫkin.
In order to obtain an integrated PES independent of any measuring point, all
spectra have to be added up while weighting each with a factor:

dσ

dǫkin
=

M∑

m=1

λm ·
dσm

dǫkin
, with σm = yield in direction rm .

The weight factors λm are determined by cutting the surface of the unit sphere
into segments Am each one belonging to a given em = rm/rm. The segment is
defined as the collection of points r on the unit sphere which has – among all
measuring (unit) vectors e1, . . . , eM – minimum distance to em. A measure for
the distance is the angle between r and the measuring point,

Am =
{
r|r · em = max

i
(r · ei)

}
.
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z

x y

Figure 3.3: Measuring points • for the
PES. The PES of all points are added up
while using weight factors λm, dσ/dǫkin =∑

m λmdσm/dǫkin which are determined
over a fine grid in ϑϕ on the unit sphere.
The surface area A is shown for the mea-
suring point in (1, 1, 1)-direction.

λm is then simply given by the surface area covered by Am:

λm =

∫

Am

dΩ .

Practically, a very fine mesh is initialized on the sphere, see the red squares in
Fig. 3.3, each square representing a point r with volume ∆Ωr. For accurate enough
meshes the factors λm trivially cover the full unit sphere:

∑
m λm = 4π.

3.7 Combined determination of PES and PAD

For a sufficiently large number of measuring points M , it is not only possible to
obtain an accurate approximation for the integrated PES, one may even determine
an angular-resolved PES. This gives access to a fully combined determination of
PAD and PES from the same observables. Like in Sect. 3.4, again two possibilities
have been developed:

The first is to sample the unit sphere like in Fig. 3.3 on a regular grid in ϑ
and ϕ and to search for each angle Ω for the nearest measuring point rm. The
PES at angle Ωr is then given by the cross-section dσm/dǫkin. This procedure is
somewhat similar to the box-like sampling in Sect. 3.4, just on the unit sphere.
It is only suitable for very high resolutions, i.e., large numbers M of measuring
points (examples: Figs. 5.1, 7.14, 7.17).

For smaller M , the second possibility is to expand the PES into spherical har-
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3.7 Combined determination of PES and PAD

monics:

clm(ǫkin) =

M∑

µ=1

λµY
∗
lm(Ωµ) ·

dσµ

dǫkin
, with

d2σ

dΩdǫkin
=
∑

lm

clmYlm(Ω) .

Depending on the ionization regime, the expansion can again be truncated after
a few clm. This adds some smoothing to the distribution. For example, regarding
an ensemble of free, randomly orientated clusters, the sum is independent of m
and only even l occur, see next chapter:

d2σ

dΩdǫkin
=

σ

4π
(1 + B2(ǫkin)P2 + B4(ǫkin)P4 + . . . ) , (7.2a)

with

Bl(ǫkin) =
√
2l + 1

Cl(ǫkin)

C0(ǫkin)
, (7.2c)

and Pl being the lth Legendre polynomial (example: Fig. 7.9).
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4 Averaging methods

The last chapter presented methods for calculating the TDLDA photoelectron
angular distribution dσ/dΩ after laser excitation of a cluster represented on a
three-dimensional Cartesian grid. The emission angles Ω = (ϑ, ϕ) are measured
with respect to the polarization axis of the (linearly polarized) laser pulse. In
theory, due to computational limits, one is forced to use small boxes and to
simulate one cluster only. At the starting point of the dynamical simulation, the
single cluster is considered as fixed in space with a given orientation related to
the polarization axis of the electric field. The so determined cross-section dσ/dΩ
at the end of the simulation is, in general, a complicated function of the emission
angles, more specifically:

dσ

dΩ
=
∑

lm

clmYlm(ϑϕ) .

In the experiment the situation is different. Here, most measurements deal with
an ensemble of randomly orientated clusters. As a consequence, the orientation-
averaged angular distribution (OA-PAD) probably differs from the above expan-
sion. Experiment and theory cannot be compared at this level. The aim of this
chapter therefore is to introduce methods for determining the OA-PAD in theory.

4.1 The anisotropy parameter

Starting point for developing an averaging scheme are spherical symmetric sys-
tems. In this case, the OA-PAD simply equals the PAD. Moreover, for an ex-
citation with a linearly polarized pulse, say epol = ez for the sake of simplicity,
the angular distribution has to be independent of the polar angle ϕ (m = 0).
Spherical symmetric potentials are, of course, used in atomic physics [60], but
sometimes also in cluster physics, e.g., for closed-shell metal clusters where one
assumes a jellium potential (see Sect. 2.1) for the ionic background.

In perturbation theory, the (orientation-averaged) angular distribution from a
state |i〉 = |nlm〉 can now be expanded as [61–65]:

dσ(i)

dΩ
= C

(i)
0 Y00 + C

(i)
2 Y20 + C

(i)
4 Y40 + . . .

=
σ(i)

4π

(
1 + β

(i)
2 P2 + β

(i)
4 P4 + . . .

)
,

(4.1)
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where Pl are the Legendre polynomials, σ(i) =
√
4π C

(i)
0 is the ionization from state

|i〉, and the coefficients β
(i)
l =

√
2l + 1C

(i)
l /C

(i)
0 are the so-called anisotropy (or

asymmetry) parameters. The kinetic energy of the outgoing electrons becomes
asymptotically ǫkin = (~k)2/2me with the wave number k = |k| and the wave
vector k pointing into the direction of the scattering angles (ϑ, ϕ). The kinetic
energy is given by the relation for photoemission,

ǫkin = ǫi + ν~ωlas , (4.2)

where ǫi is the binding energy of the initial state. The maximum possible ν
corresponds to the order of the photon process. Considering only one-photon
processes, the OA-PAD reduces to the very simple form:

dσ(i)

dΩ
=

σ(i)

4π

(
1 + β

(i)
2 P2(cosϑ)

)
, (4.3)

with P2(cosϑ) = (3 cos2 ϑ − 1)/2. The two remaining quantities σ(i) and β
(i)
2

are given by the Bethe-Cooper-Zare formula [63, 64] which basically depends on
the angular momentum l of the initial states and the transition integral of the
radial wavefunctions of initial and final state. Since the final state wavefunction
is a function of the kinetic energy, in consequence, the PAD depends also on the
chosen laser frequency. The details are discussed later in Chapter 6.

For one-photon processes, the value of the anisotropy ranges in the interval
−1 ≤ β

(i)
2 ≤ 2. The value β(i)

2 = 2 corresponds to a pure cos2 ϑ-shaped distribution
aligned with the laser polarization. The value β

(i)
2 = −1 corresponds to a sin2 ϑ-

shape. Accordingly, for positive values the emission maximum is parallel to the
laser polarization at ϑ = 0, for negative values at ϑ = π/2. For β

(i)
2 = 0 the

distribution is isotropic and independent of the azimuthal angle ϑ. At first glance,
it appears odd that a maximum emission perpendicular to the electric field (i.e.,
β
(i)
2 ≤ 0) is possible. In reality, these cases arise indeed even though only under

certain conditions when destructive interference of outgoing partial waves occurs.
This phenomenon is presented also in Chapter 6 extensively. In contrast, a clean
s state (l = 0) has always β

(s)
2 = 2. This can be understood in terms of first-

order perturbation theory [53] where the cross-section is derived in form of the
transition matrix element:

dσ(i)

dΩ
= N|〈f |epol · r̂|i〉|2 , N =

4π2e2ωlas

c
. (4.4)

Since epol · r ∝ Y10 for linearly polarized light, the s state with angular wavefunc-
tion ∝ Y00 transforms through photon absorption into a final state with l = 1

44



4.2 The analytical averaging scheme

while obeying the dipole selection rules. The absolute square in Eq. (4.4) then
yields a distribution ∝ (Y10)

2 ∼ cos2 ϑ. Note, as soon as multiphoton processes
or non-perturbative effects come into play, the above mentioned theoretical range
−1 ≤ β

(i)
2 ≤ 2 does not apply any more [66].

One aim of this work is to compare different levels of background potentials,
from the spherical jellium via a more refined deformed jellium up to local and
non-local pseudo-potentials taking explicitly the ionic structure into account. For
non-spherical systems, the Bethe-Cooper-Zare formula cannot be used any more.
Averaging schemes have to be applied in order to be able to compare theory with
experiments. Since an experimental sample with a number of randomly orientated
clusters is inherently isotropic, it is expected that the OA-PAD is ϕ-independent
and symmetric around ϑ as long as the excitation is done with a linearly polarized
laser. That means, the OA-PAD is supposed to reduce again, independently of
the ionization mechanism, to the general form (4.1). It will be shown that in
first-order perturbation theory, the OA-PAD of any deformed molecules/clusters
is again given by the simple form (4.3) [67–69]. A procedure is developed which
determines anisotropy and yield by six independent calculations8. Before, some
details on the notation and rotation operations are introduced. For a detailed
discussion of Euler rotations it shall be referred to [73, 74].

4.2 The analytical averaging scheme

4.2.1 The Euler angles

A rotation of the reference frame K into a new, arbitrary reference frame K ′′′ can
be obtained by sequential application of three rotations, see Fig. 4.1:

1. A rotation α(0 ≤ α < 2π) about the z-axis of K.

2. A rotation β(0 ≤ β < π) about the y-axis of K ′.

3. A rotation γ(0 ≤ γ < 2π) about the z-axis of frame K ′′′.

Each of the rotations is expressed in terms of the rotation operator D̂ξ(θ),

D̂ξ(θ) = exp
(
iθL̂ξ

)
,

where L̂ξ denotes the projection of the angular momentum L̂ onto the ξ-axis. The
above described sequential rotation reads then as follows:

D̂z′′(γ)D̂y′(β)D̂z(α) ≡ D̂z(α)D̂y(β)D̂z(γ) := D̂(αβγ) ,

8 Parts of the following section have been published in [70–72].
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Figure 4.1: Illustration of an Eu-
ler rotation D̂(αβγ). The initial
coordinate system K is marked in
green, the rotated system K ′′′ in
red.

which is equivalent to:

1. A rotation γ(0 ≤ α < 2π) about the z-axis of K.

2. A rotation β(0 ≤ β < π) about the y-axis of K.

3. A rotation α(0 ≤ γ < 2π) about the z-axis of frame K.

Hence, the auxiliary frames K ′ and K ′′ are actually not needed. In the following,
the laboratory frame of the laser is denoted as K, whereas K ′ is the fixed,
intrinsic coordinate system of the cluster/molecule. Both systems can be
transformed into each other by the unitary operator D̂(αβγ) whose matrix in
Cartesian coordinates has the form:

D(αβγ) =


− sinα sin γ + cosα cos β cos γ − sinα cos γ − cosα cos β sin γ cosα sin β
cosα sin γ + sinα cos β cos γ cosα cos γ − sinα cos β sin γ sinα sin β

− sin β cos γ sin β sin γ cosβ




An alternative description of the three Euler rotations is one single rotation ξ = |ξ|
of the coordinate system K about an arbitrary axis ξ with direction eξ, for details
see Appendix A.1.2.

4.2.2 Notation

Consider now a wavefunction ϕi(x, y, z) at point r = xex + yey + zez in the
coordinate system K. In the coordinate system K ′ which is rotated with respect
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4.2 The analytical averaging scheme

to K, the wavefunction at the same point r = x′e′x + y′e′y + z′e′z has also the
same value, but shows in general a new functional dependence. Therefore, the
wavefunction in K ′ is indicated as primed:

ϕi(x, y, z) = ϕ′
i(x

′, y′, z′) .

In Dirac’s notation, the state i is written as |i〉 in K and as |i′〉 in K ′. Analogously,
one can proceed with the scattering state f in K |f(ϑϕ)〉 and in K ′ |f ′(ϑ′ϕ′)〉:

Ψϑϕ(x, y, z) = Ψ′
ϑ′ϕ′(x′, y′, z′) .

The indices of the function specify the coordinate system to which function and
scattering angles are referred. It is obvious that the angles ϑϕ and ϑ′ϕ′ differ, if
K 6= K ′. A rotation of the state i creates now a new state αβγ, i:

in K: D̂−1(αβγ)ϕi(x, y, z) = ϕαβγ,i(x, y, z) or D̂−1(αβγ)|i〉 = |αβγ, i〉 ,
in K ′: D̂−1(αβγ)ϕ′

i(x
′, y′, z′) = ϕ′

αβγ,i(x
′, y′, z′) or D̂−1(αβγ)|i′〉 = |αβγ, i′〉 ,

(4.5)
where αβγ denote the Euler angles. If this rotation is exactly inverse compared

x′

y′

i

αβγ, i

x
y

D̂(αβγ)

D̂−1(αβγ)

Figure 4.2:
Illustration of
the rotation from K
into K ′ and from
i to αβγ, i. Green
arrow: forward
rotation; red arrow:
backward rotation.

to the one from K to K ′ (as it is assumed in the upper equations), then the new
state αβγ, i has the same wavefunction in K than the unrotated state i in K ′, see
Fig. 4.2:

ϕαβγ,i(x, y, z) = ϕ′
i(x, y, z) or D̂−1(αβγ)ϕi(x, y, z) = ϕ′

i(x, y, z) .

Note that K ′ is the intrinsic reference frame. The scattering state f behaves
analogously:

D̂−1(αβγ)Ψϑϕ(x, y, z) = Ψ′
ϑϕ(x, y, z) or D̂−1(αβγ)|f(ϑϕ)〉 = |f ′(ϑϕ)〉 . (4.6)
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4.2.3 Derivation in first-order perturbation theory

In the following, the symbol A is used as an abbreviation for the cross-section
with indices indicating the particular context. The angular distribution of state
αβγ, i reads then in system K A

(i)(ϑϕ, αβγ) and in system K ′
A

′(i)(ϑϕ, αβγ).
Here the same angles ϑϕ are used, well knowing that the indices of A specify
again the coordinate system with respect to which these angles are measured. In
first-order perturbation theory, A (i) and A ′(i) are given by:

A
(i)(ϑϕ, αβγ) = N |〈f(ϑϕ)|epol · r̂|αβγ, i〉|2 in system K,

A
′(i)(ϑϕ, αβγ) = N |〈f ′(ϑϕ)|epol · r̂|αβγ, i′〉|2 in system K ′. (4.7)

The OA-PAD of state i in the laboratory frame becomes then:

A
(i)
(ϑϕ) =

∫
d3(αβγ)A

(i)(ϑϕ, αβγ) , (4.8)

whereas ∫
d3(αβγ) ≡

∫
dα d(cos β) dγ

8π2
.

The derivation proceeds as follows: first, the rotations (4.5) and (4.6) of initial
and final state is performed in system K ′. Afterwards, the result is transformed
into K. Thereby, it must be kept in mind that the operation from K ′ into K
represents a backward rotation D̂−1(αβγ). So, inserting Eqs. (4.5) and (4.6) into
Eq. (4.7) yields:

A
′(i)(ϑϕ, αβγ) = N |〈f ′(ϑϕ)|epol · r̂|αβγ, i′〉|2 = N |〈f(ϑϕ)|epol · r̂′|i′〉|2 ,

where

r̂′ = D̂(αβγ)r̂D̂−1(αβγ) .

In the spherical basis, the position operator r̂ transforms like (Eq. (A.8)):

r̂′ν =
∑

µ

r̂µD(1)
µν (αβγ) , (4.9)

with µ, µ′ = −1, 0, 1. |f(ϑϕ)〉 represents here the wavefunction Ψϑϕ(x, y, z) from
the system K. The D(1)

µν are the Wigner D-functions, for basic properties see
Appendix A. Using Eq. (4.9) further yields:

A
′(i)(ϑϕ, αβγ) =

∑

µµ′

D(1)
µ0 (αβγ)D(1)∗

µ′0 (αβγ)N〈f(ϑϕ)|r̂µ|i′〉〈f(ϑϕ)|r̂µ′|i′〉∗

≡
∑

µµ′

D(1)
µ0 (αβγ)D(1)∗

µ′0 (αβγ)A
′(i)
µµ′ (ϑϕ) .
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4.2 The analytical averaging scheme

The function A
′(i)
µµ′ (ϑϕ) is now expanded into spherical harmonics,

A
′(i)
µµ′ (ϑϕ) =

∑

lm′

a
(i)
µµ′,lm′Ylm′(ϑϕ) , (4.10)

and fully transformed from K ′ into K (backward rotation):

A
(i)
µµ′(ϑϕ) = D̂−1(αβγ)A

′(i)
µµ′ (ϑϕ)

(A.1)
=
∑

lm′

a
(i)
µµ′,lm′

∑

m

Ylm(ϑϕ)D(l)∗
m′m(αβγ) .

This results in the distribution A (i)(ϑϕ, αβγ) as a function of the orientation
αβγ:

A
(i)(ϑϕ, αβγ) = D̂−1(αβγ)A ′(i)(ϑϕ, αβγ)

=
∑

µµ′

∑

lmm′

a
(i)
µµ′,lm′Ylm(ϑϕ)D(1)

µ0 (αβγ)D(1)∗
µ′0 (αβγ)D

(l)∗
m′m(αβγ) .

(4.11)

The last expression is finally inserted into the integral (4.8):

A
(i)
(ϑϕ) =

∫
d3(αβγ)A

(i)(ϑϕ, αβγ)

=
∑

µµ′,lmm′

a
(i)
µµ′,lm′Ylm(ϑϕ)

∫
d3(αβγ)D(1)

µ0 D(1)∗
µ′0 D

(l)∗
m′m

(A.4)
=
∑

µµ′,lmm′

a
(i)
µµ′,lm′Ylm(ϑϕ)(−1)µ

′+m′−m

(
1 1 l
µ −µ′ −m′

)(
1 1 l
0 0 −m

)
.

The Wigner 3j-symbols are non-vanishing only for l = 0 or 2, m = 0, and m′ =
µ − µ′, see Appendix A.1.1 for a selection of important rules on the 3j-symbols.
This shrinks the summation to a simple final form for the averaged cross-section:

A
(i)
(ϑ) = C

(i)
0 Y00(ϑ) + C

(i)
2 Y20(ϑ) ,

C
(i)
0 =

1

3

∑

µ

a
(i)
µµ,00 ,

C
(i)
2 =

∑

µµ′

a
(i)
µµ′,2µ−µ′(−1)µ

(
1 1 2
−µ µ′ µ− µ′

)(
1 1 2
0 0 0

)
,

a
(i)
µµ′,lm′ =

∫
dΩY ∗

lm′(ϑϕ)A
′(i)
µµ′ (ϑϕ) ,

A
′(i)
µµ′ (ϑϕ) = N 〈f(ϑϕ)|r̂µ|i′〉〈f(ϑϕ)|r̂µ′ |i′〉∗ , µ, µ′ = −1, 0, 1 .

(4.12)
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4 Averaging methods

The result appears logical: A
(i)

depends on coefficients of the (spherical) expan-
sion of A

′(i)
µµ′ which itself depends on the wavefunctions Ψf in K and ϕ′

i in K ′.
Ψf in K and ϕ′

i in K ′ are exactly those wavefunctions which are invariant under
rotation of the cluster. Moreover, the OA-PAD depends only on the azimuthal
angle ϑ. Reminding that P2(cosϑ) =

√
4π/5Y20, the OA-PAD reduces to the

form (4.3) introduced at the beginning of this chapter.

The final coefficients C(i)
0 and C

(i)
2 in Eq. (4.12) require information only about a

limited number of coefficients a
(i)
µµ′,lm′ . According to the definition of the function

A
′(i)
µµ′ , one can derive the relation:

a
(i)∗
µµ′,2µ−µ′ = (−1)µ−µ′

a
(i)
µ′µ,2µ′−µ .

Thus, the exchange µ ↔ µ′ reduces the number of required coefficients, namely
three for C(i)

0 and six for C(i)
2 :

3C
(i)
0 =

∑

µ

a
(i)
µµ,00 ,

√
120

4
C

(i)
2 =

∑

µ

a
(i)
µµ,20(−1)µ

(
1 1 2
−µ µ 0

)

+
∑

µ>µ′

2ℜ{a(i)µµ′,2µ−µ′}(−1)µ
(

1 1 2
−µ µ′ µ− µ′

)
.

(4.13)

4.2.4 Transformation into Cartesian coordinates

For the derivation of Eq. (4.12) the spherical basis has been used due to its
beneficial behaviour under rotation. Unfortunately, it is not suitable for a rep-
resentation of the wavefunctions on a three-dimensional Cartesian grid with a
real dipole field. Moreover, the auxiliary functions A

′(i)
µµ′ are, in general, not real

functions and in consequence no physical quantities. In order to transform into
the Cartesian representation, Eq. (4.13) is first written in full form with derived
3j-symbols, Eqs. (A.5):

3C
(i)
0 = a

(i)
−1−1,00 + a

(i)
00,00 + a

(i)
11,00 ,

30C
(i)
2 = −2a(i)−1−1,20 + 4a

(i)
00,20 − 2a

(i)
11,20

−4
√
3ℜ{a(i)0−1,21}+ 4

√
3ℜ{a(i)10,21} − 4

√
6ℜ{a(i)1−1,22} .
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4.2 The analytical averaging scheme

Using the definition of the spherical basis in Cartesian coordinates, Eq. (A.7) in
the Appendix, the symbols A ′ are then given by:

A
′(i)
∓1±1 =

(
−A

′(i)
xx + A

′(i)
yy ± iA ′(i)

xy ± iA ′(i)
yx

)
/2

A
′(i)
∓1∓1 =

(
A

′(i)
xx + A

′(i)
yy ± iA ′(i)

xy ∓ iA ′(i)
yx

)
/2

A
′(i)
∓10 =

(
±A

′(i)
xz − iA ′(i)

yz

)
/
√
2

A
′(i)
0∓1 =

(
±A

′(i)
zx + iA ′(i)

zy

)
/
√
2

A
′(i)
00 = A

′(i)
zz

with A
′(i)
ab defined similar to Eq. (4.12), but with the positions a, b ∈ {x, y, z} as

transition operators. The expansion coefficients a(i)µµ′,lµ−µ′ behave equally and can

be replaced by Cartesian coefficients. Moreover, the sums A
′(i)
ab + A

′(i)
ba ≡ 2R

′(i)
ab

are now symmetric and real quantities. Finally, it can be written:

dσ(i)

dΩ
= C

(i)
0 Y00 + C

(i)
2 Y20 ,

3C
(i)
0 = r

(i)
xx,00 + r

(i)
yy,00 + r

(i)
zz,00 ,

30C
(i)
2 = −2r(i)xx,00 − 2r

(i)
yy,00 + 4r

(i)
zz,00 ,

−4
√
6ℜ
{
r
(i)
xz,21 + ir(i)yz,21

}
− 2
√
6ℜ
{
−r(i)xx,22 + r

(i)
yy,22 − 2ir(i)xy,22

}
,

r
(i)
ab,lm =

∫
dΩY ∗

lm(ϑϕ)R
′(i)
ab (ϑϕ) ,

2R
′(i)
ab (ϑϕ) = N〈f(ϑϕ)|â|i′〉〈f(ϑϕ)|b̂|i′〉∗ + c.c. , a, b ∈ {x, y, z} .

(4.14)

4.2.5 Procedure

The functions R
′(i)
ab represent, in fact, cross-sections which are obtained by transi-

tions induced by dipole operators of different polarizations in the cluster frame K ′.
For example, R

′(i)
xz is obtained as an additional term in the cross-section induced

by a field polarized along the (1, 0, 1)-direction of K ′:

dσ′(i)

dΩ

∣∣∣∣
(101)

= R
′(i)
xx + R

′(i)
zz + 2R ′(i)

xz .

So, in order to determine R
(i)
xz , one needs to calculate the cross-sections R

′(i)
xx

and R
′(i)
zz as well. The coefficient C

(i)
0 in Eq. (4.14) requires information about
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4 Averaging methods

the functions R
′(i)
xx , R

′(i)
yy , and R

′(i)
zz , for C

(i)
2 the full set of the functions R

′(i)
ab

is needed. Hence, three linearly independent calculations must be performed in
order to determine the orientation-averaged yield σ(i) =

√
4π C

(i)
0 , six9 for the

anisotropy β
(i)
2 =

√
5C

(i)
2 /C

(i)
0 .

There remains the question how to compute the distributions R ′
ab? Two ana-

lytical procedures have been considered in this work and are directly compared
later in Chapter 6:

• Full-perturbative procedure:
The occupied initial states are computed in a self-consistent manner within
static LDA. For the resulting K.S. potential the determination of the final
state wavefunction becomes simple only if a spherical background potential,
e.g., the jellium model, is used. Both wavefunctions are thus calculated in
the same time-independent potential and an averaging scheme is actually
not necessary.

However, if the stationary initial state is calculated with explicit ionic struc-
ture, approximate solutions for the final state are used. The wavefunctions
are finally inserted into Eq. (4.14) with the dipole operators x̂, ŷ, and ẑ.
This procedure is fully static using the result from first-order perturbation
theory.

• Semi-perturbative procedure:
The distributions R ′

ab can also be calculated within full TDLDA through
variation of the polarization of the exciting laser. This has the advantage
that initial and, in particular, final state, do not have to be determined
explicitly. Thus, the procedure can also be used for non-trivial background
potentials which arise when the ionic structure is taken into account. Al-
though the scheme is based on the perturbative result, rearrangement of the
residual cluster K.S. potential is included in TDLDA. However, the laser pa-
rameters have to be well chosen in order to exclude collective or multiphoton
processes disturbing the PAD.

4.3 Direct averaging schemes

The above presented averaging scheme is derived analytically on the basis of first-
order perturbation theory. Hence, it may fail as soon as the laser excitation takes
place in non-perturbative (e.g., when collective effects play a role) or multiphoton

9 In practice, the following six polarization vectors are used: e
(1)
pol = (1, 0, 0), e

(2)
pol = (0, 1, 0),

e
(3)
pol = (0, 0, 1), e

(4)
pol = (1, 1, 0)/

√
2, e

(5)
pol = (1, 0, 1)/

√
2, and e

(6)
pol = (0, 1, 1)/

√
2.
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34

45◦

90◦

135◦

γ

β

x

y

z
Figure 4.3: Example of a set of ori-
entation points used in the direct av-
eraging scheme. The cluster is first ro-
tated by γ about the z-axis and then
by β about the y-axis of the laboratory
frame.

regimes. A simpler, more general, but probably also more expensive method is
provided by a direct orientation averaging according to Eq. (4.8). Orientation
averaging is performed here in the laboratory frame where the laser polarization
axis is fixed, epol = ez. Instead, the whole cluster is rotated and PAD of different
orientations, i.e., different combinations of α(0 ≤ α < 2π), β(0 ≤ β < π) and
γ(0 ≤ γ < 2π) are considered.

Since spherical absorbing boundaries are used, the rotation about epol by the
Euler angle α can be done a posteriori and does not require any additional TDLDA
runs. This leaves averaging over β and γ. The β-γ integration is approximated
by a finite summation. The chosen values for β and γ can be drawn on the unit
sphere. As an example, Fig. 4.3 shows a sampling over 34 orientation points. The
weight factors for the summation of the points are again determined according
to the method described in Sect. 3.6: the surface of the sphere is divided into
segments around the sampling directions, the area of each segment corresponds
to the weight factor (divided by 4π):

dσ

dΩ
=

N∑

n=1

Λn ·
dσ

dΩ

∣∣∣∣
n

, (4.15)

with N being the number of sampling points and dσ
dΩ
|n the PAD of the nth orien-

tation representing a combination of β and γ. A proper sampling should cover
the sphere homogeneously, i.e., the weight factors should not differ too much.

The sample rotation given in Fig. 4.3 rotates the red point into the z-axis
of the laser frame K. Simultaneously, the opposite green point is rotated into
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4 Averaging methods

the −z-axis. As a consequence, the PAD obtained from the green point is similar
the one from the red point just with the replacement ϑ → π − ϑ and ϕ →
ϕ− π. Hence, for a central symmetric sampling only a single hemisphere has to
be calculated.

The direct averaging scheme has the advantage that all possible non-pertur-
bative and multiphoton effects are taken into account. However, it is a priori
not known how many orientations are needed for convergence of the averaged
PAD? The number of necessary calculations might be large and might depend
on the investigated system and on the prominent excitation mechanism in the
examined regime. This question is discussed in the next chapter in detail for small
sodium clusters (Sect. 5.3.2). On the other hand, clusters with highly symmetric
ionic configurations allow to reduce the number of actual calculations by using
symmetry operations, e.g., in C60 a sampling of 182 well chosen orientation points
needs only five different calculations due to the high symmetry of this molecule.
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5 First results

Ionization mechanisms are often separated into linear and non-linear processes.
In general, a process induced by laser excitation is called linear if the impact of
the effect scales linearly with the laser intensity, in all other cases it is called non-
linear. Linear processes in atoms, molecules and clusters are one-photon ionization
and plasmon dominated dynamics. One-photon ionization can be analytically
described in first-order perturbation theory. It yields that the total number of
emitted electrons, i.e., the cross-section is given by σ ∼ I as it should be for a
linear process.

The two main non-linear photoionization processes in clusters are multiphoton
ionization (MPI) and tunneling ionization. The tunneling ionization occurs in
strong fields, a typical example is high harmonic generation (HHG). In contrast
to HHG, MPI can still be described within lower-order perturbation theory. The
relation between the cross-section and the laser intensity depends here also from
the order ν of the photon process, σ ∼ Iν . Thus, one often calls MPI a semi-linear
process. In order to distinguish the perturbative and the non-perturbative pro-
cesses and in order to assess the strength of the laser field, Keldysh [75] introduced
the parameter

γ =

√
2 · IP · ω2

las

I
.

For strong fields, γ ≪ 1, the photon picture breaks down and the effect does not
scale neither linearly nor semi-linearly with the laser intensity. Field dominated
processes (optical field ionization) occur, e.g., in HHG with tunneling ionization.
For γ ≫ 1, the perturbation is weak and perturbation theory can be used as it
is the case in one- and multiphoton ionization, but also in low-order harmonic
generation.

5.1 Example: Na8 spherical jellium

As a typical example for photoionization in the (semi-)linear regime, the simple
closed-shell cluster Na8 is considered, see [76]. The ionic background is approx-
imated by a soft spherical jellium model so that no averaging of the PAD is
necessary. In fact, the jellium parameterization is chosen to reproduce the shape
of the electronic density of a calculation with explicit ionic background (Wigner-
Seitz radius rs = 3.65 a0, surface thickness σjel = 1 a0). The s.e. energies are then
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ǫ1s = −0.405Ry for the 1s state and ǫ1p = −0.300Ry for the 1p shell (three-fold
degenerate). Figure 5.1 (left panel) shows the (integrated) PES after excitation
with a laser of Tpulse = 60 fs, I = 6.9 · 1013 W/cm2, and ωlas = 0.9Ry obtained
within TDLDA. The laser frequency is far above the plasmon resonance (here at
ωpl ≈ 0.17Ry) or any 1ph excitation, and is clearly in the one-photon regime
for all s.e. states. The total ionization is Nesc = 0.003. The (integrated) PES is
derived according to the method described in Sects. 3.5 and 3.6. ATI peaks in
accordance with the relation ǫkin = ǫi + ν~ωlas (4.2) from perturbation theory are
nicely visible for ν = 1, 2. However, the two-photon peaks, ν = 2, are strongly
suppressed by more than two orders of magnitude and one-photon processes are
dominating (note the logarithmic y-scale). The intensity does not seem to be
high enough for a crucial emission gain from two-photon processes. The two color
maps on the right side show the PAD as a function of the kinetic energy ǫkin,
i.e., the double-differential cross-section zoomed onto the one-photon peaks in
the PES. The presented cross-sections are fully combined PES and PAD, both
obtained from the Fourier-transformation of the s.e. wavefunctions as described
in Sect. 3.7 (first method). Due to the sphericity of the system, the cross-section
is just a function of the azimuthal angle ϑ measured with respect to the laser
polarization axis. As one can see, 1s and 1p electrons are mainly emitted in direc-
tion to the polarization axis, although there is a slight trend for the 1p electrons
towards isotropic emission. This can be also seen in the plots below each color
map. They represent cuts through the double-differential cross-section at their re-
spective positions where maximum emission occurs (here: ǫkin = 0.5 and 0.6Ry).
Both distributions can be nicely fitted to Eq. (4.3). The fit yields β(1s)

2 = 2 as ex-
pected for a “clean” 1s state and β

(1p)
2 = 1.6 for the 1p state. This means that the

distribution of the 1s state is perfectly forward oriented having zero emission in di-
rection ϑ = π/2, while the 1p state exhibits a small amount of isotropic/sidewards
emission.

Figure 5.1 demonstrates a typical example for an ionization in the linear regime.
Equations (4.2) (for ν = 1) and (4.3) hold and multiphoton processes are negligi-
ble. Accordingly, as long as the laser parameters are properly chosen, perturbation
theory can explain the main features of PAD and PES. The following section is
focused on ionization processes in a variety of small sodium clusters exactly under
such conditions.
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5 First results

5.2 One-photon processes in small sodium clusters10

In order to reduce calculation costs only positive and neutral clusters have been
considered. The laser parameters were chosen so that the excitation stays safely
in the perturbative one-photon regime, i.e., the laser frequency (ωlas = 0.55Ry for
neutral and ωlas = 0.75Ry for positive clusters, I = 1011 W/cm2 and FWHM =
60 fs)11 is above the IP and far away from any collective resonance. The wave-
functions are propagated until t = 120 fs in order to collect all emitted electrons.
The resulting net ionization was very low, Nesc = 0.0001−0.009. The analytical,
(semi-)perturbative averaging scheme was used as it has been derived for such
conditions on the basis of first-order perturbation theory.
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Figure 5.2: Ground-state spectra of occupied s.e. states for the considered clusters. Left

column in each panel: Spectrum for the electron cloud with detailed ionic background.
Right column: Spectrum from the equivalent jellium model.

The selection of clusters ranges from closed shell clusters like Na+3 and Na8 with
nearly spherical (electronic) shape over weakly axially deformed (Na18, Na+19) up
to triaxial (Na12, Na+13) and strongly prolate clusters (Na10, Na+11). Figure 5.2
shows the ground-state spectra of all considered systems. The cluster cations
have, of course, an IP much larger than that of the neutral species. In order
to see the impact of the ionic structure, the positive background is described

10 Essential parts of this section have been published in [71, 72].
11 Exception for Na+3 : ωlas = 0.85Ry, I = 3.1× 1011 W/cm2, Tpulse = 60 fs.
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5.2 One-photon processes in small sodium clusters

by both, jellium and explicit ionic structure. As was done for Na8 before, the
jellium parameters (Wigner-Seitz radius rs, surface thickness σjel and deformation
parameters α20 and α22) are chosen to reproduce the shape of the electronic density
of the calculation with ionic background.

Figure 5.3 shows the total anisotropy β2 (lower panel) and the quadrupole
deformation α of the ionic background:

α =

√√√√
2∑

m=−2

α2m , α2m = 4πr2Y2m/5Nr2rms , (5.1)

with rrms being the rms radius of the background and N the number of ions (here
N = 8). The angular distributions and anisotropy parameters are obtained by
full TDLDA calculations. The ionic background is non-spherical in any case when
using explicit ionic structure, and in most cases for the jellium model (for Na8 the
spherical jellium has been used). The deformation parameter α covers the full
possible range from 0 to 0.5. In contrast, β2 shows only little variation for jellium
as well as ionic background. Moreover, the charge seems to play no important
role. Nevertheless, a slight decrease of β2 with cluster size N is seen, especially
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Figure 5.3: β2 and α as a
function of cluster size N , for
neutral (squares) and positively
charged (circles) species. Open
symbols correspond to a jellium
background, while the solid
ones result from a full ionic
background. Trends in β2 with
cluster size are marked with ar-
rows.
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5 First results

for the ionic model as sketched in the plot with a dashed arrow. There might
also be a small local minimum in β2 for strongly deformed clusters. The most
prominent feature, however, is the large difference in β2 between the jellium and
the ionic model. The jellium model delivers total anisotropies β2 ∼ 1.9 near the
maximum value of 2, i.e., the maximum of electron emission is parallel to the
laser polarization. In comparison, the anisotropies for ionic structure are much
lower, β2 ∼ 1.6. The difference between jellium and ionic model is more striking
for large clusters (in the plot marked with solid arrows), especially for cationic
clusters. Apparently, additional ions produce more isotropic PAD.

The large difference between jellium and ionic model arises from the fact that
the soft pseudo-potentials deform the electronic g.s. density. Figure 5.4 illustrates
this issue for the Na8 cluster. While in the jellium model the electron cloud of Na8
is trivially spherical, the pseudo-potentials introduce repulsive regions localized
around the ions with lacks of density. Also the inner region of the cluster is only
weakly populated with electrons.

Figure 5.4: Iso-surface plot of the electronic g.s. density
in Na8 with soft pseudo-potentials.

The impact of the pseudo-potentials on the angular distribution is demonstrated
in Fig. 5.5, again for Na8. The left panel shows the PAD for one fixed cluster
orientation in space. It is obtained from the absorbed electronic density nabso(r) by
using a “tent”-sampling function, see Sect. 3.4 for details. The angles ϑ and ϕ of the
outgoing electrons are measured with respect to the laser polarization epol = ez.
Pronounced pattern, in particular the four-fold structure of the ionic rings and
their relative rotation by 45◦ is seen. Moreover, the emission maxima are located
at ϑ ≈ π/4 and 3π/4, i.e., sidewards to the laser polarization. After averaging the
PAD is by definition ϕ-independent. However, the sidewards emission introduces
an important isotropic component and as a consequence β2 is lowered.

It is to be noted that ionic structure does not only influence the initial states
like it is shown in Fig. 5.4 for the g.s. electronic density, but also modifies the
final states. In this sense, outgoing electronic waves seem to be re-scattered by
the ionic perturbation.

That deformation plays an important role in electron emission is also supported
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5.2 One-photon processes in small sodium clusters
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Figure 5.5: PAD for Na8 with explicit ionic structure for one fixed orientation (left
panel) and orientation-averaged (middle panel). The angles ϑ and ϕ of photoelectron
emitted direction kf are measured with respect to the laser polarization epol (right).

when resolving the angular distribution state by state. Figure 5.6 shows the
s.e. anisotropies β

(i)
2 as a function of the total cluster deformation α for all the

considered clusters. The occupied levels are grouped with respect to the main
angular momentum component of the s.e. wavefunctions. Except for cationic
jellium clusters the trends are clear:

• The results with ionic background are shifted as a whole to lower β
(i)
2 in

accordance to the lower total anisotropy β2 for ionic structure in Fig. 5.3.

• The span between the lowest and highest s.e. anisotropies of a given cluster
increases with the cluster deformation α. An overall deformation of the
electron cloud seems to lower β

(i)
2 . This trend has also already been seen

in Fig. 5.3 with a weak local minimum in β2 for the strongest deformed
clusters.

• The span of s.e. anisotropies grows from s over p to the d shell and the
larger span extends, of course, to lower β

(i)
2 . This is probably caused by

the increasingly complex structure of these higher electronic states. The
decrease of the s.e. anisotropy with increasing level number corresponds
nicely to the weak trend with system size seen in Fig. 5.3 (dashed arrow).

Briefly, it seems that the interplay between complexity of a state (main angular
momentum content) and deformation (caused by an overall shape modification of
the electron cloud as well as by the pseudo-potentials) cooperates to enhance the
effect on lowering the anisotropy.

Complementary to the total averaged PAD of Na8 in Fig. 5.5, a refined analysis
on the level of s.e. anisotropies has also the advantage that it is then possible to
plot an energy-resolved OA-PAD, see Fig. 5.7. Combining Eqs. (4.2) and (4.3)
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Figure 5.6: State-dependent anisotropies β
(i)
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better discrimination, the anisotropies are grouped according to the global quadrupole
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Jellium results.

yields the double-differential cross-section in the linear one-photon regime:

d2σ

dΩ dǫkin

=
∑

i

σ(i)

4π

(
1 + β

(i)
2 P2(cosϑ)

)
δ(ǫkin − ǫi − ~ωlas) . (5.2)

In order to simulate experimental conditions, the δ-function is approximated by
a Gaussian function,

G(ǫkin − ǫi − ~ωlas) =
1

σlas

√
2π

exp

(
−1
2

(ǫkin − ǫi − ~ωlas)
2

σ2
las

)
. (5.3)

The width σlas ≈ 0.006Ry is chosen according to the width of the Fourier trans-
formation of the time-dependent pulse profile (see Sect. 3.2), here Tpulse = 60 fs,
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5.2 One-photon processes in small sodium clusters

ωlas = 0.55Ry. As one can see in Fig. 5.7, the width is not low enough to resolve
the p states. For a better resolution, one has to enhance the frequency or the
pulse length.
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resolved angular distribution of Na8.
Upper panel: PES. Lower panel: Com-
bined PES and PAD.

In contrast to the combined PES/PAD in Fig. 5.1 for the jellium model, Fig. 5.7
is fully perturbative, i.e, applicable only when multiphoton and collective pro-
cesses are neglectable. The PES is not a function of the kinetic energy of the
outgoing electrons, but of the s.e. energies. Anyway, comparing the combined
PES/PAD of jellium and ionic model, the major difference is only seen in the
emission yield of the 1s state. Of course, there is an overall reduction of the
anisotropies when using ionic pseudo-potentials leading to more isotropic emission
background, but still for jellium as well as ionic structure the occupied s.e. states
emit preferable in direction to the laser polarization. Additionally, the isotropic
background of the 1p states is in both models larger than that for the 1s state.

63
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5.3 Ionization beyond the linear regime

5.3.1 Resonant emission at frequencies below the ionization
threshold12

Up to present only laser frequencies have been applied which are safely above
the one-photon threshold for all occupied s.e. states. An anomalous behaviour
has been noticed for frequencies below the IP. The following considerations are
restricted to the Na8 cluster (with explicit ionic structure). However, the effect
was also observed for other Na clusters. For the sake of simplicity, the discussion is
focused on the (0, 0, 1)-orientation of the cluster where the ionic rings are located
in the (x, y)-plane.

The cluster is excited by a laser pulse of ωlas = 0.08Ry, Tpulse = 120 fs, and I =
3.1×1011 W/cm2. According to the spectrum of occupied s.e. states (ǫ1s = −0.42,
ǫ1px,y = −0.33, and ǫ1pz = −0.31Ry) the 1s state needs six, the 1px,y states five,
and the 1pz state four (which is very close to the threshold) photons to be ionized.
The total number of emitted electrons is plotted in Fig. 5.8 as a function of time.
Although the laser stops at t = 120 fs, the cluster surprisingly continues to emit
electrons. This is a clear non-perturbative behaviour.
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Figure 5.8: Typical emission profile
for a laser frequency below the ioniza-
tion threshold. The laser pulse begins
at t = 0 and ends at t = 120 fs. Sig-
nificant electron emission starts not
until t ≈ 50 fs.

A closer look at the dipole signal Dz(t) in the direction of the laser polarization,
see the left panel in Fig. 5.9, reveals what happens. For t < 120 fs, the dipole
follows the electric field as expected. For t > 120 fs, however, the electronic
cloud continues to oscillate, but faster than before. Furthermore, the post-pulse
oscillations seem to be very “clean”, i.e., with one single frequency only. The
spectral analysis of the signal from t = 120 − 250 fs in the right panel confirms

12 This section has been submitted for publication in only marginally modified form [77].
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5.3 Ionization beyond the linear regime

that. The electronic cloud oscillates after the pulse with ωr = 0.237Ry. During
the pulse the spectrum is mixed: the main frequency is the laser frequency, but
ωr appears also.
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Figure 5.9: Left: Dipole signal Dz in the direction of the laser polarization as a function
of time. Right: Fourier transformation |D̃z(ω)| of the dipole during (t < 120 fs) and after
the pulse (t > 120 fs).

This analysis provides the following possible explanation to the phenomenon:
the laser pulse has excited a dipole resonance of the cluster. The resonance is
triggered by absorption of three photons, since ωr ≈ 3ωlas. Figure 5.10 shows
the dipole strength SD(ω) ∼ ℑ{D̃z(ω)} of the dipole signal propagated after an
initial boost of all s.e. wavefunctions [24, 78],

ϕα(r, 0) −→ eipboost·r ϕα(r, 0) .

The strength function is directly related to the photoabsorption cross-section.
The predominating excitation mode is, of course, the plasmon at ωpl = 0.187Ry.
However, besides the plasmon, there are plenty of 1ph excitations and resonances
all of them below the IP. Nevertheless, close to the laser frequency there is only
one stronger mode at 0.106Ry related to 1ph excitations from the 1s state to the
1p states. This mode is too far away for the laser frequency. But the system can
still be excited by multiphoton absorption. For laser frequencies below the IP it is
therefore very likely to hit a resonance. However, it has to be noted that a dipole
resonance can only be induced by an odd number of photons. The present case
corresponds to three photons. Apparently, it is also sufficient that the stimulating
energy 3ωlas lies just in the vicinity of the resonance energy ωr, an exact matching
is not compulsory.

It is interesting to analyze the photoemission observables in more detail. Fig-
ure 5.11 shows the PES (in logarithmic scale) for different time spans: during
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and after the pulse, and for the full calculated time. The full PES (red line on
top of the panel) exhibits pronounced peaks with certain distance to each other.
At first glance these peaks just resemble MPI peaks. The four-photon peak of
the 1pz state should appear closely above the IP, but has not fully passed the
threshold. This is due to the positive charge of the residual cluster which shifts
the whole spectrum.

More interesting is the shape of the PES after the pulse (blue line in the middle
of the panel). Because of numerical artifacts of the Fourier transformation it shows
more noise. Again, the PES exhibits sharp peaks, but many less. These peaks
could finally be identified as multi-resonance peaks. Their energy corresponds
exactly to the s.e. energy plus multiples of the resonance frequency, here ǫi +µωr,
with µ = 2, 3. The last relation have been marked with black solid, vertical
lines. Due to the residual cluster charge, the s.e. spectrum has been shifted
about δǫ = −0.012Ry in order to achieve better match. The first visible peak at
ǫkin = 0.035Ry corresponds to the doubly excited (µ = 2) 1s state, the following
peaks to the 1px,y and 1pz states. The triply excited 1s peak disappears behind
the noise, but the 1p states are still present. No MPI peaks appear in the spectrum
after the pulse. Hence, the important energy for the post-pulse emission is the
resonance energy ωr = 0.237Ry and not ωlas = 0.08Ry. The full PES, finally,
is a superposition of MPI peaks, ǫi + νωlas (also shifted by δǫ and marked with
black dashed lines), and the multi-resonance peaks. The resonance-enhanced
emission already starts during the pulse (green line at the bottom of the panel)
and continues after the laser excitation has stopped.

Figure 5.12 studies the total number of emitted electrons Nesc as a function of
the laser intensity in the range I ∼ 1010 − 1012 W/cm2. The frequency ωlas =
0.08Ry and the pulse length Tpulse = 120 fs have been kept constant. All curves
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0− 120 fs) and after (t = 120 − 250 fs) the pulse, and for the full time span.

are normalized to unity. It seems that the post-pulse emission profile depends
sensitively on the intensity: for intensities below 3.1×1011 W/cm2 all profiles look
very similar, typical post-pulse emission occurs. In contrast, for intensities I & 5×
1011 W/cm2 the post-pulse emission becomes weaker and finally disappears. It has
to be noted that the ionization is very large for such intensities, Nesc = 0.2− 1.4
for I ≥ 5.6 × 1011 W/cm2. The dipole spectrum of Fig. 5.10 then blue-shifts
during the emission process and resonances are broadened. Consequently, several
resonances can be excited at once, as it is shown in the right panel of Fig. 5.12 for
I = 5.6 × 1011 W/cm2. In this specific case, two close frequencies are interfering.
However, at large intensities one could also imagine that the blue shift of the
spectrum has the consequence that no resonance is induced. Briefly, the emission
behaviour becomes unpredictable in this intensity range.

The number of emitted electrons Nesc for the different intensities is sketched
in Fig. 5.13 in double-logarithmic scale, during (left panel) and after the pulse
(right). For a pure multiphoton process one expects that Nesc ∼ Iν , where ν is
at least the minimum number of photons required for ionization, derived from
perturbation theory. Actually, the 1pz state needs four photons to be ionized.
However, according to the PES in Fig. 5.11 the four-photon peak has not fully
passed the threshold. Moreover, the 1s state needs six photons while for the
1px,y states five photons are necessary. Concluding, a value between 6 > ν > 4
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and close to five should be reasonable if emission is dominated by multiphoton
processes. According to Fig. 5.11, this is not the case. Instead, the number of
emitted electrons is proportional ∼ Ip, with p ≈ 3. This applies for the emission
during and after the pulse, as long as the laser intensity is weak. For higher
intensities, the post-pulse emission disappears and p ≈ 1.

Apparently, multiphoton processes play only a minor role at weak intensities
and the emission is dominated by the resonance at ωr. Otherwise, one would have
expected a much higher power p. Instead, the power corresponds to the number
of photons required to induce the resonance. It is interesting that the number µ
of resonance energies ωr needed for ionization is not important, either.

As already mentioned, the presented phenomenon is very sensitive to intensity
variation, since for too large intensities the emission could be on- or off-resonant,
or several resonances could be hit due to dynamical shifts of the dipole spectrum.
Finally, it should be noted, however, that multiple resonances can also be induced
by a variation of the laser frequency. The laser frequency could lie next to two
or more resonances which may be excited by one photon. One could also imag-
ine a situation where ωlas is close to an excitation mode and a multiple of the
photon energy as well. In all these cases, several excitation modes interfere, the
dipole signal appears “dirtier” and the PES should be more puzzling. Moreover, it
becomes difficult to distinguish between multiphoton and multi-resonance ioniza-
tion. In this respect, the chosen frequency ωlas = 0.08Ry is a kind of exceptional
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case. The first photon energy is below any excitation, the second photon is in the
gap between the first 1ph excitation and the plasmon, and the third photon hits
almost exactly the resonance whose energy is, in turn, different from the photon
energy.

5.3.2 Convergence tests of the direct averaging scheme

The analytical averaging scheme derived from first-order perturbation theory is
only valid for a limited number of cases. Surely, it is not reliable as soon as mul-
tiphoton, collective or resonant processes have an effect on the PAD. Therefore,
an alternative method has been described in Sect. 4.3. The remaining question
is, how many cluster orientations are needed in order to get a reasonable approx-
imation for the OA-PAD?

6 18 26 34
45◦

135◦

90◦

x y

z

Figure 5.14: Set of orientation points used for the different direct averaging approaches
(6, 18, 26, and 34 orientations).
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A possible strategy to answer this question is to test first the direct averag-
ing scheme in the linear regime and to compare it with the analytical method.
Two levels of refinement for the direct averaging have been considered here, see
Fig. 5.14: 6 and 18 cluster orientations. The OA-PAD is calculated for the small
clusters Na+3 and Na8. The laser parameters are the same than in the previous
section, i.e., in the perturbative one-photon regime. The left panel in Fig. 5.15
shows the results for the Na+3 cluster. The analytical scheme yields an anisotropy
β2 = 1.83, i.e., close to the maximum value of β2 = 2 which stands for a cos2-
shaped distribution. As one can see, both direct schemes come very close to the
analytical distribution, although the averaging over only 6 orientations exhibit
some deviations from the expected distribution shape. In contrast, for Na8 (right
panel) the 6-orientation scheme does not even reproduce the functional depen-
dence and fails totally. Here, only 18 orientations lead to as reliable distribution.
The reason for this is that the observed anisotropy of Na8, β2 = 1.69, is much
lower than that for Na+3 . The additional ions in Na8 allow more re-scattering of
outgoing electrons and lower the anisotropy. Furthermore, not only s states, but
also p states are occupied. Hence, the number of orientations needed depends
on the number of ions (and occupied s.e. states), so on the system itself. The
convergence of the direct averaging scheme should be tested therefore actually for
each investigated system separately. An evident indicator for a converged result,
however, is to get the expected functional dependence of 1 + β2P2 in the linear
regime.
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Figure 5.15: OA-PAD along ϑ for Na+3 and Na8 in the linear regime for various aver-
aging schemes: analytical and direct averaging over 6 or 18 orientations (with explicit
ionic background).

In the next step, the convergence of the direct averaging scheme has been tested
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5.3 Ionization beyond the linear regime

in the non-linear regime, this time for Na12. In the non-linear regime the functional
dependence of the PAD is unknown, in principle. Here, only the trend of the
anisotropy as a function of the number of orientations can be taken as a criterion
for a converged result. Since this cluster contains even more ions than Na8, four
levels of refinement are investigated here: 6, 18, 26, and 34 orientations (Fig. 5.14).

The cluster is excited by a very strong laser pulse of Tpulse = 60 fs, I =
1013 W/cm2, and ωlas = 0.55Ry. The total number of emitted electrons is Nesc =
0.82. The resulting spectrum is shown in Fig. 5.16. The excitation is so strong
that the sharp s.p. peaks which can be seen for example for Na8 (jellium) in
Fig. 5.1, disappear. The s.p. energies change during the excitation process, thus
the s.p. peaks are smoothed to multiphoton bands. Obviously, the “frozen core”
assumption from perturbation theory is no longer valid. The analytical averaging
method cannot be applied here. In spite of the high intensity, two- and multipho-
ton processes are still suppressed by more than two orders of magnitude compared
to the one-photon band.
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Figure 5.16: PES of Na12 after exci-
tation with a strong laser of Tpulse =
60 fs, I = 1013 W/cm2, and ωlas =
0.55Ry. The PES is averaged over 34
orientations.

Although the s.p. states behave dynamically, their anisotropies β(i)
2 can still be

used for a test of the direct averaging, as it is done in Fig. 5.17. The left panel
shows the s.e. anisotropies β(i)

2 for the different levels of precision, the right panel
those of the higher momentum β

(i)
4 . Again, the averaging over 6 orientations

yields unsatisfying values whereas for β
(i)
2 the results seem to be converged after

18 orientations. The situation gets a bit worse regarding the anisotropy β
(i)
4 .

Obviously, as higher the angular momentum as more averaging points are needed.
Anyhow, since the values of 18-orientations scheme are close to those of the 34-
orientations scheme, the 18 points still represent a good compromise between
expense and precision of the averaging.

The left panel of Fig. 5.17 also quotes the values of the analytical averaging
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5 First results

scheme whose performance seems to range between the 6 and the 18-points aver-
aging. Larger deviations of the analytical result from the direct one can be seen
for states which also have a noticeable non-vanishing β

(i)
4 (the green 1p and the

black 1d state). Therefore, the direct scheme should be the preferable choice in
the non-linear and multiphoton regime.

5.4 Summary

This chapter presented first results for orientation-averaged PAD and PES calcu-
lated for a collection of small, neutral and positively charged sodium clusters. The
laser excitation was initially considered in the linear one-photon regime. In this
regime, basic properties of the ionization process can be described by first-order
perturbation theory and the developed analytical averaging can be applied.

“Deformation” of wavefunctions seems to play a crucial role in determining the
PAD. In fact, there are three levels of deformation: 1) an inherent deformation due
to the angular momentum of the occupied and final states which trivially increases
with system size, 2) the overall cluster deformation which can be quantified by
the parameter α, and 3) deformation due to the explicit ionic structure mediated
by pseudo-potentials. All three modes were found to grossly influence the PAD
and to lower β2 in the one-photon domain. In this aspect, the pseudo-potentials
appear to have the largest effect. This prompts the question whether simple
approaches like, e.g., first-order perturbative calculations in a spherical jellium
model are also able to resolve the rich details provided by the PAD. This issue is
discussed in the next chapter in detail.
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Figure 5.17: Single-electron anisotropies β
(i)
2 (left) and β

(i)
4 (right) for Na12 excited

by strong laser pulse in the non-linear regime. Results are drawn as a function of the
number of averaging orientations.
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5.4 Summary

The second part of this chapter dealt with excitations beyond the linear regime.
Two different cases have been considered here: 1) ionization with frequencies below
the IP, and 2) strong ionization with frequencies above IP. In both cases, the
analytical averaging scheme developed on the grounds of first-order perturbation
theory cannot be used any more. Instead averaging over a finite sum of different
cluster orientations has to be applied. Actually, the number of orientations needed
for convergence has to be found actually for each system. Among the calculated
Na(+)

N clusters, N = 3 − 19, the Na12 cluster as triaxial system of intermediate
size has been considered as representative. Convergence of the first anisotropy
parameter β2 can be achieved for 18 orientations. In order to resolve higher
angular momenta, a larger number should be chosen.

An unusual emission behaviour can be observed for laser frequencies below the
IP. Contrary to atoms, clusters and among them even small ones exhibit a compa-
rably high spectral density of s.p. and collective excitations, in particular below
the IP. Therefore, it is very likely to excite one of these resonances when applying
laser frequencies in this domain. In the PES, MPI peaks are then superposed with
peaks resulting from resonance-enhanced emission. Furthermore, the post-pulse
emission decays only weakly which might be due to neglect of thermalization in
the theory. Resonance-enhanced emission emerges later in carbon chains again,
see Chapter 8.
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6 Frequency dependence of PAD in small sodium

clusters

Photoionization cross-sections, photoelectron spectra and angular distributions as
a function of photon energy can give insight into electronic structure and dynamics
of clusters. Systematic theoretical studies are often based on a perturbative ap-
proach, denoted as single-electron, independent-particle or single-active-electron
picture in which the “active” electron is excited out of the initial into a final con-
tinuum state [79] while the remaining electrons are assumed to be unaffected by
the excitation process. Initial and final state are thus calculated within the same
effective single-particle potential.

As it was discussed for the Na8 cluster in the introductory section 5.1 of the
last chapter, perturbation theory can indeed describe basic features of the ion-
ization process as long as the laser parameters remain in a regime of linear or
weakly non-linear excitations. However, it suffers from the fact that collective
and dynamic effects such as dielectric screening, polarization, many-body excita-
tions or rearrangement of the residual cluster, in general, are not included in the
model although there exist attempts to consider some of these effects, e.g., by
modification of the final state potential or of the transition operator [79, 80] or
by time-dependent, perturbative approaches [22, 81].

A crucial point in all perturbative models is the calculation of the final con-
tinuum state wavefunction. For bound states the known attractive potential can
often be approximated in a first step, e.g., by a harmonic oscillator potential where
the basis set of initial wavefunction is more or less finite and well known. The
bound state wavefunctions are then calculated in an iterative way. Continuum
states above the IP, however, are sensible also against the long-range modifica-
tion of the attractive potential. The solution of the Schrödinger equation might
be possible for atoms and molecules, but definitely gets too involved for larger
particles like clusters without any symmetry. One consequently uses approximate
solutions for the continuum state [79] or simplified models for the geometrical
cluster structure [82], even assumes a spherical jellium model representing the
positive ionic background [13, 83, 84].

On the other hand, enough accurate perturbative methods can be used to dis-
tinguish single-particle from collective effects, to estimate the impact of these
effects on electron dynamics and to understand the importance of a proper de-
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6 Frequency dependence of PAD in small sodium clusters

scription of the outgoing electronic wave when comparing with full time-dependent
many-particle approaches. This chapter therefore is inspired by the above men-
tioned methods.

The following discussion is focused on one-photon processes in the Na8 spherical
jellium cluster. As can be seen on the dipole response (Fig. 5.10 of Sect. 5.3.1,
with ionic background), this cluster has a sharp plasmon resonance at about
0.19Ry far below the IP. Thus, continuum states do not interfere with a possible
collective excitation and should be well described within perturbation theory. For
details of the used jellium model it shall be referred to the example section of the
last chapter.

Photoionization cross-sections and PAD are first calculated in (static) first-order
perturbation theory and are later compared to full time-dependent calculations.
Subsequently, the role of deformation in terms of explicit ionic structure is dis-
cussed. Finally, results from the negatively charged cluster Na−7 are presented. It
shall be started with an introduction to the used methods.13

6.1 Perturbative approaches

6.1.1 Bethe-Cooper-Zare formula

Provided spherical symmetry, the three-dimensional Schrödinger equation of an
electron kept in an effective s.p. potential can be simplified to the one-dimensional
radial equation

[
− ~

2

2me

(
∂2

∂r2
+

2

r

∂

∂r

)
+

~
2

2me

l(l + 1)

r2
+ V (r)− E

]
Rl(r) = 0 , (6.1)

with Rl being the radial part of the s.p. wavefunction. Let |i〉 be the initial bound
state with the angular momentum L, M the azimuthal angular momentum, and
E = ǫi < 0,

〈r|i〉 = ϕi(rϑϕ) = R
(i)
L (r)YLM(ϑϕ) .

A general solution for the outgoing wave |f〉 can be expanded into partial waves,

〈r|f〉 = Ψk(rϑϕ) = 4π
∑

lm

ile−i∆lR
(f)
l (r)Y ∗

lm(Ωk)Ylm(Ωr) , (6.2)

with E = ǫkin = (~k)2/2me > 0. In spherical potentials, anisotropy and yield
can be calculated with the help of the Bethe-Cooper-Zare formula which is de-
rived in first-order perturbation theory for one-electron atoms [61], but can also be

13 Essential parts of the following sections have been published in [76, 85].
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6.1 Perturbative approaches

applied to many-electron systems provided the wavefunctions are represented by
antisymmetrized products of spin orbitals [63]. The independent-particle assump-
tion adopts here its role. The partial cross-section σ(i) and the s.e. anisotropy β

(i)
2

are then given by [65, 86]:

σ(i) = σ(i)(ǫkin) =
(4π)2N

3
· LR

2
− + (L+ 1)R2

+

(2L+ 1)
, (6.3)

β
(i)
2 = β

(i)
2 (ǫkin) =

L(L− 1)R2
− + (L+ 1)(L+ 2)R2

+ − 6L(L+ 1)R−R+ cos∆

(2L+ 1)[LR2
− + (L+ 1)R2

+]
,

(6.4)
with

R± =

∞∫

0

dr r3R
(f)
L±1(r)R

(i)
L (r) and ∆ = ∆L+1 −∆L−1 . (6.5)

For L = 0 the Bethe-Cooper-Zare formula delivers always β
(s)
2 = 2. Thus, the

angular distribution of the s state is not influenced by the form of the outgoing
wave. A spherical symmetric binding potential which modulates the outgoing
wave, has consequently no effect on the angular distribution, but still on the
yield, as can be seen in Eq. (6.3).

For a given potential V (r) bound and continuum states R(i)
L and R

(f)
L±1 are calcu-

lated by solving the radial Schrödinger equation (6.1), for details see Appendix B.
The phases ∆L±1 can be determined by using the asymptotic behaviour:

R
(f)
l (r) ≃ sin

(
kr − lπ

2
− γ ln(2kr) + ∆l

)

kr
for r →∞ ,

with E = ǫkin = (~k)2/2me > 0 and γ = Z1Z2/(ka0) .

6.1.2 Approximations for the outgoing wave

In order to estimate the influence the outgoing wavefunction on the angular dis-
tribution, the final state is varied and approximate solutions for |f〉 are consid-
ered. Approximate solutions are furthermore useful as soon as the sphericity is
not provided and the three-dimensional Schrödinger equation cannot be decom-
posed into radial and angular part any more. This is the case, e.g., when explicit
ionic structure is included or a deformed jellium model is considered. The Bethe-
Cooper-Zare formula is then inapplicable. A possible alternative is given by the
analytical, perturbative averaging procedure. The initial wavefunction is still cal-
culated within iterative procedures. For the outgoing waves, the following simple
assumptions are made:
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6 Frequency dependence of PAD in small sodium clusters

Plane wave approximation In the plane wave approximation the outgoing
wave becomes

〈r|f〉 = Ψfree
k (rϑϕ) = eikr = 4π

∑

lm

iljl(kr)Y
∗
lm(Ωk)Ylm(Ωr) ,

i.e., all phases ∆l in Eq. (6.2) vanish and the functions R
(f)
l are given by the

spherical Bessel functions.
This approach is the simplest and amounts to the well-known plane wave Born

approximation [87]. Plane waves are solutions of the free, three-dimensional Schrö-
dinger equation. Thus, the approximation neglects any effect of the binding
potential on the outgoing wave. It is therefore expected, that this assumption
is suitable only for weakly bound systems like negatively charged clusters (see
Sect. 6.5), or – in case of neutral clusters – for outgoing electrons with very high
kinetic energy (Sect. 6.2.2.3).

Continuum waves in a spherical potential well In order to account roughly
for the effect of a non-zero potential, the residual binding potential V (r) seen by
the continuum waves is approximated by a spherical potential well:

Vs.w.(r) = −V0 ·Θ(r0 − r) , V0 > 0 . (6.6)

Continuum states of this short-range potential can still be derived analytically.
The radial wavefunction R

(f)
l is given by [88]:

R
(f)
l (r) =

{
Cl jl(k0r) r < r0 ,

jl(kr) cos(δl)− nl(kr) sin(δl) r > r0 ,
(6.7)

with

k0 =

√
2me

~2
(E + V0) .

The unknown quantities Cl and ∆l = δl are determined by using the matching
conditions,

R
(f)
l (r<)

∣∣∣
r=r0

= R
(f)
l (r>)

∣∣∣
r=r0

and

∂

∂r
R

(f)
l (r<)

∣∣∣
r=r0

=
∂

∂r
R

(f)
l (r>)

∣∣∣
r=r0

.

78



6.2 Static results for Na8 spherical jellium

6.2 Static results for Na8 spherical jellium

6.2.1 Harmonic oscillator model

This section studies the s.e. yield σ(i)(ǫkin) and anisotropy β
(i)
2 (ǫkin) in Na8 spheri-

cal jellium as a function of the outgoing wave. As a simple analytical example, one
may consider at first an electron kept in a spherical harmonic oscillator potential:

Vh.o.(r) =
1

2
meΩ

2
0r

2 − V0 , V0 > 0 .

This simulates a shell model description instead of a self-consistent one. The
radial wavefunctions for the two deepest bound states read [89]:

R
(h.o.)
0 (r) = A exp(−α2r2) , L = 0 , (6.8a)

R
(h.o.)
1 (r) = B r exp

(
−α2r2

)
, L = 1 , (6.8b)

with

α =

√
meΩ0

2~
, A =

(
2α2

π

)3/4

·
√
4π , B =

√
2
5/2

√
8

3

α3/2

π1/4
α . (6.8c)

The eigenvalues for these two states are: ǫL = ~Ω0(L + 3/2) − V0. In the plane
wave approximation the integrals R− and R+ from Eq. (6.5) can be calculated
analytically. For L = 0 and L = 1 one obtains (see Appendix B.3):

R+ =
√
πA k

8α5
exp

(−k2

4α2

)
for L = 0 , (B.7)

R− =
√
π B 6α2 − k2

16α7
exp

(−k2

4α2

)
for L = 1 , (B.8)

R+ =
√
π B k2

16α7
exp

(−k2

4α2

)
for L = 1 . (B.9)

Plugging this into Eqs. (6.3) and (6.4) gives yield and anisotropy14:

σ(1s) ∼ ǫkin exp

(−2ǫkin

~Ω0

)

β
(1s)
2 = 2





for L = 0 , (6.9)

14 Normalization of the plane wave in energy scale is achieved by replacing jl with
√
2k/π jl.

This would give an additional prefactor in the order of
√
ǫkin in the yield.
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σ(1p) ∼
[(

3

2
~Ω0 − ǫkin

)2

+ 2ǫ2kin

]
exp

(−2ǫkin

~Ω0

)

β
(1p)
2 =

2k2(k2 − 4α2)

k2(k2 − 4α2) + 12α4





for L = 1 . (6.10)

The self-consistent wavefunctions for the bound 1s and 1p states in Na8 spheri-
cal jellium are indeed quite similar to the solutions of the harmonic oscillator given
in Eq. (6.8). For example, Figure 6.1 (left panel) shows the radial wavefunction of
the 1p states in Na8 obtained within static LDA-SIC. The dashed line represents
a fit of the harmonic solution to the real wavefunction. As one can see – up to
a radius of about r ∼ 10 a0 – the fit matches very well with the self-consistent
wavefunction.

The right panel of Fig. 6.1 displays the anisotropy for L = 1 obtained by
inserting the fitting parameter α2 into Eq. (6.10). For energies ǫkin & 0.5Ry the
anisotropy remains at a value close to 2. For smaller kinetic energies the shape
of the curve is characteristic for the plane wave approximation: starting from
values around 2 for higher energies, it shows a decline first towards β

(1p)
2 = 1 at

ǫkin = (6~2α2)/(2me) = 0.16Ry then a zero crossing at ǫkin = (4~2α2)/(2me) =

0.11Ry. Afterwards negative values arise up to the minimum value of β(1p)
2 = −1

at ǫkin = (2~2α2)/(2me) = 0.05Ry. Finally, the anisotropy ends up in β
(1p)
2 = 0

at ǫkin = 0, since for k = 0 the angular distribution

dσ(i)

dΩk

= N
∣∣∣∣
∫

d3r z ϕi(r)

∣∣∣∣
2

, for k = 0 , (6.11)

becomes independent in the wave vector k. A detailed explanation of the near-
threshold behaviour of β(1p)

2 is given later in Sect. 6.2.2.2.

6.2.2 Static results with self-consistent wavefunctions

Although the simple harmonic oscillator matches well with the self-consistent
calculation, the radial functions R

(h.o.)
L do not show the right asymptotic decay.

The asymptotic fall off, however, is expected to be an important criterion since
the continuum waves definitely are sensitive to the latter. Therefore, the real, self-
consistent wavefunctions from the LDA-SIC ground-state of the jellium model are
better serving as a starting point in the following. For the outgoing waves R

(f)
l

(l = 0, 1, 2) the three cases introduced in the last sections have been considered:

(1) A free plane wave.
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Figure 6.1: Left panel: Radial part of the wavefunction in Na8 spherical jellium for
the 1p state, calculated self-consistently within static LDA-SIC (red) and fit to the
harmonic oscillator (green). The fit yields α2 = 0.026 a−2

0 (Ω0 = 0.105Ry). Right panel:

Anisotropy β
(1p)
2 of the harmonic oscillator fit in the plane wave approximation.

(2) A continuum wave moving in a spherical square-well potential Vs.w.:
Width r0 and depth V0 of the square-well potential were chosen so that its
two deepest eigenenergies ǫg0 and ǫg1 with L = 0 and L = 1 match with
the s.e. energies ǫ1s = −0.405Ry and ǫ1p = −0.300Ry of the LDA ground-
state. The left panel in Fig. 6.2 shows the energy curves ǫg0 − ǫ1s = 0
and ǫg1 − ǫ1p = 0 as a function of V0 and r0. The two curves intersect at
V0 = −0.507Ry and r0 = 8.36 a0.

(3) A continuum wave moving in the self-consistent ground-state Kohn-Sham
potential UK.S..

The phases ∆l are always determined by the asymptotic behaviour. All wavefunc-
tions and phases are finally inserted into Eqs. (6.3) and (6.4). The right panel of
Fig. 6.2 summarizes the considered potentials. The harmonic oscillator in plane
wave approximation can still serve as a guideline. Its potential (~Ω0 = 0.105Ry
and V0 = 0.563Ry) is also sketched.

6.2.2.1 Yield for the 1s state

The anisotropy of any state with angular momentum L = 0 is always β(1s)
2 = 2, so

not worth to consider here. Figure 6.3 (left panel) shows instead the cross-section
σ(1s) for the three models (1), (2), and (3). For all three curves the main emission
takes place below energies ǫkin . 0.5Ry. This feature can be explained with the
form of the transition integral. For instance, in the plane wave approximation the
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Figure 6.2: Left panel: The two deepest eigenenergies ǫg0 and ǫg1 in the square-well
potential as a function of its depth V0 and width r0. ǫg0 = ǫ1s and ǫg1 = ǫ1p is fulfilled
for V0 = −0.507Ry and r0 = 8.36 a0. Right panel: Kohn-Sham potential of the jellium
model, square-well potential, and the harmonic oscillator.

transition integral becomes:

〈f |ẑ|i〉 ∼
∫

d3r e−ikr z ϕi(r) . (6.12)

For high kinetic energy, i.e., high wave number k, the plane wave becomes a
fast oscillating function in space (in relation to the initial wavefunction), so that
the transition integral as well as the cross-section takes negligible values. This
reasoning applies also to the distorted (plane or Coulomb) waves of model (2)
and (3).

The same argument can be used when comparing the total yields integrated
over ǫkin. The three curves in the left panel have been normalized to the same
total emission yield. The normalization factor reveals that emission is strongly
suppressed in (2) and (3). This is related to the fact, that the attractive potential
modifies the continuum states (right panel). Continuum states with asymptotic
wave number k in fact oscillate faster inside the binding potential at small dis-
tances r. However, since the main transition takes place also at small distances,
the transition integral is suppressed.

6.2.2.2 Anisotropy and yield for the 1p state

Figure 6.4 shows anisotropy and cross-section for the 1p shell in Na8 spherical
jellium (red line) in the plane wave approximation (1). As a guideline, Eq. (6.10)
of the harmonic oscillator model is also drawn (black line). As one can see,
below ǫkin . 1.0Ry it makes practically no difference in anisotropy as well as
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Normalization factors for (2) and (3) are indicated. Right panel: Continuum waves rR
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1

for models (1) and (3) (ǫkin = 0.1Ry) and initial radial wavefunction r2R
(i)
0 .

yield if using the self-consistent wavefunction or the harmonic fit. Note that the
initial self-consistent wavefunctions differ only slightly from the (fitted) harmonic
oscillator functions (Fig. 6.1, left panel). The modification is mainly located at
r ∼ 10 a0. The overall shape of both wavefunctions remains. In k-space the
picture would be similar. Differences in ϕi(k) show up at high wave numbers,
and are consequently probed by the transition integral (6.12) only at large kinetic
energies.
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At ǫkin ≈ 1.1Ry the two models differ significantly. The anisotropy drops off
sharply towards β(1p)

2 = −1 for the self-consistent wavefunction whereas it remains
nearly constant at values around β

(1p)
2 ≈ 2 for the harmonic function. The reason

for this sudden decline is the form of the integrals R− and R+:

R± =

∞∫

0

dr r3R
(f)
L±1(r)R

(i)
L (r) . (6.5)

For the harmonic fit these integrals have been solved analytically in Eqs. (B.8) and
(B.9). For the self-consistent wavefunction they were evaluated numerically and
are shown in Fig. 6.5 (left panel) as a function of ǫkin. In the harmonic oscillator
model, the integrals R− and R+ have only one root each (at 6α2− k2 = 0 and at
k = 0, respectively) at which they change their sign.

In contrast, the self-consistent integrals have several roots in large, irregular
intervals of more than 1Ry. These roots arise since the integrand in R± consists
of the oscillating function r2R

(f)
1±1 times the smooth function rR

(i)
1 (see for example

Fig. 6.3 for the s state). Hence, the integrals vanish for some kinetic energies. In
fact, the harmonic oscillator model is by this view a rather exceptional case.

Another noteworthy aspect is that R+ and R− differ significantly only for
ǫkin . 0.5Ry. For higher energies, they are very similar and have their roots
almost at the same positions. This is related to the fact that for higher energies
the centrifugal term in the radial Schrödinger equation (6.1) plays a minor role.
That means R(f)

L+1(r) ≈ R
(f)
L−1(r) for radii r with ~

2/2me×L(L+1)/r2 ≪ ǫkin. As
higher ǫkin as closer this radius comes to zero and the integrals R± become more
and more aligned.

The roots of R±, however, play now a major role in determining the PAD.
When writing down the Bethe-Cooper-Zare formula for L = 1 in the plane wave
approximation,

β
(1p)
2 =

2R2
+ − 4R−R+

R2
− + 2R2

+

=





2 , for R− = −R+

1 , for R−(R− + 4R+) = 0

0 , for R+(R+ − 2R−) = 0

−1 , for 2R+ = R−

(6.13)

one observes that for β(1p)
2 = 2, R− andR+ have opposite, for β(1p)

2 = −1 the same
sign. Since R− can change its sign only at β

(1p)
2 = 1 and R+ only at β

(1p)
2 = 0,

R− and R+ also have same sign for β(1p)
2 < 0 and opposite sign for β(1p)

2 > 1. The
right panel in Fig. 6.5 illustrates these considerations. The dip in β

(1p)
2 is so sharp

because the roots of R− and R+ are located very close to each other.
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Figure 6.5: Left panel: Absolute value of the integrals R± as a function of ǫkin for

Na8 spherical jellium in plane wave approximation. Right panel: Anisotropy β
(1p)
2 (see

also red line in Fig. 6.4). Interesting points are indicated. In the red region R± have
opposite, in the green region same sign.

The minimum of β(1p)
2 around ǫkin ≈ 1.1Ry correlates with a drop in the cross-

section, Fig. 6.4 right panel. Since both integrals R± change their sign in this
region, they consequently take small values and the cross-section

σ(1p) =
(4π)2N

9
·
(
R2

− + 2R2
+

)

decreases, too.
Returning now to the threshold behaviour of β(1p)

2 . As already mentioned, the
decline first to negative β

(1p)
2 then towards zero is typical for the plane wave

approximation. Having a closer look at the left panel of Fig. 6.5, one notices that
at ǫkin . 0.5Ry the two integrals R± differ more strongly with |R−| ≫ |R+| for
ǫkin → 0 (see inset). This can again be attributed to the centrifugal term in the
Schrödinger equation: for L(L+ 1)≫ (kr∗)2, the centrifugal term dominates the
form of the radial wavefunctions.15 Within the extension r∗ the wavefunctions
R

(f)
L±1 differ then substantially and so do the integrals R±.
Figure 6.5 shows only the absolute values of R± (due to the logarithmic scale).

In fact, near threshold both integrals are positive since the spherical Bessel func-
tions behave like

jl(kr
∗) =

(kr∗)l

(2l + 1)!!
, k → 0 .

over the whole extension of the bound state wavefunction. Moreover, because

15 The parameter r∗ denotes roughly the radius at which the integration in Eq. (6.5) has con-
verged sufficiently accurate, here r∗ ≈ 20 a0.
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6 Frequency dependence of PAD in small sodium clusters

of the larger repulsive centrifugal term, the outgoing wave with L + 1 is more
pushed away from the inner bound region than the L− 1 wave. In consequence,
R− ≫ R+ for ǫkin → 0 and β

(1p)
2 vanishes, Eq. (6.13).

The starting point for the anisotropy near threshold corresponds to the point
R+ = 0 in the right panel of Fig. 6.5. Since both integrals are positive and have
same sign, negative values for β

(1p)
2 follow. With further increasing of ǫkin the

oscillations of the jl approach the binding zone and the integrals R± diminish.
The root of R− arises first since the oscillations approach earlier due to the lower
repulsive centrifugal term for L− 1.

Having understood the trend of β2 in the plane wave approximation, it is also
interesting to compare different continuum wave models. Figure 6.6 plots the
results for the models (1), (2), and (3). In contrast to the plane wave, the phases
∆2 and ∆0 must be considered in model (2) and (3). All three curves for β

(1p)
2

in the left panel vary between −1 and 2 and exhibit sharp minima at certain
frequencies. The minima in anisotropy are also correlated with minima in the
cross-section. The position of the minima, however, dramatically depends on
the chosen form of the continuum wavefunction. The discrepancy between the
continuum models becomes even more striking for small kinetic energies. This is
reasonable because for outgoing waves with low kinetic energy the depth of the
scattering potentials becomes more important.
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Figure 6.6: Anisotropy β
(1p)
2 and cross-section σ(1p) of the 1p shell in Na8 spherical

jellium within the three presented models.

In case of a non-zero potential V (r) for the continuum states, the detailed
threshold behaviour is less predictable. For l(l + 1) ≫ (kr∗)2 the kinetic term is
still negligible in the radial Schrödinger equation, but not so V (r)16. While the

16 V (r) is only negligible for r → 0, but this is not the here considered case!
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6.2 Static results for Na8 spherical jellium

centrifugal term is repulsive, the short-range component of V (r) attracts again
the oscillating continuum waves into the binding zone. Thus, the von-Neumann
functions nl also contribute to the continuum wave which additionally gets a phase
shift. All in all, the roots of the integrals R± arise at different positions compared
to the plane wave approximation. In contrast, high kinetic energies overrule both,
centrifugal term and short range component of V (r) and R

(f)
L+1 ≈ R

(f)
L−1 should

align as already discussed. Additionally, the phases ∆0 and ∆2 approach each
other and ∆ → 0. This amounts then again to the plane wave approximation.
The detailed behaviour of σ(1p) and β

(1p)
2 at high energies is discussed the next

section.
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Figure 6.7: Left panel: Anisotropy of the 1p shell in Na8 spherical jellium within model
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black, dashed line. Right panel: Continuum waves rR
(f)
0 and rR

(f)
2 within model (3)

at energy ǫkin = 0.05Ry, initial self-consistent wavefunction r2R
(i)
1 , and harmonic fit

function r2R
(h.o.)
1 .

Another interesting aspect can be derived when replacing the initial self-consis-
tent wavefunction in model (3) with the harmonic fit function, but keeping the
continuum wave of the self-consistent K.S. potential. This is similar to a slight
modification of the initial bound wavefunction as already done in Fig. 6.4. The
original and the modified model are compared in the left panel of Fig. 6.7. In con-
trast to Fig. 6.4, original and modified model differ here already for small kinetic
energies. A possible explanation is that the continuum waves with asymptotic
wave number k are inside the binding region continuously compressed towards
shorter wavelengths due to the attractive potential UK.S., as was already discussed
previously (right panel of Fig. 6.7). They are thus also sensitive to small variations
in |i〉 and accordingly filter this in the transition integral.
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6 Frequency dependence of PAD in small sodium clusters

6.2.2.3 Photoionization oscillations at high frequencies

Frank and Rost [90] have found that the partial photoionization cross-sections
of Na40 and C60 spherical jellium oscillate at high laser frequencies like they are
typically used at the synchrotron. These oscillations are genuine for all spherical
(non-Coulomb) potentials. The frequencies of the oscillations are related to the
diameter of the electronic cloud. As an example, Figure 6.8 shows anisotropy and
cross-section of the 1p shell in Na8 spherical jellium (same jellium parameteriza-
tion as above) for the three considered continuum wave models at high kinetic
energies. The quantities are plotted versus the wave number k =

√
2me/~2ǫkin

divided by the oscillation period.
The oscillations can be understood when considering initial and final states in

the spherical square-well potential [90], e.g.:

Ĥϕi(r) =

[
p̂2

2me

+ Vs.w.(r)

]
ϕi(r) = ǫiϕi(r) .

The matrix element for the transition from state |i〉 to |f〉 in velocity gauge is
proportional to 〈i|epol · p̂|f〉. From there one can transform into the so-called
acceleration gauge [91]:

[
p̂, Ĥ

]
=

~

i
∇Vs.w.(r) =⇒ 〈i|p̂|f〉(ǫf − ǫi) = 〈i|

[
p̂, Ĥ

]
|f〉 .

The derivative of the spherical square-well potential Vs.w. gives a delta-function,

∇Vs.w.(r) = V0er δ(r0 − r) ,

thus the transition integral reads (epol = ez):

〈i|epol · p̂|f〉 ∼ 〈i|δ(r0 − r) Y10|f〉 ∼ R
(i)
L (r0)R

(f)
l (r0) ,

upon condition that the dipole selection rule |L − l| = 1 is fulfilled. The exact
solution of R(f)

l (inside the square-well), given in Eq. (6.7),

R
(f)
l (r0) = Cljl(k0r0) , (6.7)

where k2
0 = 2me

~2
(ǫf − ǫi), is a spherical Bessel function which goes for k0r0 ≫ 1

like:

R
(f)
l (r0) ∼ sin

(
k0r0 −

lπ

2

)
.
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6.2 Static results for Na8 spherical jellium

In the limit of high kinetic energies ǫf = ǫkin, one can neglect the binding energy
ǫi and the wave number k0 is approximately k2

0 ≈ 2me

~2
ǫkin = k2. Hence, for high

kinetic energies the partial cross-section

σ(if) ∼ sin2

(
kr0 −

lπ

2

)
=

1

2
− 1

2
cos(2kr0 − lπ) (6.14)

oscillates with a frequency of 2r0 in k. The initial state |i〉 with angular momentum
L couples to final states with l1 = L + 1 and l2 = L − 1. Since l1 − l2 = 2, the
partial cross-sections for both final states oscillate in phase. Finally, both partial
cross-sections have to be added up to the cross-section σ(i) out of state |i〉 which
oscillates then with the same frequency.
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Figure 6.8: Anisotropy and cross-section for the 1p shell in Na8 spherical jellium as a
function of kR/π (ǫkin = 0 − 20Ry) with the oscillation period R1 = R3 = 9.52 a0 for
models (1) and (3) and R2 = r0 = 8.36 a0 (r0 =width of the square-well potential) for
model (2).

Cross-section and anisotropy in Fig. 6.8 are shown as a function of kR/π. The
radius R is obtained by a fit of the high frequency behaviour to Eq. (6.14).
Thereby, R = 9.52 a0 is obtained for model (1) and (3) and R2 = 8.36 a0 for
model (2). Thus, model (2) behaves exactly as described above, i.e., in the limit
of high kinetic energies the radius R3 corresponds to the width of the square-well,
R3 = r0. In contrast, cross-section and anisotropy for model (1) and (3) oscillate
slightly faster (R = 9.52 a0). The binding potential here is not a sharp edge like
the square-well potential. Hence, the derivative is not a δ-function. However, the
softened potential edge has still a peaked derivative around R = 9.52 a0 which
preserves the diffraction effect. Furthermore, model (1) and (3) oscillate at high
energies within the same period, since the influence of the (soft) binding poten-
tials on the continuum waves in model (3) can be neglected in this range and the
plane wave becomes a legitimate approximation.
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6 Frequency dependence of PAD in small sodium clusters

6.3 Time-dependent spherical jellium calculations

The above results confirm that the continuum wavefunction is an essential ingre-
dient for a correct description of the angular distribution. The high sensitivity
indicates, however, that the independent-particle picture might be a questionable
assumption. Important dynamical effects in the course of the photoionization
process, like polarization, rearrangement of the residual cluster, or many-body
excitations are not included in the model, even if initial bound and final contin-
uum states are calculated in the same self-consistent potential [13]. It is therefore
interesting to lie time-dependent calculations next to the static results [85]. This
is demonstrated in the left panel of Fig. 6.9 which compares a fully dynamical
TDLDA calculation to a TDLDA calculation in which the electrons are propa-
gated, but the ground-state K.S. potential is kept frozen during evolution. A
frozen K.S. potential, in turn, suppresses all dynamical polarization and rear-
rangement effects and should correspond to a perturbative treatment.

The jellium parameters have been the same as previously used (rs = 3.65 a0,
σjel = 1 a0). The laser pulse length was Tpulse = 60 fs. The intensity I =
1013 W/cm2 × ωlas/Ry was scaled with the frequency in order to keep ionization
in a perturbative range of Nesc = 10−4 − 10−1. The case with frozen UK.S. re-
stores the result obtained from first-order perturbation theory in Fig. 6.7 for the
anisotropy β

(1p)
2 (for better comparison of time-dependent and static calculation,

the left panel in Fig. 6.9 is plotted versus the kinetic energy ǫkin = ωlas − 0.3Ry).
The full TDLDA calculation, however, yields a totally different pattern. Dynamic
effects as the interaction of the outgoing electrons with the residual cluster have
apparently a significant influence on the angular distribution.

The right panel of Fig. 6.9 displays the anisotropy for two different jellium
parameterizations, now both fully time-dependent. Jellium 1 is the original one.
Jellium 2 uses slightly different parameters (rs = 3.9 a0, σjel = 0.7 a0). Again, one
can observe the great sensitivity of the angular distribution to small variations
of the underlying potential. While the ionization potential of both models differ
only marginally (IP1 = 0.30Ry, IP2 = 0.31Ry), the frequency shift between the
two minima amounts to more than 0.1Ry.

6.4 Role of deformation

6.4.1 Trends in static plane wave approximation

From the above observed sensitivity of PAD, one expects that the treatment of
the ionic background is also very important. As a simple improvement of the
spherical jellium model, one occasionally makes use of a deformed jellium model,
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Figure 6.9: Left panel: Anisotropy β
(1p)
2 of the 1p shell in Na8 spherical jellium as a

function of the kinetic energy ǫkin = ǫ1p + ωlas (with ǫ1p = −0.3Ry). Compared are
results obtained by full TDLDA and by TDLDA with fixed K.S. potential. Right panel:

β
(1p)
2 vs. ωlas for the two different jellium models (jellium 1: rs = 3.65 a0, σjel = 1 a0;

jellium 2: rs = 3.9 a0, σjel = 0.7 a0).

here quadrupole deformed. The strength of the deformation is then given by the
dimensionless moment α defined in Eq. (5.1). Since spherical symmetry is no
longer conserved, the Bethe-Cooper-Zare formulae (6.3) and (6.4) cannot be used
here. Consequently, one has to apply averaging schemes in order to obtain β

(i)
2

and σ(i). As a preliminary step, the following basic trends are obtained in static
first-order perturbation using the methods stressed above.

Figure 6.10 (upper left panel) shows the angular distribution depending on the
deformation parameter α for Na8 jellium17. The deformation takes place along
the z-axis of the cluster frame and stretches the cluster into a prolate shape. The
deformation splits the 1p shell into two non-degenerate states “1px,y” and “1pz”.
The self-consistent 1pz state which is axial symmetric (m = 0), was considered
here as initial bound state. The continuum states were assumed to be plane
waves. The averaging was done by application of the analytical scheme (full-
perturbative scheme according to Sect. 4.2.5). The red line indicates the spherical
(α = 0) result (Fig. 6.4). As one can see, already a very small deformation wipes
out the characteristic sharp β

(1pz)
2 -minimum of the spherical model. The same

applies for the cross-section σ(1pz) (upper right panel). A possible explanation is,
that the deformation adds further angular momentum components to the initial
state, for instance, for a quadrupole deformation the deformed initial state can

17 The original jellium parameterization is used again (jellium 1).
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6 Frequency dependence of PAD in small sodium clusters

be approximately18 written as follows:

ϕi(rϑϕ) = R
(i)
1 (r)Y10(ϑϕ) + ηR

(i)
2 (r)Y20 ,

where η ∝ α. Theses components open new channels for the transition of the
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Figure 6.10: Anisotropy and cross-section in static plane wave approximation, as a
function of kinetic energy. Upper panels: 1pz state in Na8 deformed jellium model with
different degrees of deformation α (α = 0 is spherical). Lower panels: Static model for
Na8 with explicit ionic structure. For comparison, the corresponding cross-sections of
Na8 spherical jellium are also plotted in the lower right panel.

electron into a continuum state. The behaviour of β(i)
2 as a function of ǫkin becomes

now less predictable since the favorite emission direction of the new channels is
unknown, in principle. In order to observe sharp minima in the cross-section
σ(i), not only the transition integral R0 and R2, but also R3 and R1 must take
negligible values, each at similar frequency. This event is much more improbable
and great fluctuations are smoothed out. The additional channels also lead to

18 “Approximately” because the functions R(i) depend actually also on ϑϕ.
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6.4 Role of deformation

a higher cross-section as seen in the lower right panel when compared to the
spherical jellium results.

A more realistic and detailed description of the ionic background is provided
by pseudo-potentials. Pseudo-potentials do not change only the overall form of
the electronic density, but constitute a strong, located modification of the initial
wavefunctions corresponding to high angular momentum. Analogously to the
previous perturbative approach, the initial wavefunction of the 1pz state was
extracted now from a calculation using explicit ionic background. The final state
is still a plane wave, the averaging was performed again with the help of the
analytical scheme. Same procedure was followed for the 1s and 1px,y states in
Na8.

The result is plotted in the lower panels of Fig. 6.10. Below ǫkin . 0.5Ry all
curves follow the expected behaviour: for the p states, there is a decline in β

(1p)
2

towards negative values, for the s state β
(1s)
2 ≈ 2. The pattern totally differs for

high kinetic energies. The anisotropy for the p state dramatically falls off towards
values around zero, the one for the s state even takes negative values. The strong,
located modification of the initial wavefunctions in r-space represents in k-space
in fact deviations at the level of higher wavenumbers k. These deviations are
filtered out at high kinetic energies in the transition integral (6.12). Furthermore,
in spherical coordinates the modified initial state constitutes a mixture of states
with different angular momentum, i.e., ϕi = R

(i)
1 Y10+

∑
lmR

(i)
lmYlm. An interesting

aspect is that the additional angular momentum content prefer to emit isotropic
or even transverse to the laser polarization.

6.4.2 Time-dependent calculations

This section presents exclusively full time-dependent calculations. In analogy to
the last section, anisotropy and yield have been calculated in Na8 with deformed
jellium as well as with explicit ionic structure. The results are drawn in Fig. 6.11
(upper panels: jellium; lower panels: ionic background). The deformation parame-
ter α = 0.05 of the jellium calculation is chosen such that the quadrupole moment
(of the electronic density) matches the one computed with full ionic background.
The intensity of the 60 fs laser pulse was again scaled in order to keep ionization
in a perturbative range of one-photon processes so that the analytical averaging
(semi-perturbative scheme) can be applied. According to the previous section, the
perturbation theory predicts for the jellium model a smoothing of the anisotropy
as soon as deformation comes into play. The corresponding full time-dependent
calculation in the upper panels of Fig. 6.11 confirms that. The deformation adds
further angular momentum components to initial and continuum state which pre-
vent anisotropy and yield from dropping into a sharp minimum.
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6 Frequency dependence of PAD in small sodium clusters

Using even stronger deformation like explicit ionic structure (lower panels),
seems now to completely wipe out the minimum. The anisotropy remains here
quite constant. The detailed ionic structure reduces the maximum anisotropies
of β2 ∼ 1.6 for the p states around 25% [72] when compared with the spherical
jellium result.
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Figure 6.11: Anisotropy and cross-section of the occupied states in Na8 within full
TDLDA. Upper panels: 1p states in Na8 spherical and deformed (α = 0.05) jellium.
Lower panels: Result for explicit ionic structure. For comparison, the spherical jellium
result is also plotted in the lower right panel. The laser intensity is scaled with the
frequency according to I = 1014 W/cm2× (ωlas/Ry)8 for jellium and I = 1012 W/cm2×
(ωlas/Ry)4 for ionic background. Overall pulse length was Tpulse = 60 fs.

The discrepancy between the background models can be attributed to the local
modification of the continuum state at small distances r (in the region of the
cluster potential). Following the discussion in 6.2.2.1, the continuum state is
then not a simple plane wave being sensitive for a single frequency only, but
becomes a distorted (Coulomb) wave, contains rather a continuum of frequencies
and is distributed over a great variety of large momentum components. Thus,
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the transition integral filters deformations of the initial state already at small
kinetic energies. The chances for occasional coincidence of nodal lines of the
transition integral are even less than for the quadrupole deformed jellium. Hence,
anisotropy as well as yield remain quite constant. The mix of angular momentum
contains always some pieces with isotropic or transverse scattering which have
the effect of lowering β

(i)
2 , as discussed in the previous section (for the plane wave

approximation).
A final word on the state dependent ionization shown in the lower right panel

of Fig. 6.11. Comparing the 1s depletion with the 1p depletions, one notices that
for low frequency the laser removes electrons preferentially from the upper bound
p states, whereas for high frequency electrons are extracted about equally from
all states. This trend is a general feature and appears also in other Na as well as
organic clusters [26]. The trend does not seem to hold for the jellium background.

6.5 Static and time-dependent results for Na−

7

As a final example, this section discusses results from the negatively charged
cluster Na−7 . This cluster is of particular interest since there are systematic mea-
surements available [92]. Figure 6.12 shows the obtained g.s. spectra of the oc-
cupied s.e. states with ionic and spherical jellium background, respectively. The
jellium parameterization (rs = 3.6 a0 and σjel = 0.4 a0) differs slightly from the
usual one in order to better reproduce the experimental ionization potential of
IPexp = 0.099Ry which is, of course, much lower than in neutral clusters.

Due to the extensive spread of the electronic cloud in Na−7 , calculations have
been performed in huge numerical boxes: for ionic background in a three-dimen-
sional cubic box of (160·0.8 a0)3, and for the spherical jellium in a two-dimensional
cylindrical box of radius (300 · 0.2 a0) and height (900 · 0.2 a0).

Static calculations In order to get a first idea, anisotropy and yield are again
calculated in the static plane wave approximation, see Fig. 6.13. Similar to
Fig. 6.10, initial wavefunctions from explicit ionic structure have been used. Com-
paring the static plane wave model for Na−7 with that for Na8 in Fig. 6.10, only
small differences appear. The trend of the s.e. anisotropies is in both clusters sim-
ilar. The s.e. anisotropies of the p states show again the typical behaviour near
the ionization threshold whereas the 1s state anisotropy converges to β

(1s)
2 ≈ 2

in the limit of small kinetic energies. The following decline towards zero starts
for the negative cluster already at smaller kinetic energies. This is due to the
differences in the IP and the strength of the binding potential.
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Figure 6.12: Ground-state spectra of occupied
s.e. states for Na−7 . Left column: detailed ionic back-
ground. Right column: Jellium model. The calculated
s.e. energies are ǫ1 = −2.82 eV, ǫ2 = −1.72 eV, and al-
most degenerate ǫ3,4 = −1.42 eV for ionic background,
and ǫ1 = −3.12 eV and three-fold degenerate ǫ2 =
−1.59 eV for the jellium model. The ionization poten-
tials are IPion = 0.104Ry and IPjel = 0.117Ry. For
comparison, the s.e. binding energies obtained from
experiment [92] are ǫA = −1.35 eV, ǫB = −1.57 eV,
ǫC = −1.73 eV for the 1p states. The ionization poten-
tial is then IPexp = 0.099Ry.

Time-dependent calculations In the second step, TDLDA calculations have
been performed for explicit ionic background as well as for the spherical jellium
model. The laser intensity is again scaled to maintain similar ionization for all
frequencies. The laser frequency ranges from 1.5 to 18 eV (Tpulse = 60 fs). The
result is plotted in Fig. 6.14. It shows the s.e. anisotropy β

(1p)
2 of the p shell in

jellium and ionic model on the left panel, and the total ionization Nesc in the
jellium model on the right.

Close to the ionization threshold, both models show negative values and are,
in fact, very similar. Apparently, the long outgoing waves do not resolve the
details of the initial state. Additionally, the anisotropy exhibits the characteristic
decline near the threshold. Due to the weak ionic background, the influence of
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Figure 6.13: Anisotropy and cross-section for the occupied s.e. states in Na−7 with
explicit ionic structure in plane wave approximation, as a function of kinetic energy.

96



6.5 Static and time-dependent results for Na−7

the binding potential on the outgoing continuum wave can be neglected. Thus,
the plane wave for the final state seems to be a reasonable approximation for the
continuum wave.

At higher energies the known difference between jellium and ionic background
establishes. The jellium model produces values near two and occasional deep
dips. In contrast, again nearly constant values around 1.5 for β

(1p)
2 appear for

ionic structure, similar to Na8. The outgoing waves resolve here the details of the
initial states, i.e., the located modifications due to the pseudo-potentials and do
also “feel” themselves the effect of the pseudo-potentials. The remaining isotropic
component at higher ωlas is the typical result for ionic structure.
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Figure 6.14: Anisotropy for the p states in Na−7 with explicit ionic structure as well as
jellium model and total emitted density (jellium model), calculated in full TDLDA, as
a function of laser frequency.

The right panel in Fig. 6.13 shows the total emitted density as a function of
ωlas for the jellium model. As one can see, it shows again nicely the photoioniza-
tion oscillations also observed in Sect. 6.2.2.3, but here already at small energies,
probably because of the negative charge of the cluster.

Fig. 6.15 finally shows again the (most realistic) ionic TDLDA result near the
IP and compares it with experimental data available in this energy range. As
predicted by the calculation, the measurement exhibits negative values close above
the IP and values around β

(1p)
2 ≈ 1.5 for higher frequencies. Calculation and

experiment match very well in this case.
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6.6 Summary

This section presented static, perturbative methods for calculating PAD in small
sodium clusters and compared them with full time-dependent calculations. As an
important question appears whether the final state wavefunction can be approxi-
mated by a plane wave. A crucial point here is the considered kinetic energies of
the outgoing electrons.

Long outgoing waves do not “see” the fine structure of the binding potential
of the residual cluster. Hence, it does not matter if pseudo-potentials or jellium
model are used. What first counts is the rough shape and mean depth of the
potential. The negative charge of Na−7 , e.g., strongly weakens the mean binding
potential which in consequence can be neglected for waves close above the ion-
ization threshold, and long plane waves become a good approximation for the
final state. Moreover, all angular components are equally distributed in the final
plane wavefunction. In other words, what is dominating in the angular distri-
bution is the main angular momentum of the initial state! As a consequence,
pseudo-potentials and jellium model behave similar near the IP.

In contrast, in the neutral Na8 cluster, the potential depth is neglectable only at
high kinetic energies. Hence, for short outgoing waves the remaining fine structure
of the binding potential plays the major role. Ionic and soft jellium background
strongly mismatch. In the ionic model, the plane wave approximation definitely
fails. Final state as well as angular distribution are more complex. A good
knowledge of the final state is required just as it is for the initial state. An
analytical description seems to be hardly possible all the more so as dynamic
effects in the coarse of the emission process come into play.

Briefly, the best chances in order to filter the main angular content of the ini-
tial states are given by performing a laser frequency scan in (strongly) negative
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6.6 Summary

systems close to the ionization threshold. In this case, the angular distribution
is a finger print of the initial wavefunction. In any case, static models, including
the Bethe-Cooper-Zare formula, have to be handled with care since they do not
account for dynamic effects such as rearrangement which, however, have consid-
erable influence on ionization of clusters.
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7 Buckminsterfullerene

Since its discovery by Kroto et al. [94] in 1985 which was awarded with the Nobel
Prize19, the buckminsterfullerene C60 attracts more and more interest among sci-
entists. This is all the more so as methods for extraction of macroscopic quantities
have been developed over the years [96] paving the way for various experiments
and findings on this remarkable molecule. Up to now, C60 shows a bunch of
outstanding properties in theory as well as experiment:

C60 is extremely stable for a cluster of such a size. Together with C50 and
C70, it is clearly favored during the formation process in comparison with other
even clusters [97, 98] which suggests that it has a closed-shell electronic structure.
Ionization potential and HOMO-LUMO gap are very high. Moreover, the low
electron affinity (EA = 2.65 eV [99]) makes it resistant to chemical attack. The
ionic “football configuration” which also resembles the geodesic domes designed
by Buckminster Fuller, is highly symmetric. This necessarily effects the electronic
structure. Photoelectron spectra show sharp, well-defined, molecular-like features
which is related to the fact that several orbitals are degenerate or close in energy [3,
4, 100–102]. Additionally, continuum wavefunctions are in spite of the cluster size
still dominated by a small selection of angular momentum components. Hence,
selection rules and forbidden transitions come into play. Benning et al. [3] first
observed also an oscillating behaviour of the partial cross-sections of the highest
occupied molecular orbitals at large photon energies (∼ 20−100 eV). These energy-
dependent intensity oscillations in particular of the HOMO and the HOMO-1
were explained later by the geometrical properties of the cage structure and the
distribution of the delocalized electron cloud [90, 103, 104].

Another noteworthy property is the “giant plasmon resonance” predicted in 1991
by Bertsch et al. [105] and experimentally verified a few months later by Hertel
et al. [106]. This very broad, collective resonance is centered around 20 eV. An
additional, not so prominent resonance near 40 eV was also reported [107]. Both
resonances are well above the ionization potential so that an important decay
mechanism is the emission of electrons.

Concerning ionization mechanisms C60 differs essentially from Na clusters in
the occurrence of delayed ionization [5, 108, 109] which starts on a nanosecond
to microsecond time scale after excitation with ns pulses. In fact, depending
on the excitation duration four basic ionization mechanisms can be observed in
19 1996 Nobel Prize in Chemistry for H. Kroto, R. Curl, and R. Smalley [95].
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7 Buckminsterfullerene

clusters: 1) direct/above-threshold ionization, 2) tunnel ionization, 3) thermal
electron emission, and 4) thermionic emission. Processes 1 and 2 dominate af-
ter excitation with very short fs laser pulses. Depending on the intensity (and
the Keldysh parameter) either ATI or tunnel ionization occur. The PES mea-
sured in this domain reflects the single-particle and excited-state spectrum. The
PAD depends on the angular momentum coupling of initial and final state and
is, in general, anisotropic. For longer pulses (∼ 100 fs), the electronic subsystem
gets more and more heated while the ions remain unaffected (vibrationally cold).
Through electron-electron collisions the electronic degrees of freedom are equili-
brated. Thus, possible emission of electrons becomes statistical at this stage and
decays Boltzmann-like, the PAD becomes isotropic (Process 3). Within pico- or
hundreds of femtoseconds the hot electronic subsystem couples then to the ionic
degrees of freedom. After transfer of the energy to the ions and cooling of the
electronic system, electron emission firstly collapses. At this stage, both electrons
and ions are in perfect thermal equilibrium. Subsequently, weakly bound sys-
tems like sodium clusters usually cool down by evaporation of atoms or fragments
[11, 110, 111] since their dissociation energy is far below the ionization potential.
In contrast, in C60 and systems where the dissociation energy is larger than the
IP, delayed ionization as a second type of thermal, statistical electron emission
may occur (Process 4).

All these remarkable properties have lead to more and more sophisticated ex-
perimental setups and detailed studies on C60. For example, starting with PES
[3, 4, 100] and PAD [8] experiments separately, both are nowadays measured in
combination [14, 15, 112]. There exist also recent, theoretical studies on photoab-
sorption and photoemission using a time-dependent approach [80, 104, 113]. Most
of them are based on the jellium model [27]. As already mentioned in Chapter 2,
the ions are in this case thought of smeared out over a spherical shell with outer
and inner radius. This type of jellium model does not deliver the right sequence
of “magic” numbers. For example, for the C60 cluster the nearest closed electronic
shell is located at Nval = 250 electrons. According to the previous results on small
Na clusters, it is, however, highly recommended to account for the explicit ionic
structure in order to get a detailed insight into photoionization processes. This is
all the more so, since the number of ions in C60 is much larger than that of the
studied Na clusters.

The following sections are dedicated to the results obtained for C60. Among
all the approaches presented in the previous chapters, the most detailed using
TDLDA including explicit ionic structure through non-local Goedecker potentials
has been applied. Direct averaging is performed for calculation of orientation-
averaged PAD and PES (Sect. 7.2). Systematic studies in both one- and multi-
photon regime are presented (Sects. 7.3 and 7.4, respectively). It shall be started
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7.1 Basic properties

with an introduction to the basic properties found within this approach.

7.1 Basic properties

7.1.1 Ionic structure

The 60 atoms in C60 constitute an ionic configuration which can be described as
a truncated icosahedron, see Fig. 7.1. This truncated icosahedron consists of 20

2lp + lh
lh

lp

system Rs [a0] lp [a0] ls [a0] reference
condensed C60 — 2.750 2.629 [114]
free C60 6.721 2.755 2.648 [115]

6.441 2.650 2.508 used in this work

Figure 7.1: Ionic configuration (top left) constructed from a truncated icosahedron and
bond lengths of C60.

hexagons and 12 pentagons. Each pentagon is surrounded by hexagons. The 12
pentagons form 6 pairs of opposite faces, the 20 hexagons form 10 pairs of opposite
faces [116]. All atoms lie on a sphere of radius Rs. The icosahedron (=̂ 20 regular
triangles) is truncated in such a way that the resulting pentagons are regular with
side length lp and the hexagons are irregular with side lengths lp and lh. The table
in Fig. 7.1 shows experimental values for Rs, lp and lh. The configuration used
in the calculations differs slightly, but still retains the full symmetry. Moreover,
it is expected that small changes of ionic configuration and bond lengths do not
significantly effect the electron dynamics.

7.1.2 Electronic structure, ionization potential, and gaps

Figure 7.2 shows an iso-surface plot of the calculated electronic density in C60 (left)
and the electronic density in the plane of a hexagon (right). Like in all calculations
for C60, non-local Goedecker potentials (see Sect. 2.1) have been used. As one can
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7 Buckminsterfullerene

see, the pseudo-potentials concentrate the electronic density well around the ions
and leave a large void in the middle of the ball. This is somewhat inconsistent with
the pseudo-potential calculations on Na clusters (Fig. 5.4) where the electrons are
kept away from the cores. Apparently, the attractive force predominates the Pauli
repulsion more strongly.
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Figure 7.2: Left: Iso-surface plot of the calculated electronic density. Right: Electronic
density in the plane of a hexagon.

The exceptional electronic setting places particularly high computational de-
mands. On the one hand, the large diameter of the molecule desires a large
numerical box, i.e., a large grid spacing. On the other hand, the electronic den-
sity is distributed on a small surface and exhibits rich structure there which a
small grid spacing would be optimal for. The calculation on a grid of size 963

with spacing dx = 0.82 a0 represents a compromise leading to reasonable values
for the obtained s.p. energies.

According to photoemission experiments [3, 4, 100] and pseudo-potential local-
density calculations [101, 102] it is possible to group the 240 valence electrons
into 60 π and 180 σ electrons. The radial wavefunctions of the π electrons have
one node (n = 2) each around the radius of the cage, while the σ wavefunctions
exhibit none (n = 1). All radial wavefunctions with same n are nearly the same.
Moreover, in spite of the ionic structure each wavefunction has a single dominating
angular momentum component. The bound wavefunctions can thus be labeled as
πl or σl, respectively. It has been also shown that orbitals of the same type are
close in energy. The bottom of the valence band is made of σ state, the top of
π states. Orbitals with increasing l have increasing energy [102].

The effect of the ionic configuration on the electron structure has been studied
by others in detail with local-density calculations using “soft” pseudo-potentials
[101, 102]. The non-spherical components of these pseudo-potentials, split all
πl and σl bands with main angular component l ≥ 3 and l ≥ 5, respectively.
As a consequence, the π5 and σ9 subbands which actually could occupy in total
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7.1 Basic properties

22 and 38 electrons, are then only partly filled. In contrast to the spherical
jellium shell with a closed electronic shell at Nval = 250, new “magic” numbers
therefore arise (Nval = 240) as soon as the icosahedral symmetry of the cluster
is taken into account. The two highest occupied molecular orbitals, the HOMO
and HOMO-1, are both of π character. The HOMO is a subband of the π5 shell
(odd l: ungerade symmetry) filled with 10 electrons. The next deeper lying shell
π4 is also of π character, but has now gerade symmetry and is fully filled. All π4

subbands are very close and represent the 18-fold degenerate HOMO-1.
Figure 7.3 shows the spectrum of occupied s.e. energies (spin up & down) cal-

culated with Goedecker potentials in a 963 grid as mentioned above. The first few
unoccupied states are also sketched. As expected, the 120 different occupied levels
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Figure 7.3: Spectrum of s.e. energies
in C60. Solid blue lines: occupied;
dashed red lines: unoccupied states.
The HOMO is occupied by 10 electrons,
whereas the HOMO-1 by 28 electrons.

are reduced to a significant lower number of bands. Moreover, there is a huge span
of about 1.5Ry between HOMO and the lowest occupied state. The degeneracy
of these bands is also given. The HOMO is five-fold degenerate and well separated
from the rest of the occupied and unoccupied states which is in good agreement
with other work presented above. Thanks to the pseudo-potentials there is also
no conflict concerning shell closings, the 240 electrons build a closed electronic
structure. Also the binding energy, i.e., the ionization potential of IP = 0.59Ry
which is comparable to Na clusters, matches very well with other experimental
data, see Table 7.1. However, the second highest occupied shell, the HOMO-1
which should be nine-fold degenerate, splits into several subbands with different
degeneracy. This may be a deficiency of the sparse grid and/or pseudo-potentials.
Unfortunately, the πl and σl character of the occupied states has not (yet) been
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examined. It is possible that the 14-fold degenerate subband of the HOMO-1 is of
σ character and that its bound energy is underestimated. Nevertheless, the gap
between HOMO and HOMO-1 amounts to ∆HH−1 = 0.13Ry, the one between
HOMO and LUMO is ∆HL = 0.13Ry. Both values are in acceptable agreement
with experiments.

system ∆HL [eV] ∆HH−1 [eV] IP [eV] reference
C60 fullerite 1.9 1.4 7.3 Weaver et al. [100]

1.6 Skumanich [117]
7.6 Lichtenberger et al. [118]

C−
60 free 1.5− 2.0 Yang et al. [97]

C60 free 2.14 1.8 Sattler [119]: pp. 45-5, 27-11
7.61 Lichtenberger et al. [120]
7.61 Zimmerman et al. [98]
7.58 de Vries et al. [121]

1.6 Liebsch et al. [8]
1.77 1.8 8.0 this work
(0.130) (0.133) (0.588Ry)

Table 7.1: Experimental values for HOMO-LUMO gap ∆HL, gap between HOMO and
HOMO-1 ∆HH−1, and ionization potential compared with theoretical results of this
work.

7.1.3 Dipole response

Theoretical [105] and experimental work [106, 107] predict a “giant surface plas-
mon resonance” at around 20 eV in the photoabsorption cross-section. This value
matches surprisingly well with predictions of the classical Mie theory: for a solid,
homogeneously charged sphere the (multi-pole) plasmon frequency is given by:

ω2
l =

4πρe2

3m
· 3l

2l + 1
=

4Nval

R3
· 3l

2l + 1
Ry2 a30 ,

with Nval being the number of valence electrons, R the radius of the sphere, and
ρ = 3Nval/(4πR

3) the charge density. Setting l = 1 for the dipole resonance
yields the well known Mie formula. In contrast, for a spherical, infinitely thin
electronic shell with ρ = Nval/(4πR

2) which is rather similar to the electronic
density supposed in C60, the frequency is [122, 123]:

ω2
l =

4Nval

R3
· l(l + 1)

2l + 1
Ry2 a30 .
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7.1 Basic properties

Inserting now Nval = 240, R = 6.683 a0 (which accounts roughly for the extensions
of the electronic cloud) and l = 1, yields ω1 = 1.46Ry ≈ 20 eV.

Besides the giant resonance, several sharp excitations below ∼ 8 eV have been
found theoretically [124–126] and experimentally in solid [127, 128] and in gas
phase C60 [129]. Moreover, a broad volume-like plasmon at around 40 eV [107, 130]
has been reported. The appearance of more than one collective mode is in contra-
diction to the photoabsorption cross-sections of Na clusters. The ionic structure
of C60, however, causes the electrons moving in a narrow shell far away from the
center of the cage. The sharp edges of the shell divides the valence electrons
according to their radial wavefunctions into two types, the π and σ electrons. It
appears therefore logical that the photoabsorption cross-section differs substan-
tially from that of Na clusters [104].

The photoabsorption cross-section was calculated through an instantaneous
boost of all s.p. wavefunctions, similar to Sect. 5.3.1 for Na8. The result is plotted
in Fig. 7.4. It shows the dipole strength function SD(ω) in linear (left panel) and
logarithmic scale (right). The boost ionizes the system only weakly, Nesc = 0.04.
As a consequence of the (almost) spherical symmetry of the electronic system,
the strength is identical along all three directions. Below the ionization potential
of IP = 8 eV, the dipole response exhibits several excitations. The excitation at
6.0 eV is very prominent. Above the IP the response is dominated by a broad
resonance of width ∼ 10 eV with peak position at 19.6 eV, superimposed with
1ph excitations and strongly fragmented. No feature is visible at energies above
∼ 30 eV.
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Figure 7.4: Dipole response of C60 obtained through an instantaneous boost in x-, y-,
and z-direction. The IP is indicated with a dashed, vertical line.

As already mentioned, the s.p. wavefunctions have not been examined with
respect to their radial behaviour. Thus, only the total photoabsorption cross-
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7 Buckminsterfullerene

section can be presented here. With the current state of research, the lower
excitations correspond to excitations of the highest occupied levels and have a
π − π∗ character (below . 14 eV), while at higher energies transitions also from
the σ subsystem contribute. The giant resonance at 20 eV can be ascribed to a
plasmon of all valence electrons (π+σ plasmon). The width of the plasmon is due
to the high density of 1ph excitations triggering Landau damping (Landau width).
Moreover, in contrast to simple metal clusters, the energy of the plasmon is far
in the continuum. Hence, it can decay fast through electron emission, possesses a
short lifetime and is even broader in energy scale (decay width). The prominent
excitation at 6.0 eV could be related to a collective resonance of the π electron
system (π plasmon). Its position agrees well with other TDLDA calculations
[125] and measurements [129]. The two modes of the surface plasmon are purely
dynamical and cannot be seen in static calculations based on the independent-
particle assumption [104]. The lowest excitation peak of about 4.1 eV is larger than
the HOMO-LUMO gap which suggests that both states have the same angular
momentum (l = 5) and that transitions between HOMO and LUMO are optically
forbidden.

Experiments [107, 130] also reported a second giant resonance which is not
present in Fig. 7.4. This resonance, however, is even further in the continuum
than the one at 20 eV. As a consequence, it is much broader and only visible in
the experimental data as a small hump at about 40 eV.

The resonance at 20 eV is strongly fragmented. This is only partly due to
1ph excitations lying in the vicinity of the plasmon, but also artificial as the fi-
nite numerical box discretizes the continuum.20 One can overcome this problem
through smoothing of the dipole response by hand. This can be achieved by mul-
tiplication of the dipole momentum in the time-domain with a cut-off function,
e.g., cosNfilt(tπ/2Tfin), before applying the Fourier transformation. In fact, this
is always necessary in small boxes since the dipole signal never dies out and the
Fourier transformation of the sheer signal gives rise to artifacts. The smooth-
ing can be tuned through the power Nfilt. In practice, the extra width in the

20 Supposing a hard, numerical grid without absorbing boundaries. The small box sizes as
they are used here, effect that reflection of emitted electrons crucially influence the result.
Standings waves can set up and artificially discretize the spectrum similar to a spherical
potential well. The discretization can be approximated through the echo time Techo = L/v
of a reflected wave, where L is the dimension of the box and v the velocity of the emitted
electron [55]. Taking as kinetic energy the energy of the giant plasmon, Ekin = 20 eV, and
L = 96 · 0.82 a0 yields velocity and echo time of v ∼ 50 a0/fs and Techo ∼ 1.55 fs, respectively.
The corresponding box level spacing is then ∆ǫ = ~π/Techo ∼ 0.1Ry. Switching on the
absorbing layer, of course, smoothes the spectrum, i.e, reflection of continuum waves of
certain wavelengths at the boundaries is suppressed, but not fully wiped out which in turn
still could leave a partly fragmented spectrum.
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spectrum obtained by the filtering should be larger than the box level spacing.
The spectrum in Fig. 7.4 was obtained with a very small filtering, Nfilt = 4. In-
creasing the filtering to Nfilt = 100 yields the response as it is shown in Fig. 7.5
(red line). The response appears now much smoother, but still exhibits some
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Figure 7.5: Smoothed dipole re-
sponses of C60 of a full TDLDA calcu-
lation and a TDLDA calculation with
frozen g.s. Kohn-Sham potential (x-
mode only).

structure. In contrast, all experimental results show a rather homogeneous pho-
toabsorption cross-section. The remaining difference may be attributed to several
issues. First, electron-electron collisions in the form of 2ph, multi-electron ex-
citations and thermalization of the electronic subsystem are not considered in
TDLDA. These collisions might have a blurring effect on excitations as well as
plasmon resonances. Second, in experiments, some part of the deposited energy
is always transferred to ionic motion, in other words, the experimental sample
usually has a finite temperature. This induces fluctuations of the cluster shape
which, in turn, might also broaden the electronic excitations.

Figure 7.5 also displays the response obtained when keeping the K.S. potential
fix. This should then deliver only 1ph excitations. As can be seen, the plas-
mon at 20 eV disappears which demonstrates its collective nature. Moreover, 1ph
excitations are present up to about 1.5Ry.

Finally, as a side note, the artificial discretization of the continuum is not only
visible in the dipole response as a function of oscillation frequency, but also in
the total number of emitted electrons Nesc as a function of ωlas after excitation
with a laser. The smooth trend seen, e.g., in Fig. 6.11 for the Na8 cluster in a
(96·0.8 a0)3 box with nabsorb = 8 suggests, however, that the size of the box and
the width of the absorbing layer have been well chosen in this case.
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7.2 Averaging and integration scheme

Before presenting PAD and PES of C60 after laser excitation, the procedure used
for determination of the orientation-averaged observables shall be introduced. As
already mentioned, for all calculations on C60 non-local Goedecker potentials ac-
counting for the explicit ionic structure have been used. According to Fig. 7.2
the resulting electronic setup of C60 is clearly non-spherical. Averaging is conse-
quently necessary, in particular, for determination of the anisotropy β2. In order
to perform calculations in one- and multiphoton regime while keeping consistency
in the applied methods, the direct averaging scheme is chosen (see Sect. 4.3). Al-
though direct averaging needs generally a lot of calculations, one can exploit here
the symmetry of the cluster. Five different orientations have been considered.
They are indicated as follows:

(�) the center of a hexagon is oriented along the laser polar-
ization

20 Λ1 = 2.30

(�) center of a pentagon 12 Λ2 = 0.92
(N) edge of two hexagons (in the middle of two vertices) 30 Λ4 = 2.15
(△) edge of a hexagon and a pentagon (in the middle of two

vertices)
60 Λ5 = 4.03

(•) vertex (ionic positions) in direction of the laser 60 Λ3 = 3.16
182 4π

The weight factors Λi are again determined through division of the unit sphere
into segments:

dσ

dΩ
=

5∑

n=1

Λn
dσ

dΩ

∣∣∣∣
n

= C0Y00 + C2Y20 + C4Y40 + . . . (7.1)

Due to the symmetry of the cluster, this averaging is effectively a 182-point central
symmetric averaging, see Fig. 7.6. For comparison, for sodium clusters already
18 orientations had converged. Hence, it can be safely assumed that the current
sampling is sufficiently fine.

The averaging was done on PAD and PES. For the integration of the PES
M = 308 measuring points have been initialized:

dσ

dǫkin
=

308∑

m=1

λm
dσm

dǫkin
,

dσ

dǫkin
=

308∑

m=1

5∑

n=1

λmΛn
dσm

dǫkin

∣∣∣∣
n

.

The total anisotropy parameters are, in general, extracted from the PAD,
Eq. (7.1): βl =

√
2l + 1Cl/C0. But also the combined PES/PAD can serve for
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x y

z

γ

β

Figure 7.6: Orientation points used for calcula-
tion of averaged PES and PAD. Due to the cluster
symmetry, all points can be reduced to 5 orthog-
onal orientations indicated with (�), (�), (N), (△),
and (•). The orientation points were rotated into
the z-axis of the laboratory frame, by a first rota-
tion γ(0 ≤ γ < 2π) about the z-axis (of the labo-
ratory frame) and a second rotation β(0 ≤ β < π)
about the y-axis.

determination of an energy-resolved anisotropy:

d2σ

dΩ dǫkin
= C0Y00 + C2Y20 + C4Y40 + . . . , (7.2a)

with

Cl(ǫkin) =

M∑

µ=1

5∑

n=1

λµΛnYl0(Ωµ) ·
dσµ

dǫkin

∣∣∣∣
n

, (7.2b)

and

Bl(ǫkin) =
√
2l + 1

Cl(ǫkin)

C0(ǫkin)
. (7.2c)

In principle, the energy-resolved anisotropies integrated over ǫkin should agree
with the βl:

βl
!
=
√
2l + 1

∫
dǫkin Cl∫
dǫkin C0

.

7.3 Photoemission in one-photon domain

7.3.1 First results – Velocity maps

At first, PES and PAD were calculated at the frequency ωlas = 2.5Ry for two
different intensities I1 = 1010 and I2 = 1012 W/cm2. The lower intensity yields
an ionization in the perturbative range, σ1 = 0.006 electrons, whereas the clus-
ter is strongly ionized for I2, σ2 = 0.57. At the chosen frequency the whole s.p.
spectrum is within the range of possible one-photon processes. The pulse length
of Tpulse = 30 fs ranges for both calculations in the short fs regime where direct
emission is expected to be the dominant ionization mechanism according to exper-
imental results. In this way, the theory which does not account for thermalization
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7 Buckminsterfullerene

of the electronic subsystem can be better compared to experiments performed on
the same time scale.

Figure 7.7 shows an example of a PAD for one fixed cluster orientation (orien-
tation •). The PAD shows rich structure and reflects the ionic configuration. This
is related to the fact that the binding potential seen by the outgoing waves cannot
be neglected as it is perhaps the case for the small, negative Na−7 cluster. Quite
the contrary, the deformation of the initial and final wavefunctions is supposed to
be large due to the high number of ions/scattering centers and also just due to
the high occupied angular momentum components. This deformation is, of course,
reflected in the PAD. Orientation averaging is thus needed for determination of
anisotropy parameters. The latter are expected to be smaller when compared
to small Na clusters since deformation and complexity of the wavefunctions add
more isotropic content to the one-photon PAD as stressed in Chapter 5.

0 π 2π

ϕ

0

π
2

π

ϑ

1.5x10−5

6.0x10−5 Figure 7.7: PAD for configuration
(•). Laser parameters: ωlas = 2.5Ry,
I2 = 1012 W/cm2, Tpulse = 30 fs. The
total ionization was Nesc = 0.56.

The next figure displays orientation-averaged PAD (left column) and OA-PES
(right column) for both intensities. The PAD at weak intensity (upper left panel)
exhibits considerable spurious ionization at ϑ = 0, π/2, π. Subtraction of the
background yields then a distribution which clearly follows 1 + β2P2. The PAD
at higher intensity (lower left panel) differs insofar that the emission signal due
to the laser field exceeds the spurious background. The extracted anisotropy
parameter of β2 = 0.38 is for both distributions identical. The anisotropy thus
seems to be very robust to intensity variation. The reason for this is that due
to the relatively high laser frequency photoelectrons from two- or multiphoton
processes have already such a high kinetic energy that their transition probability
becomes negligible. Multiphoton processes are thus strongly suppressed and the
PAD remains dominated by one-photon processes.

The value of β2 = 0.38 is very low when compared to sodium clusters. This
is again due to the influence of the ionic structure. For sodium it was observed
that the ionic structure decreases the anisotropy about ≈25%. This effect should
be even stronger in C60, since the number of ions is much higher than for the
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Figure 7.8: OA-PAD and PES for the two intensities, I1 = 1010 (low) and I2 =
1012 W/cm2 (high) at ωlas = 2.5Ry (Tpulse = 30 fs). The low intensity yielded σ1 = 0.006,
the high one σ2 = 0.57 ionized electrons.

considered sodium clusters with N = 3−19. Additionally, for carbon clusters the
coupling of the electrons to the ions may be even stronger than for simple metal
clusters.

In the upper right panel, the PES for the perturbative case (I1) is compared to
the level depletion:

dσ

dǫkin
=
∑

i

σ(i)Gi(ǫkin) ,

assuming that ǫkin = ǫi + ~ωlas (ν = 1). The Gaussian functions are defined in
Eq. (5.3). Again, the width σlas ≈ 0.012Ry has been chosen according to the
resolution of the pulse (Tpulse = 30 fs, ωlas = 2.5Ry). Each function is weighted
with the corresponding (averaged) s.p. depletion σ(i). For comparison, the blue,
dotted line represents the occupation, i.e., a theoretical uniform depletion with
σ(i) = σ/240.

Depletion and PES match perfectly which again underlines that ionization
is in the linear one-photon regime for this frequency and intensity. The PES
is characterized by a dominant peak in the middle of the spectrum at around
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1.25Ry = 17 eV and exhibits rich details highly resolved down to the deepest s.p.
states. Some states are so closely that they appear just as one peak which is
related to the high symmetry and level degeneracy. A comparison of the PES to
the occupation suggests that almost all states are equally depleted. A striking
exception is the dominant peak in the middle of the spectrum which might be
a special property of the spatial matrix elements of the states contributing in
this region.

The lower right panel finally shows the PES for both intensities. In contrast to
the PAD, the PES significantly changes when going to higher laser intensities. The
sharp peaks which occur at low ionization, disappear. The s.e. energies change
during the ionization process and peaks are broadened. The PES is consequently
smoothed. Furthermore, the whole spectrum is shifted to lower kinetic energies
(Coulomb shift) due to the higher charge of the residual cluster. However, the
prominent feature in the middle of the spectrum and the more or less uniform
depletion of the other s.p. states remain.

The expansion of the PAD into spherical harmonics according to Eq. (7.1)
yields the anisotropy β2 = 0.38. This is (almost) similar to the value obtained by
expansion of the averaged PES, Eq. (7.2),

√
5

∫
dǫkin C2∫
dǫkin C0

= 0.40 .

In addition to the PES ∝ C0(ǫkin), the sampling of measuring points (M =
308) seems so to resolve even higher orders of angular momentum. Taking the
anisotropy B2(ǫkin), it is thus possible to plot the (one-photon) velocity map

dσ

dcosϑ dv
= mev

σ

2π
(1 + B2(v)P2) ,

i.e., a double-differential cross-section with ǫkin = mev
2/2. The angle-resolved

PES for ωlas = 2.5Ry and the two different intensities are shown in Fig. 7.9 (left
and middle). As expected, both distributions are symmetric, ϑ ←→ π − ϑ. In
both cases, most of the outer and inner shells prefer to emit parallel to the laser
polarization, even though only very slightly. The trend to parallel emission seems
to emerge for stronger intensities. The emission out of the dominant peak in the
middle of the spectrum, however, remains more or less isotropic.

The next step was to modify the laser frequency. Figure 7.9 also displays the
map for ωlas = 1.5Ry (close to the plasmon), I ∼ 108 W/cm2, and Tpulse = 60 fs.
These parameters yielded an overall ionization of σ = 0.0058. The middle of
the spectrum is now even more dominant and the velocity-map appears more
isotropic than previously. Hence, it is expected that β2 is even closer to zero. It
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•

∝v
ϑ

Figure 7.9: Velocity-maps at ωlas = 2.5Ry and Tpulse = 30 fs (left and middle). The
intensity is I1 = 1010 (left), and I2 = 1012 W/cm2 (middle). Right map: ωlas = 1.5Ry,
I = 5× 108 W/cm2, and Tpulse = 60 fs.

is to be noted that the dominant shells differ for both laser frequencies ωlas = 1.5
and ωlas = 2.5Ry. Figure 7.10 finally shows the calculated OA-PAD/PES. The
s.p. spectrum which is shown in the right panel (shifted about ωlas) is not fully
excited by one photon at this frequency. Whereas ωlas = 2.5Ry produces β2 =
0.39, the anisotropy results indeed in the smaller value of β2 = 0.29 at ωlas =
1.5Ry.

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 1

d
σ
/d

ǫ k
in

[a
.u

.]

ǫkin [Ry]

HOMO

HOMO-1

0.7

0.8

0.9

1

1.1

1.2

1.3

0 π/2 π

d
σ
/d

co
s
ϑ

[a
.u

.]

ϑ

ωlas = 1.5Ry

1 + 0.29P2

Figure 7.10: OA-PAD and PES for ωlas = 1.5Ry, I = 5 × 108 W/cm2, Tpulse = 60 fs.
The total (averaged) number of escaped electrons was σ = 0.0058. An expansion of the
PAD in spherical harmonics yields β2 = 0.29. The right panel shows the PES together
with the s.p. spectrum shifted about ωlas.
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In summary of the first results, all PAD for the frequencies ωlas = 2.5 as well as
1.5Ry follow the expected one-photon law 1 + β2P2. Hence, one-photon velocity-
maps with a dominant feature in the middle of the spectrum are generated. For
2.5Ry two intensities have been tested. The PAD shows no variation with the
intensity, but with the frequency. In contrast, the PES depends on the intensity.
At sufficiently weak ionization, the depletion matches very well with the PES and
can serve as a tool in order to determine the nature/order of the ionization. At
higher ionization, the sharp peaks are broadened, the PES gets smoothed and
shifted due to the residual cluster charge. All in all, the values of calculated
anisotropies are very small when compared to sodium clusters.

7.3.2 Systematics with frequency

As observed previously, the anisotropy β2 differs for the two frequencies ωlas = 2.5
and 1.5Ry while it shows little variation with the laser intensity. Therefore, the
behaviour of β2 as a function of ωlas has been investigated in a more systematic
way. More specifically: the laser frequency has been varied in the range from 14
to 28 eV while keeping the intensity constant, I = 7.8× 109 W/cm2.

Figure 7.11 shows total β2 and σ as a function of ωlas. The total ionization
of 0.02− 0.11 shows its maximum at about 21 eV. This corresponds well with
the maximum of the dipole response which is displayed in dotted lines. Anyway,
the shape of the ionization follows nicely the dipole response. Reminding that
the dipole response is dominated at this energy by the giant plasmon as well as
1ph excitations. Hence, both effects may play a role for emission at this laser
frequencies.
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Figure 7.11: Total anisotropy β2 and total yield σ as a function of laser frequency ωlas

around the plasmon. The (scaled) dipole response from Fig. 7.4 is indicated with dotted
lines.
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The total anisotropy also varies as a function of ωlas and takes even a negative
value at ωlas = 24 eV. This is in contrast to the result obtained in Na clusters (with
explicit ionic structure), where β2 is rather stable. On the other hand, C60 has
a lot of 1ph excitations above the IP plus the 20 eV-plasmon. These excitations
might have an influence on β2. Two-dimensional jellium calculations (not shown)
have yielded that the trend of the anisotropy complies in the frequency range of
14 to 28 eV with the three-dimensional result of Fig. 7.11, but even more variation
of β2 can be seen in the range below 1Ry. A full frequency scan is thus needed
in order to correctly interpret the behaviour of β2 as a function of ωlas and the
influence of the plasmon on the latter. It could be further helpful to explore the
state-dependent β

(i)
2 in more detail, as the total β2 is an observables integrated

over a large number of states which might mask existing effects.

7.4 Multiphoton domain

In analogy to the discussion on one-photon processes, it shall be started with an
example of a PAD for the orientation (•), see Fig. 7.12. The laser frequency of
ωlas = 0.11Ry is far below the ionization potential of IP = 0.59Ry. The intensity
of the pulse has been chosen in order to obtain an ionization of Nesc = 0.60 similar
to the one in Fig. 7.7 for the one-photon regime. Compared to Fig. 7.7, the PAD
is here strongly aligned along the laser polarization and much less structured, in
particular in direction sidewards to the laser. The outgoing waves are close to
the threshold and have low kinetic energy. In consequence, they cannot resolve
the details of the ionic structure. The strong alignment is probably due to the
fact that the multiphoton processes populate scattering states with high angular
momentum. At first glance already, the multiphoton domain differs considerably
from the one-photon domain.

Extensive studies have thus been performed with laser frequencies below the IP.
In order to have a better resolution, the pulse length is enhanced, Tpulse = 75 fs.
Variation of both, laser intensity and frequency shall be discussed. The intensity
varies from the perturbative to the non-perturbative regime.

7.4.1 Systematics with intensity

Systematic studies of PAD and PES as a function of intensity were performed
at ωlas = 0.11Ry with laser intensities21 ranging within 1.25 − 3 × 1013 W/cm2.
This resulted in ionization22 between σ = 0.03 − 0.60. The laser frequency is

21 I1 = 1.25× 1013, I2 = 1.5× 1013, I3 = 1.75× 1013, I4 = 2.4× 1013, and I5 = 3× 1013 W/cm2.
22 σ1 = 0.03, σ2 = 0.06, σ3 = 0.12, σ4 = 0.31, and σ5 = 0.60.
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2.5x10−4 Figure 7.12: PAD for configura-
tion (•). Laser parameters: ωlas =
0.1139Ry, I = 3 × 1013 W/cm2,
Tpulse = 75 fs. The total ionization
was Nesc = 0.60.

far below the IP = 0.59Ry, six and seven photons are at minimum needed for
ionization out of the HOMO and HOMO-1, respectively. Figure 7.13 shows the
OA-PAD and PES for this frequency. All PES (right panel) show a clear repeated
sequence of peaks separated by ωlas. The sequences are visible up to a very high
photon order. For small ionization, the amplitude of the repeated oscillations is at
first glance surprisingly high. Due to the s.p. spectrum spanning a huge range of
1.5Ry one would have rather expected a smooth, continuous trend. In addition, a
double peak structure seems to appear (see the inset, especially for the black line,
σ2 = 0.06) on the maximum amplitudes. The large oscillations and the double
peak pattern are smoothed out at higher ionization, but the repetition is still
visible.
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Figure 7.13: OA-PAD and PES for different laser intensities/ionization at ωlas =
0.1139Ry. The inset shows a zoom into the range ǫkin = 10, . . . , 14 eV. The expected ki-
netic energies for 13- and 14-photon processes out of HOMO and HOMO-1 are indicated
(ǫHOMO + 13ωlas and ǫHOMO-1 + 14ωlas).

The left panel shows the OA-PAD. They all have basically the same form. The
PAD gets more and more focused around ϑ = 0 , π with increasing intensity. This
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7.4 Multiphoton domain

is in contrast to the one-photon domain where the PAD remains stable with
laser intensity! Due to the low laser frequency in the present case the order of
the prominent multiphoton processes depends significantly on the laser intensity.
With increasing intensity, higher orders of multiphoton processes become more
and more probable. The angular distribution

dσ

dΩ
∼ 1 + β2P2 + β4P4 + β6P6 + . . .

extends then also to higher orders of anisotropy parameters. The following table
lists the values of β2, β4 and β6 for the different intensities:

intensity
ionization β2 β4 β6[1013 W/cm2]

I1 = 1.25 σ1 = 0.03 1.55 0.79 -0.07
I2 = 1.50 σ2 = 0.06 1.61 0.88 0.15
I3 = 1.75 σ3 = 0.12 1.66 0.92 0.30
I4 = 2.40 σ4 = 0.31 1.97 1.09 0.19
I5 = 3.00 σ5 = 0.60 2.19 1.24 0.38

Obviously, the higher the intensity the more parameters take non-vanishing
values. In turn, the higher the order l of non-vanishing β2l, the stronger the distri-
bution is peaked along the laser. This can be demonstrated with the completeness
of the Legendre polynomials:

∑

l

2l + 1

2
Pl(x)Pl(x) =

∑

2l

c2lP2l = δ(0) .

I1 = 1.25 × 1013 W/cm2
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Figure 7.14: Combined PES and PAD for the lowest chosen intensity (left; σ1 = 0.03)
and the highest one (right; σ5 = 0.6).
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Moreover, it can be noticed also in the combined PES/PAD, Fig. 7.14 (left: lowest
intensity; right: highest intensity). Both distributions exhibit a cone-like struc-
ture. For the low frequency, ionization above ≈0.6Ry is only weakly visible. At
higher intensity, the photoelectrons also reach higher kinetic energies and the cone
gains visibility.

The double peak pattern can be understood when having a closer look on
the level depletion dσ/dǫi =

∑
i σ

(i)Gi, see Fig. 7.15. As already observed in
the one-photon domain, the depletion can serve as a tool in order to determine
the ionization origin. In this case, the depletion is plotted as a function of the
s.e. energies ǫi since multiphoton processes occur and ν takes several, possible
values in ǫkin = ǫi+ν~ωlas. Additionally, only the upper bound levels are displayed.
The width of the Gaussians was again properly chosen according the pulse length.
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Figure 7.15: Depletion of the higher
s.e. states at ωlas = 0.1139Ry for dif-
ferent intensities. The depletions are
normalized to unity and compared to
a uniformly distributed depletion.

In contrast to the one-photon domain where all s.e. states are more or less
equally depleted, the main electron emission stems here from the two levels HOMO
and HOMO-1. The ionization of deeper bound states is negligible. Also the
PES emission pattern is then, of course, composed from these two s.p. states
only. This explains the large amplitude of the oscillations which allow to resolve
the multiphoton steps. Thereby, the HOMO level is excited by N photons and
the HOMO-1 by N+1 photons. For example, the inset of Fig. 7.13 shows the
expected peak positions of the two levels with ν = 13 for the HOMO and ν = 14
for the HOMO-1. At the maximum of each oscillation, two peaks occur very
close to each other, since the photon frequency does not match exactly with the
gap energy between HOMO and HOMO-1. For higher ionization, double peak
pattern as well as large amplitude are smoothed out. This smoothing is again
related to the gradual Coulomb down-shift of the spectra during ionization as
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already observed above.
In Fig. 7.15, one encounters also a transition in the depletion of HOMO and

HOMO-1. Whereas for low intensity, the HOMO depletion is larger, the reverse
situation occurs for higher intensity. Note, this transition is also weakly visible in
the PES.

7.4.2 Systematics with frequency

The double peak structure observed at low intensities invites to play with the laser
frequency. Besides ωlas = 0.11Ry, four further frequencies have been analyzed.
They are all connected to the gap energy between HOMO and HOMO-1, ∆HH−1 =
0.133Ry:

ωlas [Ry]
intensity

ionization
νmin νmin

[1013 W/cm2] HOMO HOMO-1
0.067 ≈ ∆HH−1/2 I6 = 1.75 σ6 = 0.05 9 11
0.100 ≈ 3∆HH−1/4 I7 = 1.75 σ7 = 0.09 6 8
0.133 ≈ ∆HH−1 I8 = 1.25 σ8 = 0.05 5 6
0.266 ≈ 2∆HH−1 I9 = 0.50 σ9 = 0.02 3 3

The intensity is chosen so that ionization remains again in the perturbative regime
and so that the gradual down-shift is neglectable.
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Figure 7.16: OA-PAD and PES for different laser frequencies according to the table
in the text. For ωlas = 0.2659Ry (black line in the lower right panel), 3- and 4-photon
peaks of the HOMO and the HOMO-1 are indicated with arrows. For ωlas = 0.1329Ry
(blue line in the lower right panel) 16- and 17-photon processes are indicated as well.
The inset in the upper right panel displays the PES in the range ǫkin = 0.3, . . . , 0.65Ry.

Figure 7.16 displays OA-PAD and PES for the different laser frequencies. For
the lowest frequency ω

(6)
las (red line) double peak pattern still occurs in the PES
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(see the inset in the upper right panel). Apparently, the half of the gap energy was
not hit exactly which is not surprising at this small frequency. Furthermore, wide
oscillations appear in this case. In contrast, the frequency ω

(8)
las (blue line) was

well chosen since double peak pattern disappears here completely. Oscillations
are in this case visible up to a very high photon order. The expected position
of 16-photon and 17-photon processes out of HOMO and HOMO-1, respectively,
are marked in blue and match very well with the maximum amplitude. The
frequency ω

(9)
las (black line) differs in this aspect. Multiphoton peaks are here

clearly separated, but noticeable only up to an order of about five photons.
The PAD is the more focused around ϑ = 0 , π, the lower the laser frequencies.

This is in agreement with the intensity dependence of the PAD observed in the
last section. The larger the influence of higher orders of photon processes, the
more focuses the PAD (see also Fig. 7.17). In the present case, with decreasing
laser frequency, the minimum number needed for ionization trivially increases and
so do the order of non-vanishing anisotropy parameters β2l in the PAD.
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Figure 7.17: Combined PES and PAD for ωlas = 0.0665Ry ≈ ∆HH−1/2 (left) and for
ωlas = 0.1329Ry ≈ ∆HH−1 (right).

7.5 Comparison with experiment

Thanks to the group in Lyon, France,23 who provided results of measurements on
C60, a direct comparison of theory and experiment is possible.

Figure 7.18 compares the theoretical PES (from Fig. 7.10) in the one-photon
domain with the experimental one obtained at the synchrotron (Tpulse ∼ 100 ps

23 Contact: Franck Lépine, Institut Lumière Matière, Université de Lyon
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Figure 7.18: Upper panel: Theoret-
ical OA-PES at ωlas = 20 eV, taken
from Fig. 7.10, together with the s.p.
spectrum shifted about ωlas. Lower

panel: Experimental PES measured
at the synchrotron for ωlas = 20 eV
and Tpulse ∼ 100ps.

and ωlas = 20 eV). As one can see, the experimental PES strongly differs from the
theory at low kinetic energies. This can be attributed to a structureless, isotropic
and exponential background from thermal emission which effects the measured
PAD and PES at pulse durations used in the experiment. The theory, in contrast,
misses electron-electron collisions. The energy deposited into the system can thus
only decay through 1ph or plasmon excitations and direct emission.

A comparison can be drawn at higher kinetic energies where the thermal back-
ground is negligible. Here, the experimental data show immediately more struc-
ture. HOMO and HOMO-1 are nicely visible. Their peak positions are in reason-
able agreement with the theoretical prediction.

Experiments have been also performed in the multiphoton domain, see Fig. 7.19.
Again, the experimental PES matches well with the theory. The laser parameters
in the experiment are: Tpulse ∼ 40 fs, ωlas = 0.11Ry, I ∼ 1013 W/cm2. Theoret-
ical as well as experimental PES exhibit the repeated structure stemming from
sequences of multiphoton processes, up to a very high order. However, the oscil-
lations are less pronounced in the measurement which might be again due to a
thermal, structureless background. The trend with laser intensity seen in the PAD
reaffirms that. While the theoretical PAD gets more focused around ϑ = 0, π with
increasing intensity, the opposite is found in the experiment. This suggests that a
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Figure 7.19: Experimental and theoretical (taken from Fig. 7.13) PAD and PES. The
laser intensities used in the experiment are I10 = 4.3×1013 and I11 = 3.4×1013 W/cm2.

thermal effect is involved which gets more important for higher laser intensities.

7.6 Summary

Systematic TDLDA studies have been performed on the buckminsterfullerene C60.
Concerning the g.s. calculation it pays off that the ionic structure is taken into
consideration. The electronic structure form then a closed shell. In addition,
IP, HOMO-LUMO gap and gap between HOMO and HOMO-1 match well with
experimental values. There is a doubt on the level degeneracy of the HOMO-1.
An analysis of the character of the s.p. wavefunction could clarify this issue.

The broad resonance of the dipole response around 20 eV can be reproduced
(although fragmented artificially and by 1ph excitations) and identified as a dy-
namical effect. There is also a prominent feature below the IP which could be
associated with the so-called π-plasmon.

The special geometry of the cluster facilitates the development of an efficient
averaging scheme. This allows determination of averaged PAD and PES in one-
and multiphoton domain. It turns out, that these two regimes differ significantly.

In the one-photon domain all PAD follow the expected behaviour, 1 + β2P2

with very small values for β2 when compared to sodium clusters. β2 also shows
little variation with intensity, but with frequency which is again in contrast to Na
clusters. The PES is particularly rich in detail in this regime with some peaks
very close in energy due to the high symmetry. Depletion of the s.p. states is
about uniform, with one exception in the middle of the spectra.

In the multiphoton domain PAD and PES are composed of many non-vanishing
anisotropies β2, . . . , β2l and sequences of multiphoton processes up to an increas-
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7.6 Summary

ingly high order with increasing laser intensity and/or decreasing frequency. The
two levels HOMO and HOMO-1 are predominating the depletion which leads to
large oscillations in the PES. Accordingly, low frequencies detach electrons ex-
clusively from the vicinity of the Fermi surface while high frequencies deplete
all levels about equally strong. This trend has been already found previously in
Na8 (Fig. 6.11) and other clusters [26].

Comparison with experiments suggests that the TDLDA approach misses an im-
portant effect: electron-electron collisions. Dynamical correlations, however, have
implications on energy transfer and ionization observables [131] and are grossly
visible in the experiment. Nevertheless, very good agreement with experiment was
found in both, one- and multiphoton regime at high energies where the thermal
background is negligible.

125





8 Carbon chains

Small carbon molecules appear in a variety of chemical reactions involving hy-
drocarbons, in sooting flames and even in certain astrophysical environments like
interstellar clouds, carbon stars, comets, etc. [132]. Microscopic numbers of small
carbon molecules can be produced in laboratory by thermal/laser vaporization of
graphite or by electron impact induced fragmentation of hydrocarbons [133, 134].
Among all physical properties, their structure has been debated most controver-
sially since long. Electron affinities measured by photoelectron spectroscopy as
well as abundances show an even-odd alternation for n < 10 [132, 135, 136]. This
supports the assumption that linear chains are the predominant structure at this
size: C2n+1 chains have closed-shell while C2n chains have open-shell ground-states.
In fact, the situation is not that clear for the even-numbered species. In general,
the linear (open-shell) chain is the favored geometry, but also planar, monocyclic
structures with energy close to the linear one coexist. A typical example is C4

which has two almost isoenergetic structural isomers [132], a rhombic and a lin-
ear form. Also the charge state seems to have an influence on the ground-state
configuration, in particular, for small molecules [137].

The higher the number of atoms the more preferred are cyclic structures. At
first, monocyclic structures occur, later on even bi- or polycyclic forms may exist.
The transition from linear to monocyclic configurations takes place at around
n = 10, can be nicely seen in photoelectron spectra [6, 135, 136] and is more
or less understood: the small linear chains have unsaturated bonds at their ends
which can be avoided by bending to a ring. Therefore, the energy gained by
formation of an additional bond has to be larger than the destabilization created
by the ring strain. This is the case for n ≥ 10. The even-odd alternation then
switches with a special stability attributed to the aromatic rings with 4n + 2
atoms (Hückel’s rule). But still, to some extent, there may coexist linear chains
up to 20 atoms [137].

A second transition has been observed at n = 30 where three-dimensional
structures start to appear. In contrast to the transition from chains to cyclic
structures, the growth of fullerene-like structures is still not well understood and
so far several mechanisms have been proposed for their formation [119].

Although photoelectron spectroscopy has been mainly applied on carbon clus-
ters in order to determine the structure of the size-selected species, the method
also helps to elucidate the different competing decay processes after excitation,
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l3 l′5 l′′5 l′7 l′′7 l′′′7

system this work [a0] others [138–142]
C3 l3 = 2.414 2.415− 2.485
C5 l′5 = 2.422; l′′5 = 2.414 2.402− 2.500; 2.409− 2.517
C7 l′7 = 2.405; l′′7 = 2.414; 2.400− 2.459, 2.389− 2.457;

l′′′7 = 2.422 2.419− 2.513

Figure 8.1: Ionic configurations (with iso-surface of the electronic cloud) and bond
lengths of the small linear chains C3, C5, and C7, compared to measured bond lengths.

in particular when applied time-resolved [16]. This chapter briefly addresses a
photoemission process which was observed in the calculations on small carbon
chains and which can be seen in the PES. The mechanism is most likely related
to the resonance process presented in Sect. 5.3.1. For the sake of simplicity, the
discussion remains restricted to the small linear chains C3, C5, and C7.

8.1 Ionic and electronic structure

Figure 8.1 illustrates the ionic configurations of the selected carbon molecules. As
previously mentioned, these small odd-numbered molecules have a linear ground-
state configuration. The used bond lengths are close to (theoretical) results ob-
tained by others, however, it is expected that small deviations do not have a large
effect on electron dynamics. For small, linear chains, there is general agreement
that the cumulenic electronic configuration ( C C C C ) with electron pairs
located at the end of the chains and rather equivalent bonds is preferred over the
acetylenic ( C C C C C ) one with alternating bond lengths [143].

Figure 8.2 shows the obtained s.p. spectrum of the considered chains. The IP of
about 10 eV slightly decreases with increasing cluster size. Comparing the values
with other theoretical results, Table 8.1, it seems that the IP is generally weakly
underestimated in this work. The experimental values are still varying in literature
not to mention the bound energies of occupied states. The spread of the s.p.
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Figure 8.2: Ground-state
spectra of the linear carbon
chains C3, C5, and C7. Solid
blue lines: occupied; dashed
red lines: unoccupied states.
The occupied states are la-
belled with circled numbers,
some of them are doubly
degenerate, hence occupied
with four electrons (spin up &
down).

energies amounts in the calculations to around 1Ry which is large in comparison
with small sodium clusters. The s.p. states are labelled with circled numbers. For
C3 there is large gap between state 2 and the first doubly degenerate state 3 .
This gap tends to close for the longer chains while the number of degenerate states
enhances.

Although the binding potential is non-spherical, spherical harmonics can still
be attributed to the s.p. wavefunctions in all cases. The s.p. states with m 6= 0
are always less bound then the corresponding states with m = 0 but similar l,
since the states with m 6= 0 exhibit a node completely along the z-axis. Their

theory experiment
TW [144] [145] [143] [146] [147]

IP
[e
V

] C3 10.4 12.0 12.0 11.6 13.0 12.1
C5 9.9 11.6 11.3 9.9 12.3 11.4
C7 9.2 9.5 10.0 10.1

TW [148] [149] [150] [151] [152] [153] [154]

ω
p
l
[e
V

] C3 8.4 8.1 8.1 7.3/7.8 6.6
C5 6.5 6.4 6.4 6.8 5.3
C7 5.4 5.3 5.5 4.9

Table 8.1: Experimental and theoretical values for the ionization potential and for the
(longitudinal) plasmon resonance for C3, C5, and C7.
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8 Carbon chains

electronic s.p. density is therefore shifted with respect to the z-axis and pushed
into a region of lower binding potential which is energetically unfavourable. In
contrast, states with m = 0 have their density exactly along the z-axis eventually
with only occasional nodes corresponding to the angular momentum l. The upper
boundary of the gap in the occupied s.p. spectrum is in all three chains built up
by Y1±1-state. Two more C atoms (from C3 to C5, and from C5 to C7) add always
two states with m = 0 and one doubly degenerate state with m = ±1.

8.2 Dipole response

Similar to the previous chapters, dipole responses are calculated through an instan-
taneous boost. For better comparison, the chains have been boosted equivalently,
at once in all three directions: pboost = (p, p, p), with p = 0.01 a−1

0 . The strength
p of the boost is chosen so that ionization remains weak, Nesc ∼ 10−3. The chains
are aligned along the z-axis. The resulting dipole responses are plotted in Fig. 8.3.

0

1

0 1 2 3 4

ω [Ry]

Nesc = 0.004

0

1

ℑ{
D̃

i(
ω
)}

[a
.u

.]

Nesc = 0.003

0

1
transverse mode

Nesc = 0.002

0.4000 1

ω [Ry]

0.475

0.615

longitudinal mode

C7

C5

C3

C7

C5

C3

Figure 8.3: Dipole responses of the considered chains after instantaneous excitation
with a slight boost in all directions, px = py = pz = 0.01 a−1

0 . The longitudinal resonance
frequencies are ωpl = 0.615, 0.475, and 0.400Ry for C3, C5, and C7, respectively.
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8.3 Plasmon-enhanced photoemission

As much as the ionic configuration, the dipole responses of the chains are
strongly anisotropic, in contrast to the optical absorption of C60. In longitudi-
nal direction, the spectra of all three systems are very clean and dominated by
one single, strong and sharp resonance emerging at longer wavelengths the longer
the wire. In theory, this absorption resonance is assigned to a π → π∗ transition
(1Σ+

u ← X1Σ+
g ) and moves progressively to the red as the chain grows [148, 154].

The calculated values for the plasmon frequency match better with other TDLDA
and CI calculations than with experiments (see Table 8.1), are much higher lo-
cated than the ones for sodium clusters (e.g., Na8: ωpl ≈ 0.19Ry), but stay
below the ionization potential. On the other hand, the transverse spectrum is
fragmented and broadly spread over several Ry, but substantially suppressed by
1− 2 orders of magnitude compared to the longitudinal one.

8.3 Plasmon-enhanced photoemission

Excitation of the chains with stronger instantaneous boosts leads to a significant
ionization. This simulates a collision of the considered cluster with a fast ion.

The boost is chosen exclusively in direction parallel to the chain in order to
excite the strong, collective, longitudinal mode. Thus, it is expected that the
latter mode is predominant and that other excitations are negligible. In order to
resolve slow photoelectrons (long wavelength), calculations have been carried out
up to Tend = 64 fs after the boost. The chains are again aligned along the z-axis,
photoelectron spectra are recorded at M = 121 measuring points. Due to the
axial symmetry there is no need for a uniform coverage of the unit sphere with
measuring points. Hence, the measuring points are located on a single longitude
of the absorbing sphere so that each point corresponds to an azimuthal scattering
angle ϑ, with ϑ = 0 pointing in direction of the boost pboost = (0, 0, p).

The two upper panels in Fig. 8.4 show the obtained PES of the boosted C3

chain (p = 0.1 a−1
0 , Nesc = 0.07) in linear (upper left) and logarithmic scale.

The red line indicates the full PES (integrated over ϑ) of all occupied s.p. states.
Although the boost represents an excitation containing usually a broad spectrum
of frequencies, the PES exhibits distinct features at certain kinetic energies, in
particular at around ǫkin = 0.14, 0.31, and 0.45Ry. The upper panels also display
the PES of the three upper most occupied s.e. states indicated as states 3 , 4 ,
and 5 in Fig. 8.224. The determination of state-dependent PES is possible since
all s.p. wavefunctions ϕα(t) are stored at the measuring points. Especially in the

24 The deep lying states 1 and 2 do not significantly contribute to the PES. The total de-
pletions are: σ(1) = 0.001, σ(2) = 0.006, σ(3) = 0.010, σ(4) = 0.015, and σ(5) = 0.045 for
Nesc = 0.067.
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Figure 8.4: Upper panels: PES of all occupied states in C3 (full PES) and of the states
3 , 4 , and 5 after boost along the chain (pz = 0.1 a−1

0 , Nesc = 0.07), in linear (left) and
logarithmic scale. The contribution of the lowest occupied states 1 and 2 is negligible.
The resonance frequency is ωpl = 0.615Ry. The blue, vertical lines indicate the doubly
and triply excited s.p. spectrum ǫi+ δǫ+µωpl (µ = 2: solid; µ = 3: dashed). Due to the
residual cluster charge, all s.e. energies have been equally shifted about δǫ = −0.02Ry.
Lower panels: Combined PES/PAD zoomed onto the doubly and triply excited states
3 , 4 , and 5 .

logarithmic PES one can see that the three peaks in question can be assigned
to the three states 3 , 4 , and 5 , respectively. In consequence, there is a clear
relation between the PES obtained after instantaneous boost and the s.e. energies
of the system.

There remains the question about the ionization mechanism resulting in the
so found connection. The two upper panels also show the shifted s.p. spectrum
ǫi+µωpl (only states 3 , 4 , and 5 ) for µ = 2 (blue solid, vertical lines) and µ = 3
(blue dashed). The peak positions correspond exactly to the shifted spectrum.
Similar to the resonance effect observed in Na8 at laser frequencies below the
ionization potential (Sect. 5.3.1), it is again a resonance of the system, here the
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8.3 Plasmon-enhanced photoemission

dominating plasmon which mediates electron emission. Apparently, the energy
given by the boost to the system is at first mainly stored in the collective plasmon
and then from time to time transferred to single electrons. Since the plasmon
frequency is below the ionization threshold, two or more modes are needed in
order to ionize the system. In the logarithmic plot one may even catch the triply
excited spectrum.

Of course, since excitation is done through the boost, the PES in Fig. 8.4
does not exhibit the ATI peaks which have been observed in Na8 after laser ex-
citation (Fig. 5.11). However, one may also detect some smaller signals which
are most likely images of the s.p. spectrum, too, but for different resonance fre-
quencies. In contrast to a frequency-selective laser pulse, the boost excites here
all possible modes. Due to the strength of the excitation, there might be also
some cross-talk to the transverse modes. It is therefore expected that the present
phenomenon can only be seen in systems with a rather “clean” dipole response
characterized by a sharp plasmon resonance.

The lower panels in Fig. 8.4 display the full combined PES/PAD zoomed onto
the features corresponding to the doubly (left) and triply excited states 3 , 4 , and
5 . Although, chain and longitudinal mode are aligned along the z-axis, electrons
are not exclusively emitted in this direction, quite opposite, e.g., for state 3 : for
µ = 2 (three left panels), maxima of emission do not occur at ϑ = 0, π at all, but
at around ϑ = π/6, 5π/6, and π/2. State 4 emits along the z-axis in direction of
the boost (ϑ = 0) as well as slightly perpendicular and in the opposite direction
at ϑ = π, while state 5 emits along the chain with preference for ϑ = π.

Absorption of an additional mode (µ = 3, right panels) adds further angular
momentum to the distributions. This can be clearly seen for state 3 . While for
µ = 2 emission exhibits three maxima, there can be found four for µ = 3. Similar
pictures are obtained for state 4 , although already less clear ones. The triply
excited peak of 5 cannot be resolved any more. In addition to the PES, one
may thus conclude also in the PAD that it is the plasmon mode with l = 1 and
m = 0 which triggers the photoemission. Furthermore, the emission behaviour
of the s.p. states can be related to the form of the wavefunction. State 3 has
angular momentum m = ±1 according to the spectrum of occupied s.p. states
in Fig. 8.2. Absorption of two plasmon modes ends up in a final state also with
m = ±1 with a node completely along the z-axis. Therefore, emission does occur
at ϑ = 0, π. In contrast, states 4 and 5 both with m = 0 exhibit emission
maximum at ϑ = 0, π.

Plasmon-enhanced emission can also be observed for the larger chains C5 and
to a lesser extent also in C7, see Fig. 8.5. At longer chain length, the system gains
collectivity, the dipole response clears up and the plasmon aligns even stronger
with increasing chain length, but the s.p. spectrum gets more and more compli-
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cated. In consequence, also the PES gets more involved: more s.p. states are
contributing and the images of the shifted s.p. spectra may overlap for different
process orders µ.

Finally, it is to be noted that the present phenomenon has only been observed
within a certain range of excitation strength. For too weak excitations, the plas-
mon is not strongly enough excited and the continuum background discretized
due to the finite numerical simulation box, becomes relevant. For too strong exci-
tations the PES is smeared out as a consequence of the gradual downshift of the
s.p. spectrum.
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9 Conclusion

The first part of this work presented and reviewed the theoretical approach and
the numerical methods used throughout. The theoretical framework based on
time-dependent density-functional theory (local-density approximation with self-
interaction correction) provides a suitable, efficient tool to describe ground-state
as well as dynamical properties of finite many-body systems. Within this ap-
proach, electron dynamics of small sodium clusters, carbon chains, and the buck-
minsterfullerene C60 have been studied, with particular focus on photoangular
distributions (PAD) and spectra (PES) of electrons emitted from the considered
systems after excitation by linearly polarized femtosecond laser pulses or by in-
stantaneous boosts. Absorbing boundary conditions and measuring points allow
to determine the PAD and PES.

While in theory the single cluster/molecule is fixed in space (in the numeri-
cal simulation box) with a given orientation with respect to the laser polarization
axis, experiments rather deal with an ensemble of randomly orientated clusters. It
turns out that the orientation-averaged PAD (OA-PAD) reduces in spherical coor-
dinates to a very simple form ∼ 1+β2P2(cos ϑ)+β4P4(cosϑ)+ . . . , with P2l being
the Legendre polynomials, ϑ the scattering angle of the emitted electrons mea-
sured with respect to the laser polarization axis, and β2l the so-called anisotropy
parameters. The highest order of a possible non-vanishing β2l is related to the
order of the photon process. In the one-photon regime, only a single anisotropy
parameter remains to describe the OA-PAD: dσ/dΩ = σ/(4π)(1 + β2P2), with β2

ranging between −1 and 2. For β2 = 2, the OA-PAD exhibits so an anisotropic
cos2 ϑ-shaped dependence, while for β2 = −1 a sin2 ϑ-dependence is observed. For
β2 = 0 the distribution is isotropic. The value of β2 is not only related to the order
of the photon process, but also to the angular momentum of initial and final state.
For perfectly spherical symmetric initial s states, e.g., β2 equals always to two.

In order to overcome the discrepancy between experiment and theory, pro-
cedures for calculating the OA-PAD have been developed. The first averaging
scheme is based on first-order perturbation theory and was derived through Euler
rotations. Here three linearly independent calculations are needed to determine
the orientation-averaged yield σ and six for the anisotropy β2. In practice, the
cluster remains fixed in the simulation box, but the laser polarization is varied.
In contrast, the second scheme rotates the cluster orientation, but fixes the polar-
ization axis. The OA-PAD is thus calculated by summation over a finite set of
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different orientations. This conceptually simpler procedure is more general since it
can be applied also in multiphoton and non-linear regimes. However, the number
of different cluster orientations needed for convergence is not known, in principle,
to the possible detriment of higher computational cost.

In the second part of this work, the developed schemes were first applied to a
selection of small neutral and positively charged Na(+)

N clusters with N = 3 − 19.
Thereby, different models for the description of the ionic background have been
compared: local pseudo-potentials and the widely used spherical/deformed jellium
model. The first model explicitly accounts for the ionic structure of the cluster
while in the second one the ionic cores are thought of smeared out. The differences
in the OA-PAD of these two models are striking. While the jellium model yields for
most of the clusters anisotropy parameters close to the maximum possible value of
two, the ionic background reduces these substantially. The deformation of initial
and final state wavefunctions imposed by the pseudo-potentials, introduces a mix
of high angular momentum components which always contains some pieces with
sidewards scattering.

Detailed analysis have been performed for a better understanding of the de-
pendence of β2 on laser parameters, in particular, on the laser frequency ωlas.
A spherical jellium model for Na8 served here as a starting point. Within this
model, a direct comparison of stationary perturbation theory and results from
time-dependent density-functional theory is possible. In the stationary model sev-
eral assumptions for initial as well as final states have been proposed and inserted
into the Bethe-Cooper-Zare formula. In any case, the resulting single-particle
anisotropy β

(i)
2 (ωlas) depends on the angular momentum content of the consid-

ered initial state i and becomes as such a finger print of i. For example, the plane
wave model shows a characteristic decline in the anisotropy of the p state near the
ionization potential. Sharp dips towards negative values which are related to zero-
crossings of transition matrix elements, follow at larger kinetic energies. However,
small variations of both wavefunctions have generally enormous effects on β

(i)
2 (ωlas)

in accordance with the previous comparison of explicit ionic background and jel-
lium model. Hence, introducing explicit ionic background seems to reshuffle the
cards. The trends of the anisotropy as a function of the laser frequency become
now very smooth with emission preferably along the laser polarization plus some
isotropic background. An exception seem to represent negatively charged clusters,
here Na−7 , where the plane wave assumption for the outgoing wave holds due to
the weak binding potential so that the generic tendency to sidewards emission pre-
vails for frequencies near the threshold. Nevertheless, static models can never fully
describe the ionization process since they do not account for dynamical effects in
the course of the ionization process such as polarization and rearrangement of the
residual cluster.
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The results on sodium cluster have shown that the angular distribution is very
sensitive to all details of the modeling. This requires a theoretical description
without compromises. Thus, the full time-dependent approach using non-local
Goedecker potential for the ionic background was employed for the buckminster-
fullerene C60 and the linear carbon chains C3, C5, and C7. For C60, application
of pseudo-potentials is all the more important since a spherical jellium shell does
not even deliver the correct ground-state with a shell-closing after 240 valence
electrons. Using pseudo-potentials, however, breaks the sphericity, implements
the icosahedral symmetry of the molecule, and a shell-closing is obtained for
Nval = 240. The spectrum of occupied single-particle states reduces to a signif-
icantly lower number of bands which is related to the high symmetry and level
degeneracy. The symmetry of the cluster also helps to find an appropriate di-
rect averaging scheme in order to determine the anisotropy parameters β2, β4, . . .
Thereby different regimes were considered: the one-photon regime employing laser
frequencies like they are typically used at the synchrotron, and the multiphoton
regime with frequencies far below the ionization threshold. It is found that these
two regimes deliver completely different PAD and PES. In the one-photon regime,
the PES reflects the molecular-like single-particle spectrum and the PAD follows
the expected 1 + β2P2 dependence. In contrast in the multiphoton domain, the
PES exhibits an exponential decay superimposed with large oscillations and the
PAD yields non-vanishing anisotropies β2l of higher orders. The two different be-
haviours particularly of the PES are found to be related to the depletion of the
single-particle spectrum.

The work was concluded by a brief study of the small, linear carbon chains C3,
C5, and C7. In contrast to C60, these small molecules exhibit a distinct, longitu-
dinal plasmon which can be excited by a strong instantaneous boost simulating a
fast ion passing by the cluster. The deposited energy is first stored in the plasmon
and later transferred to single particles. Since the plasmon frequency is lower than
the ionization potential, two or more modes have to be absorbed in order to ion-
ize the system. The PES so reflects the doubly and triply excited single-particle
spectrum. The angular momentum components of the PAD always increases by
one unit when absorbing an additional dipole mode.

The present work leaves some open questions and perspectives. From the nu-
merical point of view it would be desirable to enhance the angular resolution
of the combined PES/PAD. The limiting factor here is, in particular, the num-
ber of measuring points at which all single-particle wavefunctions have to be
stored as a function of time in order to evaluate the Fourier transformation af-
terwards. An alternative procedure is to calculate the Fourier transformation
ϕα(ω) on-the-fly for a given, limited frequency range. Thus, one is able to in-
crease the number of measuring points. Another aspect concerning the PES is
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9 Conclusion

that the present evaluation scheme assumes freely propagating electrons which
reduces the range of possible applications. A generalized scheme which accounts
for non-vanishing electromagnetic fields during the measuring time, has been al-
ready proposed in [59]. This allows to consider also strong laser intensities, long
laser pulses and pump-and-probe scenarios where the electron flow is known to
interfere with the electromagnetic field.

The absorbing real-space mask function is a very efficient way to evaluate pho-
toangular distributions. However, it has also some deficiencies, e.g., when con-
sidering less bound systems like negatively charged clusters, strong laser fields
leading to high electronic densities near the boundaries, or very slow electrons
which are still reflected. Moreover, performance of the absorbing mask crucially
depends on the chosen number of absorbing points. A possible, more flexible
solution is to implement the absorption as an operator depending on time and
kinetic energy of the outgoing wavefunction.

A critical analysis of the calculated single-particle spectrum of C60 reveals that
although the ionization potential matches very well with experimental data, the
degeneracy in particular of the HOMO-1 does not. This may be a deficiency of the
sparse grid and/or the pseudo-potential parameterization. The non-local pseudo-
potentials with a large grid spacing used in this work are actually a modification of
the original ones proposed by Goedecker et al. [29] using a much smaller spacing.
Hence, coarser grids may be unavoidable. Moreover, the used ionic configuration
differs slightly from experiments which measure a larger radius of the cage. Studies
on the sensitivity of single-particle spectrum and dipole response to the cage radius
are under way. Theoretical work by others [101, 102] also suggests that all single-
particle wavefunctions can be grouped according to their nodal behaviour into 60
π and 180 σ electrons. Therefore, a more detailed analysis of the wavefunctions
can additionally help to improve the modeling. After optimization of the ground-
state properties one could explore some more dynamical features of C60, e.g., the
often mentioned oscillations of the partial cross-sections of HOMO and HOMO-1.

The plasmon-enhanced photoemission effect observed in carbon chains suggests
a tool for determining plasmon frequency and single-particle spectrum at once. An
open question is whether the effect can also be measured in experiments. If yes,
it could in addition used for size-selection or size-specification of carbon chains
through photoelectron spectroscopy after ion collision. An interesting question
is also how the effect scales with system size and geometry. According to the
calculations, the clearest results have been found for C3. With increasing chain
length, the effect seems to disappears although the plasmon is getting sharper
and more dominant. One may therefore explore, at first, other small systems like
diatomic molecules such as C2, N2, CO, etc. and later investigate the transition
to larger systems, e.g., C60. In the latter case, preliminary attempts, however,
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could not identify such an effect, perhaps due to the large width of the plasmon
at 20 eV. Also geometrical aspects, i.e., different behaviour for one-, two- and
three-dimensional ionic structures, might have an influence.

The results on Na8 indicate that an excited resonance breaks the relation Nesc ∼
Iν known from perturbation theory. Post-pulse emission occurs and characteristic
photoelectron spectra after the pulse show up. Tests have shown that this holds
already for very small system sizes like Na+3 when laser frequencies below the
ionization threshold are applied. This behaviour could be explored also for the
carbon materials, in particular C60, in order to estimate the impact of the “giant
resonance” on the ionization.

Post-pulse emission and direct comparison of the theoretical results with mea-
surements show that the theory lacks to describe electron thermalization observed,
for example, as isotropic and exponential background in experimental PAD and
PES on C60, in particular when longer pulses are applied. Hence, an important de-
cay mechanism is still missing in the modeling. The inclusion of electron-electron
collisions into the TDLDA approach remains as a further open task.
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A Angular momentum and rotations

A.1 Euler angles and rotation operators

The rotation operator D̂ is a unitary operator,

D̂−1(αβγ) = D̂∗(αβγ) .

In spherical coordinates, the spherical harmonics as eigenfunctions of the angular

momentum operator L̂
2

transform under forward rotation like:

D̂(αβγ)Ylm(ϑϕ) =
∑

m′

Ylm′(ϑϕ)〈lm′|D̂(αβγ|lm〉 =
∑

m′

Ylm′(ϑϕ)D(l)
m′m(αβγ) .

The backward rotation, D̂−1(αβγ) = D̂∗(αβγ) = D̂(−γ − β − α), behaves like a
forward rotation with Euler angles −γ, −β, and −α:

D̂−1(αβγ)Ylm(ϑϕ) =
∑

m′

Ylm′(ϑϕ)〈lm|D̂(αβγ)|lm′〉∗ =
∑

m′

Ylm′(ϑϕ)D(l)∗
mm′(αβγ) .

(A.1)
The matrix elements D(l)

m′m are the so-called Wigner D-functions. An important
property of the D-functions is the relation between forward and backward rota-
tion:

D(l)∗
mm′(αβγ) = (−1)m−m′D(l)

−m−m′(αβγ) = D(l)
m′m(−γ − β − α) . (A.2)

Integrals over two or three D-functions yield:

∫
d3(αβγ)D(j1)∗

m′
1m1

(αβγ)D(j2)
m′

2m2
(αβγ) = δm′

1m
′
2
δm1m2

δj1j2 ·
1

2j1 + 1
, (A.3)

∫
d3(αβγ)D(j1)

m′
1m1

(αβγ)D(j2)
m′

2m2
(αβγ)D(j3)

m′
3m3

(αβγ)

=

(
j1 j2 j3
m′

1 m′
2 m′

3

)(
j1 j2 j3
m1 m2 m3

)
.

(A.4)

The large brackets denote the Wigner 3j-symbols.
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A Angular momentum and rotations

A.1.1 Wigner 3j-symbols

The Wigner 3j-symbols are defined in terms of Clebsch-Gordan coefficients as
(

j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2−m2(2j3 + 1)−

1
2 (j1m1 j2 j2m2|j1 j2 j3 −m3) .

A permutation of gerade symmetry does not change the value of the symbol,
whereas the symbol is multiplied by (−1)j1+j2+j3 after an ungerade permutation:

(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
=

(
j3 j1 j2
m3 m1 m2

)
gerade

(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j3 j2
m1 m3 m2

)
ungerade

Special rules for the 3j-symbols are:
(

j j 0
m −m 0

)
= (−1)j−m(2j + 1)−1/2

(
j1 j2 j3
0 0 0

)
= 0 , for odd j1 + j2 + j3

(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)

(
j j 2
m −m 0

)
= (−1)j−m 6m2 − 2j(j + 1)

[(2j + 3)(2j + 2)(2j + 1)2j(2j − 1)]1/2

(
j j 2
m −m− 1 1

)
= (−1)j−m(1 + 2m)

[
6(j +m+ 1)(j −m)

(2j + 3)(2j + 2)(2j + 1)2j(2j − 1)

] 1
2

(
j j 2
m −m 2

)
= (−1)j−m

[
6(j −m− 1)(j −m)(j +m+ 1)(j +m+ 2)

(2j + 3)(2j + 2)(2j + 1)2j(2j − 1)

] 1
2

With these rules one obtains the following 3j-symbols explicitely:
(

1 1 0
0 0 0

)
= − 1√

3
,

(
1 1 0
1 −1 0

)
=

1√
3
,

(
1 1 2
0 0 0

)
=

4√
120

,

(
1 1 2
1 −1 0

)
=

2√
120

,

(
1 1 2
−1 0 1

)
= −

√
12

120
,

(
1 1 2
1 0 −1

)
= −

√
12

120
,

(
1 1 2
−1 −1 2

)
=

√
24

120
,

(
1 1 2
1 1 −2

)
=

√
24

120
.

(A.5)
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A.1 Euler angles and rotation operators

Furthermore, the angular part of a general transition matrix elements, i.e.,

(lm|LM |l′m′) =

∫
dΩY ∗

lm(Ω)YLM(Ω)Yl′m′(Ω),

can be expressed with Wigner 3j-symbols in the following simple form:

(lm|LM |l′m′) = (−1)m
√

(2l + 1)(2L+ 1)(2l′ + 1)

4π

×
(

l L l′

−m M m′

)(
l L l′

0 0 0

) (A.6)

Explicitely, one obtains with the last relation:

(lm|00|lm) =
1√
4π

,

(l + 1m|10|lm) =

√
3

4π

√
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)
,

(l + 1m+ 1|11|lm) =

√
3

8π

√
(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)
,

(l − 1m+ 1|11|lm) = −
√

3

8π

√
(l −m)(l −m− 1)

(2l − 1)(2l + 1)
.

A.1.2 Transformation of 1st-order tensors

A finite rotation of any reference frame about the origin can be considered as
transformation of the coordinates, but also as a unitary transformation of all
operators. For any operator one may thus write:

Q̂ −→ Q̂′ = D̂(αβγ)Q̂D̂−1(αβγ) .

As an example, consider the position operator r̂ of the laboratory frame K in the
so-called spherical basis:

r−1 =
1√
2
(x− iy) ,

r0 = z ,

r1 =
1√
2
(−x− iy) .

(A.7)
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A Angular momentum and rotations

In this basis, the position operator represents a first-order spherical tensor which
transforms like:

r̂′ν =
∑

µ

r̂µD(1)
µν (αβγ) . (A.8)

An alternate means to describe an Euler rotation is a rotation of the coordinate
system K about a given axis ξ with direction eξ and about the angle ξ = |ξ|. The
position operator r̂ in Cartesian basis transforms then like:

r̂′ = exp (iξ · L̂) r̂ exp (−iξ · L̂) , (A.9)

where L̂ is again the angular momentum operator. The three rotations α, β and
γ about the coordinate axis of the laboratory frame K are thus replaced by one
single rotation about an arbritrary vector in K. Using the relations

exp(Â)B̂ exp(−Â) =
∞∑

n=0

1

n!
[Â, B̂](n) , [Â, B̂](0) ≡ B̂ ,

[Â, B̂](n+1) ≡ [Â, [Â, B̂](n)] ,
[
iξ · L̂, r

]
= ξ × r ,

expression (A.9) can be expanded as:

r′ = r+ i[ξ · L̂, r]− 1

2
[ξ · L̂, [ξ · L̂, r]]± . . .

= r+ ξ × r+
1

2
ξ × (ξ × r) + · · · =

∑

n

1

n!
ξ × (. . . (ξ×︸ ︷︷ ︸

n-fold

r)) . . . ) .

The n-fold vector product can be further simplified25. The series expansion be-
comes then:

r′ = r

(
1− 1

2
ξ2 ± . . .

)
+ (ξ× r)

(
1− 1

3!
ξ2 ± . . .

)
− ξ (ξ · r)

(
−1
2
+

1

4!ξ2
± . . .

)

which can be summed up to the closed expression

r′ = r cos(ξ) +
ξ × r

ξ
sin(ξ)− ξ

ξ · r
ξ2

(cos(ξ)− 1) . (A.10)

25 The sequence

ξ × (ξ × r) = −ξ2r+ ξ (ξ · r) , ξ × (ξ × (ξ × r)) = −ξ2ξ × r ,

repeats itself for higher orders of interlaced vector products.
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A.2 Legendre polynomials and spherical harmonics

One seeks now to write this transformation as a 3 × 3 matrix operation r′ = T̂r
like in Eq. (A.8) for the Euler rotation. Identifying

ξ × r =




0 −ξz ξy
ξz 0 −ξx
−ξy ξx 0


 r , ξ (ξ · r) cos(ξ) =



ξxξx ξxξy ξxξz
ξyξx ξyξy ξyξz
ξzξx ξzξy ξzξz


 r ,

and inserting that into Eq. (A.10) yields the wanted rotation matrix

r′ =




c− ξ2x
ξ2
c2 − ξz

ξ
s− ξxξy

ξ2
c2

ξy
ξ
s− ξxξz

ξ2
c2

ξz
ξ
s− ξyξx

ξ2
c2 c− ξ2y

ξ2
c2 − ξx

ξ
s− ξyξz

ξ2
c2

− ξy
ξ
s− ξzξx

ξ2
c2

ξx
ξ
s− ξzξy

ξ2
c2 c− ξ2z

ξ2
c2


 r , (A.11)

with

c = cos(ξ) , s = sin(ξ) , c2 = cos(ξ)− 1 .

A.2 Legendre polynomials and spherical harmonics

Y00
1√
4π

1 P0

Y10

√
3
4π

cosϑ cosϑ P1

Y1±1 ∓
√

3
8π

sinϑe±iϕ

Y20

√
5

16π
(3 cos2 ϑ− 1) 1

2
(3 cos2 ϑ− 1) P2

Y2±1 ∓
√

15
8π

sinϑ cos ϑe±iϕ

Y2±2

√
15
32π

sin2 ϑe±2iϕ

Y40
1
8

√
9
4π
(35 cos4 ϑ− 30 cos2 ϑ+ 3) 1

8
(35 cos4 ϑ− 30 cos2 ϑ+ 3) P4

Yl0(ϑ, ϕ) =
√

2l+1
4π

Pl(cosϑ)

Table A.1: Spherical harmonics and Legendre polynomials.

Addition theorem of the spherical harmonics:

Pl(cosϑ) =
4π

2l + 1

l∑

m=−l

Y ∗
lm(Ωk)Ylm(Ωr)

Harmonic polynomials and spherical harmonics:

Ylm(x, y, z) = rl Ylm(ϑ, ϕ)

149



A Angular momentum and rotations

Relation to Wigner D-functions:

D(l)
0m(αβγ) =

(
4π

2l + 1

)1/2

Ylm(ϑ, ϕ) and D(l)
00 (αβγ) = Pl(cos β)

Relation to Cartesian and spherical basis:

x = r sinϑ cosϕ = r

√
2π

3
(Y1−1 − Y11) =

√
2

2
(r−1 − r1)

y = ir

√
2π

3
(Y1−1 + Y11) = i

√
2

2
(r−1 + r1)

z = r

√
4π

3
Y10 = r0
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B Radial Schrödinger equation

This section gives a brief introduction to analytical and numerical methods for
the solution of the Schrödinger equation in spherical potentials. For a detailed
overview, see standard textbooks on quantum mechanics [88, 155].

B.1 Introduction

Using the separation ansatz Ψ(rϑϕ) = Rl(r)Ylm(ϑϕ) the three-dimensional Schrö-
dinger equation in spherical coordinates can be simplified to the one-dimensional
radial equation:

[
− ~

2

2me

(
d2

dr2
+

2

r

d

dr

)
+

~
2

2me

l(l + 1)

r2
+ V (r)− E

]
Rl(r) = 0 . (6.1)

The radial part Rl(r) of the wavefunction Ψ has to be normalized to unity, i.e.,
for bound states

∞∫

0

dr r2Rl(r)
2 = 1 .

The continuum states are normalized in energy scale, see Sect. B.2.3. Moreover,
Rl(r) must satisfy the asymptotic conditions

Rl(0) = 0 for all l , and Rl(r) ∼ rl for r → 0 (B.1)

(for potentials V (r) < 1/r2 for r → 0).

Reduced radial equation Equation (6.1) can be further simplified. Insert-
ing the ansatz Rl(r) = ul(r)/r gives the homogeneous second-order differential
equation [

~
2

2me

d2

dr2
− ~

2

2me

l(l + 1)

r2
− V (r) + E

]
ul(r) = 0 (B.2)

which can be used for numerical computations.
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B Radial Schrödinger equation

B.2 Continuum solutions

B.2.1 Free solution

The spherical Bessel and Neumann functions jl and nl, see Sect. B.4.1, analytically
solve the free radial Schrödinger equation (6.1) for E > 0 and V = 0,

[
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ k2

]
Rl(r) = 0 ,

where E = (~k)2/2me > 0 and Rl = jl or Rl = nl.
In three dimensions, the general solution of the free Schrödinger equation is the

plane wave eikr. The angular part of the plane wave can be expressed in spherical
harmonics, the radial part in spherical Bessel functions:

Ψfree
k (rϑϕ) = eikr = 4π

∑

lm

iljl(kr)Y
∗
lm(Ωk)Ylm(Ωr) .

Since the spherical Neumann functions diverge for r = 0 and the solution has to
be normalizable, they do not contribute to the expansion.

B.2.2 Solution in short-range potentials

For potentials V 6= 0 the general solution of the three-dimensional Schrödinger
equation can be expanded into partial waves,26

Ψk(rϑϕ) = 4π
∑

lm

ile−i∆lRl(r)Y
∗
lm(Ωk)Ylm(Ωr) . (6.2)

In order to derive the asymptotic behaviour Rl(r →∞) and the phase ∆l, one has
to distinguish between potentials which go with V (r) ≤ 1/r (long-range potential)
and those with V (r) < 1/r2 (short-range potential) at large distances r →∞. It
is therefore useful to separate the phase ∆l = σl+ δl into a Coulomb phase σl and
a non-Coulomb phase δl [54, 91].

Let V be a pure short-range (s.r.) potential, i.e., σl = 0. The ansatz of
Sect. B.2.1 can then be adopted by including the Neumann functions into the
expansion. The asymptotic form of the radial part of the wavefunction can
thus be written as a distorted plane wave, i.e., a plane wave plus an incoming
wave [61, 156]:

Rs.r.
l (r) = jl(kr) cos(δl)− nl(kr) sin(δl) ≃

sin(kr − lπ
2
+ δl)

kr
, for r →∞ .

(B.3)

26 The separation of the factor e−i∆l out of the function Rl is convention. In this case Rl is a
real function.
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B.2 Continuum solutions

B.2.3 Solution in long-range potentials

Supposing the potential V is a pure Coulomb potential,

V (r) =
Z1Z2e

2

r
=

~
2

m

kγ

r
,

with Z1, Z2 being the asymptotic charges and γ = Z1Z2

ka0
the so-called Coulomb

parameter [155]. The analytical solutions of Eq. (6.1) are then given in terms of
regular and irregular spherical Coulomb functions Fl and Gl, see Sect. B.5. Since
the irregular solution Gl does not vanish at r = 0, it has to be excluded from the
expansion:

ΨCoul.
k (rϑϕ) = 4π

∑

lm

ile−iσl
Fl(γ; kr)

kr
Y ∗
lm(Ωk)Ylm(Ωr) . (B.4)

The phase δl vanishes for a pure Coulomb potential.
In most cases, however, one deals with long-range (l.r.) potentials which asymp-

totically behave like a Coulomb potential, but which are modified in the short-
range region. In this case, one has to allow both, regular and irregular Coulomb
functions at large distances:

Rl.r.
l (r) =

Fl(γ; kr)

kr
cos(δl) +

Gl(γ; kr)

kr
sin(δl)

≃ sin(kr − lπ
2
− γ ln(2kr) + ∆l)

kr

for r →∞ . (B.5)

As one can see, the full phase of the sin in the last equation Γl(r) ≡ −lπ/2 −
γ ln(2kr)+∆l evolves with the radius r even at large distances due to the logarith-
mic term γ ln(kr). This term, however, is independent of the angular momentum
l. As a consequence, phase shifts Γl(r) − Γl′(r) of different angular momenta l
and l′ remain constant at large distances.27 The reason for this is that the only
l-dependent term in Eq. (6.1) is the short-ranged centrifugal term. Phase shifts
are so produced in the short-range region of any given potential V (r).

The distorted plane wave (B.3) can be derived from the last equation by setting
γ = 0 and σl = 0 and using relation (B.13) between the functions Fl, Gl and jl,
nl.

Normalization Independent of the scattering potential, the continuum states
are normalized in energy scale,

∫
d3rΨ∗

k(r)Ψk′(r) = δ(E − E ′) ,

27 Phase shifts become important in interference of partial waves.
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B Radial Schrödinger equation

which is equivalent to an asymptotic amplitude of
√

2/(πk) for the the radial
partial [91], e.g., for the Coulomb wave28:

Rl(r) ≃
√

2

πk

1

r
sin

(
kr − lπ

2
− γ ln(2kr) + ∆l

)
for r →∞ .

B.3 Integrals for the harmonic oscillator model

For the solution of the radial overlap integral

R± =

∞∫

0

dr r3R
(f)
L±1(r)R

(i)
L (r) (6.5)

with initial radial wavefunctions of the harmonic oscillator,

R
(i)
0 (r) = A exp(−α2r2) , L = 0 , (6.8a)

R
(i)
1 (r) = B r exp

(
−α2r2

)
, L = 1 , (6.8b)

and a plane wave as the final state wavefunction, R(f)
L±1(r) = jL(kr), the following

relations are neeeded:

∞∫

0

dx cos(ax) exp(−b2x2) =

√
π

2b
exp

(−a2
4b2

)
,

∞∫

0

dx x2 cos(ax) exp(−b2x2) =

√
π (2b2 − a2)

8b5
exp

(−a2
4b2

)
,

∞∫

0

dx x sin(ax) exp(−b2x2) =

√
πa

4b3
exp

(−a2
4b2

)
,

∞∫

0

dx x3 sin(ax) exp(−b2x2) =

√
πa (6b2 − a2)

16b7
exp

(−a2
4b2

)
.

28 Since the normalization is independent of the angular momentum l, it has also no effect on
the angular distribution of outgoing partial waves.
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B.4 Spherical Bessel and Coulomb functions

Using this and the definition of the spherical Bessel function j0, j1, and j2 (Ta-
ble B.1), the final integration becomes simple. For L = 0:

R+ =

∫
dr r3j1(kr)R

(i)
0 (r)

=
A
k

∫
dr r

{
sin(kr)

k
− r cos(kr)

}
exp(−α2r2)

︸ ︷︷ ︸
=

√
πk2

8α5 exp
(

−k2

4α2

)

=
√
πA k

8α5
exp

(−k2

4α2

)
,

(B.7)

and for L = 1:

R− =

∫
dr r3j0(kr)R

(i)
1 (r) =

B
k

∫
dr r3 sin(kr) exp(−α2r2)

=
√
π B 6α2 − k2

16α7
exp

(−k2

4α2

)
,

(B.8)

R+ =

∫
dr r3j2(kfr)R

(i)
1 (r)

= −R− +
3B
k2

∫
dr r

{
sin(kr)

k
− r cos(kr)

}
exp(−α2r2)

= −R− +
3
√
πB

8α5
exp

(−k2

4α2

)
=
√
π B k2

16α7
exp

(−k2

4α2

)
.

(B.9)

B.4 Spherical Bessel and Coulomb functions

B.4.1 Spherical Bessel and Neumann functions

The spherical Bessel and Neumann functions are given by:

jl(x) = (−x)l
(
1

x

d

dx

)l
sin x

x
, nl(x) = −(−x)l

(
1

x

d

dx

)l
cosx

x
. (B.10)

The asymptotic behaviour of these functions for small and large x reads as follows:

jl(x) =
xl

(2l + 1)!!
x→ 0 , nl(x) =

(2l − 1)!!

xl+1
x→ 0 ,

jl(x) ≃
sin
(
x− lπ

2

)

x
x→∞ , nl(x) ≃ −

cos
(
x− lπ

2

)

x
x→∞ .

(B.11)

The Neumann functions nl are irregular and have a singularity at x = 0.
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j0
sin(x)

x

j1
sin(x)
x2 − cos(x)

x

j2
(

3
x2 − 1

) sin(x)
x
− 3 cos(x)

x2 = −j0 + 3
x
j1

n0 − cos(x)
x

n1 − cos(x)
x2 − sin(x)

x

n2

(
− 3

x2 + 1
)

cos(x)
x
− 3 sin(x)

x2

Table B.1: Spherical Bessel and Neu-
mann functions.

B.5 Spherical Coulomb functions

Asymptotic behaviour of the Coulomb functions for small and large x:

Fl(γ; x) ≃ clx
l+1 x→ 0 , Gl ≃

1

(2l + 1)clxl
, x→ 0 ,

Fl(γ; x) ≃ sin

(
x− lπ

2
− γ ln(2x) + σl

)
x→∞ ,

Gl(γ; x) ≃ cos

(
x− lπ

2
− γ ln(2x) + σl

)
x→∞

(B.12)

with σl = arg Γ(l + 1 + iγ) for the Coulomb phase shift and cl being a positive
coefficient depending on l. The Bessel functions can be expressed in Coulomb
functions:

jl(x) =
Fl(0; x)

x
and nl(x) = −

Gl(0; x)

x
. (B.13)

B.6 Numerical solution

B.6.1 The Numerov algorithm

The Numerov algorithm is an efficient tool for solving second-order differential
equations of the form

d2y

dx2
−W (x) · y = U(x) . (B.14)

Supposing that W (x) is given on an equidistant grid with spacing h, the function
y(x) can be calculated iteratively with

yn+1 =
2yn − yn−1 +

h2

12
(Un+1 + 10Fn + Fn−1)(

1− Wn+1h2

12

) +O(h6), (B.15)

where yn = y(xn), xn = n · h, and

F (x) = U(x) +W (x) · y .
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B.6 Numerical solution

The forward relation (B.15) needs the two initial values y0 and y1. If the value y1
is not known, but the gradient y′0, y1 can be obtained by using a Taylor expan-
sion [157]. Resolution of Eq. (B.15) according yn−1 yields the backward relation

yn−1 =
2yn − yn+1 +

h2

12
(Un−1 + 10Fn + Fn+1)(

1− h2

12
Wn−1

) . (B.16)

Again, two values are needed to start the iteration.

B.6.2 Application of the Numerov algorithm

By setting U(r) = 0 and

W (r) = V (r) +
~
2

2me

l(l + 1)

r2
− E ,

with x = r in Eq. (B.14), the Numerov algorithm can also be used in order to solve
the reduced radial equation (B.2) and to determine the solution ul(r) for given
E. For bound and continuum states, the forward iteration (B.15) is initiated by
using y0 = 0 and y0 = const. which corresponds to the asymptotic behaviour of
ul(r) for r → 0.

Bound states For larger r, the treatment of bound and continuum states differ.
For bound states, the forward iteration which starts at r = 0 with E − V (0) > 0
and E < 0, reaches the classical turning point at r = rcl with E − V (rcl) = 0,
see Fig. B.1 for the potential well. In the classically forbidden region, however,
the function ul(r) decays exponentially. The forward iteration cannot deliver this
behaviour. Thus, a common procedure is to start a backward iteration at a point
rmax far away from the classical turning point and match backward and forward
iteration as well as their derivatives at r = rcl. The backward iteration is initiated
with yNmax

= 0 and yNmax−1 = const., the energy eigenvalue E is changed stepwise.
A bound state is found as soon as the error

error =
y′forward(rcl)

yforward(rcl)
− y′backward(rcl)

ybackward(rcl)

changes its sign. A root-finding algorithm, e.g., the bisection method, can in a
next step determine the eigenvalue E with more accuracy.

Continuum states For continuum states the forward iteration delivers in prin-
ciple already the solution ul(r) which has the asymptotic behaviour

ul(r) ∼ sin(kr − lπ

2
+ δl) for r →∞ , (B.17)
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in the (s.r.) square-well potential. In order to calculated the phase δl, a backward
iteration with V = 0 is started from r = rmax with initial values provided by the
forward iteration. The phase is then determined from the value ybackward(0) at the
origin.
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0.5

1

-0.5

0

0.5

1

0 5 rcl 10 15 20

radius r [a0]

ǫ1 = −0.405Ry, l = 0
ǫ2 = −0.300Ry, l = 1

ǫ3 = 0.5Ry, l = 0

V0 = −0.507Ry r0 = 8.36 a0

|1〉: u0(r)

|2〉: u1(r)

|3〉: u0(r) Figure B.1: Lower panel: Calculated
bound states |1〉 and |2〉 for l = 0 and
l = 1 (lowest bound states) and con-
tinuum state |3〉 at ǫ3 (l = 0) in the po-
tential well of depth V0 = −0.507Ry
and width r0 = rcl = 8.36 a0. Up-

per panel: Corresponding radial part
ul(r) of the wavefunctions. The bound
states are normalized to unity, the
amplitude of the continuum state is√

2/(πk) at large distances.
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Title: Electron photoemission from sodium and carbon clusters

Abstract:

Photoangular distributions (PAD) and spectra (PES) of electrons emitted from clusters after ex-
citation with linearly polarized femtosecond laser pulses or with instantaneous boost are calcu-
lated theoretically in the framework of time-dependent density-functional theory. The studied
finite systems are small sodium clusters, carbon chains CN (N = 3, 5, 7), and the famous buck-
minsterfullerene C60. The behaviour of emission observables is explored as a function of size,
shape, electronic and ionic structure of the considered systems and as a function of laser param-
eters. Moreover, schemes for determination of the PAD of an ensemble of randomly orientated
molecules and clusters are elaborated. The TDDFT results are compared to stationary mod-
els and experimental data. Ionization mechanisms are studied in one- as well as multiphoton
regime.

Keywords: time-dependent density-functional theory, angle-resolved photoelectron spectros-
copy, electronic properties of sodium and carbon clusters, ionization mechanisms.

Titel: Photoemission von Elektronen aus Natrium- und Kohlenstoffclustern

Zusammenfassung:

Winkelverteilungen (PAD) und Spektren (PES) von Photoelektronen aus Clustern werden mit
Hilfe zeitabhängiger Dichtefunktionaltheorie berechnet. Als Systeme werden kleine Natrium-
cluster, Kohlenstoffketten CN (N = 3, 5, 7) sowie das berühmte Buckminster-Fulleren C60 be-
trachtet und mit linear polarisierten Femtosekunden-Laserpulsen oder instantanen Boosts an-
geregt. Anschließendwird das Verhalten der Emissionsobservablen als Funktion der Größe, der
Form, der Elektronen- und Ionenstruktur sowie der Einfluss von Laserparametern untersucht.
Die Ergebnisse aus TDDFT werden weiterhin mit stationären Modellen und experimentellen
Werten verglichen. Die Ionisationsmechanismen werden sowohl im Ein- als auch imMultipho-
tonenregime studiert.

Schlagwörter:ZeitabhängigeDichtefunktionaltheorie, winkelaufgelöste Photoelektronenspek-
trospie, elektronische Eigenschaften von Natrium- und Kohlenstoffclustern, Ionisationsmecha-
nismen.
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Résumé :

Des distributions angulaires (PAD) et des spectres (PES) de photoélectrons émis par des agré-
gats sous l’action des lasers à impulsions femtosecondes linéairement polarisées ou d’une im-
pulsion instantanée sont calculés théoriquement dans un modèle basé sur la théorie de la fonc-
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