
Efficient and accurate modeling of electron
photoemission in nanostructures with TDDFT

Philipp Wopperer1, Umberto De Giovannini1, and
Angel Rubio1,2

1 Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM
CSIC-UPV/EHU, 20018 San Sebastián, Spain.
2 Max Planck Institute for the Structure and Dynamics of Matter and Center for
Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.

E-mail: philipp.wopperer@ehu.es

Abstract. We review different computational methods for the calculation of
photoelectron spectra and angular distributions of atoms and molecules when excited
by laser pulses using time-dependent density-functional theory (TDDFT) that are
suitable for the description of electron emission in compact spatial regions. We derive
and extend the time-dependent surface-flux method introduced in Reference [1] within
a TDDFT formalism and compare its performance to other existing methods. We
illustrate the performance of the new method by simulating strong-field ionization
of C60 fullerene and discuss final state effects in the orbital reconstruction of planar
organic molecules.
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1. Introduction

When physical systems such as atoms, molecules, clusters, or nano-objects are exposed
to an appropriately tuned radiation field there is a non-negligible chance of ionization.
Strictly speaking, electron photoemission takes place whenever the exciting field is
capable to induce a bound-to-continuum transition and results in electrons escaping with
a given kinetic energy and from a given direction. Depending on the characteristics of
the radiation, the target system, time and energy scales, there exist many mechanisms
that contribute to emit electrons and correspondingly many ways to categorize them: for
example, sequential (Fano resonances, Auger decay, autoionization/thermionic emission)
and non-sequential processes, single and double ionization, single- and multiphoton
ionization, above-threshold ionization, etc. Associated with each of these mechanisms
there is as much spectroscopic information to be extracted. In particular, knowledge

ar
X

iv
:1

60
8.

02
81

8v
2 

 [
ph

ys
ic

s.
ch

em
-p

h]
  1

2 
A

ug
 2

01
6



Modeling of electron photoemission in nanostructures with TDDFT 2

about the ionization dynamics and on the parent system can be gained from differential
observables of the electron yield. For instance, the electron photoemission probability as
a function of the kinetic energy – the photoelectron spectrum (PES) – can give insight
into electronic energy levels, while the photoelectron angular distribution (PAD) carries
spatial information on ionic positions or directly on the electronic configurations.

If we focus on the ionization mechanism as a function of the external field parameters,
we can distinguish among different regimes. A common classification of the predominant
ionization regimes is according to the Keldysh parameter [2], originally defined for
the hydrogen atom. This parameter is given by γ =

√
EIP/(2Up) with EIP being the

ionization potential of the system, Up = I/(4ω2) the ponderomotive energy (i.e., the
averaged quiver energy in atomic units), I the intensity of the irradiating light, and ω
the frequency. For ω � EIP, one distinguishes two ionization regimes according to the
Keldysh parameter: the perturbative or nonlinear multiphoton ionization regime (MPI) [3]
which is associated with γ > 1 and the strong-field ionization regime with γ < 1.

In the multiphoton regime, the laser action results in a vertical excitation of a bound
electron into the continuum by absorption of several photons. Nevertheless, weak and
moderate lasers can promote electrons also far into the continuum by absorption of
multiple photons above the ionization threshold. This non-perturbative process is called
above-threshold ionization (ATI) [4] and yields to spectra which decay exponentially in
energy and that are characterized by a series of peaks separated by ω.

In the past decade, research in the photoelectron spectroscopy of finite systems
has focused predominantly on the strong-field regime which is characterized by the
onset of optical field ionization. At sufficiently high field strengths, the barrier of the
binding Coulomb potential is suppressed which results in a tunneling current that follows
adiabatically the variation of the laser field [5]. Above-threshold ionization still prevails
in this regime, however, it is more suitably explained as interferences between coherent
photoelectron wavepackets emitted at different times within the laser cycle.

Photoelectron spectra and angular distributions in the strong-field regime are
particularly rich in information on ionization dynamics since field-driven rescattering
is involved. This process was described by a classical three-step model, also called
simpleman’s model [6, 7] and was later extended to a quantum description (strong-field
approximation) [8] using the Keldysh–Faisal–Reiss approximation [2, 9, 10]. According
to the three-step model the electron is first released by tunnel ionization. The tunneled
electron is then accelerated in the laser field where it acquires a kinetic energy. Depending
on the release time, electrons either leave the parent ion directly or are driven back
towards the parent ion once the laser field changes its sign [11]. Applications of the
field-driven rescattering process are manifold. For instance, rescattering coherent
electron wavepackets can be used to self-interrogate the parent molecular structure.
This phenomenon is exploited for laser-induced electron diffraction (LIED) [12, 13] to
image molecular structures. Rescattering and direct photoelectron wavepackets can also
interfere coherently which allows to study holographic pattern in photoemission spectra
and angular distributions [14]. Nevertheless, reading recollision induced diffraction



Modeling of electron photoemission in nanostructures with TDDFT 3

images can become a complex task as several processes compete on similar time and
energy scales [15].

Concerning materials and investigated species in photoemission experiments, research
has extended to larger and denser systems in the previous years. Quite recently,
signatures of strong-field physics were found by experiments in metallic surfaces [16]
and nanostructures [17], clusters [18], and dielectric nanospheres [19]. For instance, the
exploration of photoionization processes in metal nanotips is currently a strongly evolving
field of research. The combination of femtosecond laser pulses and a sharp metal tip
is considered as a laser-driven ultrafast electron emitter on the nanometer scale with
prospective applications as electron source in electron microscopy, electron diffraction
and for free electron lasers, as an extremely sensitive carrier-envelope phase sensor, or as
generators of high-harmonic radiation [20, 21, 22, 23].

Calculation of PADs from the perturbative to the strong-field regime, and accurate
modeling of photoemission experiments on a broad range of materials at the same time,
can only be achieved by a comprehensive approach. In general, the interaction between
electrons in an atom or a molecule and a laser field is difficult to treat theoretically,
and several approximations are usually employed. For one-electron systems, PES and
PAD can be calculated exactly by directly solving the time-dependent Schrödinger
equation (TDSE). The most straightforward way is by projecting the wavefunction
obtained from the TDSE at the end of the pulse onto continuum states [24]. Another
approach where the calculation of the continuum eigenstates is avoided, is the resolvent
technique [25]. Both methods need to propagate the wavefunction until the end of
the pulse in a large space domain in order to obtain the correct distribution of the
ejected electrons. For simple cases this problem can be overcome by the use of spherical
coordinates. Also geometrical splitting techniques [26, 27, 28] turn out to be very useful
to reduce computational cost.

For more than two electrons, the exact solution of the TDSE in three dimensions is
unfeasible and basically all ab-initio calculations for multielectron systems are performed
under the single-active electron (SAE) approximation. In the SAE only one electron
interacts with the external field while the other electrons are frozen. This approximation
was successfully employed in several photoemission studies for atoms and molecules in
strong laser fields [29, 30, 31]. Besides the TDSE, Floquet theory [32, 33], the strong-field
approximation [34, 35] and semi-classical methods [36, 37, 38, 39] based on ionization
rates [40] are used in the strong-field regime. For weak lasers, plane wave methods [41],
the independent atomic center approximation [42] and (multiphoton) perturbation
theory [43, 44, 45] are usually employed. However, such approaches reproduce dynamics
only qualitatively, and their failure to describe multielectron (correlation) effects and
their often oversimplified assumptions for the continuum state call for better schemes.

The inclusion of exchange-correlation effects for a system of many interacting
electrons can be achieved within time-dependent density-functional theory (TDDFT) [46,
47]. Computations of electronic excitations for systems with up to a few hundred
atoms are currently most widely carried out employing this method. TDDFT offers
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a reasonable trade-off between accuracy and computational cost, where other, more
accurate, methods [48, 49] would not be feasible. In spite of transferring all the many-
body problems into an unknown exchange-correlation functional, the calculation of PES
and PAD in TDDFT is not straightforward. While the total ionization yield can be
calculated directly, differential quantities cannot be expressed in terms of the electron
density. Methods based on TDDFT, therefore, assume that PES and PAD can be
directly obtained from the time-dependent Kohn-Sham orbitals. Nevertheless, a close
correspondence between spectroscopic data and Kohn-Sham orbitals exists when using
self-interaction-free exchange and correlation functionals [50].

For TDDFT there are only two methods to compute PES and PAD that can be
formulated in finite volumes and that do not require to explicitly calculate continuum
states [51]: the sampling point method (SPM) [52, 53] and the mask method (MM) [54].
Both of them were extensively and successfully used for the calculation of photoelectron
spectra of atoms, molecules, and clusters [55], model systems for nano-tips [56], and for
various experimental setups from time-resolved (pump-probe) spectroscopy [57, 58] to
strong-field ionization of atoms exposed the x-rays [59]. However, both methods present
limitations in practical applications. For instance, MM becomes demanding to converge
for low kinetic energies (E . 1 eV). This is because MM requires Fourier transforms
of the wavefunctions. Thus, small energy steps and consequently small momenta are
associated with large spatial dimension that become increasingly large as we decrease
the step. Furthermore, the use of Fourier transforms prevents efficient parallelization
in spatial domains which in turns limits the size of the largest simulation box to a
single computational node memory. On the other end, SPM is less limited from the
computational stand point, but is unreliable especially in the strong-field regime. This
is due to the strong assumptions that it needs which are difficult to assess and in turn
require comparatively large simulations boxes to appropriately converge.

A promising alternative method was proposed in Ref. [1, 60], and a preliminary
version of the same method in Ref. [61] – the time-dependent surface flux method
(t–SURFF). t–SURFF has been so far employed only for few-electron systems either
with TDSE [1, 60, 62] or in combination with multiconfigurational time-dependent
Hartree-Fock [61]. In this paper, we extend this method for the first time to TDDFT.
In Sec. 2, we present the theory alongside the sampling point and mask methods to
illustrate differences and common traits and proceed with a real world comparison
on a characteristic set of examples in Sec. 3. For the sake of simplicity, we restrict
ourselves here and following to spin-unpolarized many-electron systems. Nevertheless,
all expressions and calculations can be trivially extended to include spin polarization.

Atomic units will be used throughout (me = e = ~ = 1) unless otherwise indicated.
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2. Theory

2.1. Space partitioning and momentum distribution

Below, we formally present the theoretical framework and assumptions that are common
to all the three methods detailed in the next sections. In this paper, we describe the
many-body electron dynamics at the level of TDDFT [46, 47]. In this context, the
electronic density of a many-body system

ρ(r, t) =
N∑
i=1

|ϕi(r; t)|2 ,

is obtained from an auxiliary one – the Kohn-Sham (KS) system – of non-interacting
fermions which wavefunction is represented by a single Slater determinant Ψ(r; t)

composed of N orbitals ϕi(r; t). These orbitals satisfy the time-dependent KS equations

ı∂tϕi(r; t) = ĤKS ϕi(r; t) , (1)

with the time-dependent KS Hamiltonian

ĤKS[ρ](r; t) = −∆

2
+ VKS[ρ](r; t) , (2)

and the time-dependent KS potential

VKS[ρ](r; t) = Vext(r; t) +

∫
d3r′

ρ(r′; t)

|r− r′| + Vxc[ρ](r; t) , (3)

composed by the external field of the ions and the laser field, the classical Hartree and
the exchange and correlation (xc) potential. Once the time-dependent density is obtained
by solving these equations, it is in principle possible to access any kind of observable
provided it is expressed as a functional of ρ(r, t).

The momentum probability distribution of emitted electrons P (k), i.e. the
probability to measure an electron with momentum k at a detector positioned far
away from a target system, is the observable we aim to describe. In this work, we focus
on the formulations that can be applied to real-space implementations and that require
the knowledge of the wavefunction in a limited volume. All these approaches are resting
on two principal assumptions.

The first assumption is that the dynamics of ionization can be accurately described
by two different Hamiltonians localized in adjacent spatial regions A and B separated by
a surface S as in Fig. 1 – we here choose a spherical surface of radius rS, but the shape
can be general. More specifically, we assume that in A the electrons can be described
with the KS Hamiltonian of Eq. 2 while in B they follow the exactly solvable Volkov
Hamiltonian

ĤB(t) = Ĥv(t) =
1

2

[
−ı∇− A(t)

c

]2

(4)
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Figure 1. Schematic description of space partitioning in the surface flux, sampling
point, and mask methods. A surface S (here chosen as spherical) separates the space
into region A which is described by TDDFT and the Volkov propagation region B.

governing the time evolution of free electrons in an external field A(t). This means that
the total time-dependent Hamiltonian Ĥ(r; t) describing our system can be expressed as
a combination of these two spatially localized Hamitonians,

Ĥ(r; t) =

{
ĤA(r; t) = ĤKS(r; t) r ∈ A
ĤB(r; t) = Ĥv(r; t) r ∈ B , (5)

and that electrons in B can be safely described as free, independent particles. The
quality of such an assumption is limited by the error in the truncation of the tail of the
Coulomb potential and ultimately depends on the position of S relative to the target
system. While this is exact in the proximity of the detector – at an infinite distance –
and certainly bad in the vicinity of the system – where electrons are strongly interacting
with each other and with the external potential – its range of applicability in many
relevant situations is quite large. In practice, however, one has to converge the final
results with respect to S.

Under the assumption that the space partitioning is a good approximation, we can
represent the wavefunction in B with a KS Slater determinant ΨB(r; t) yet expand each
orbital ϕB

i (r; t) on Volkov waves as follows

ϕB
i (r; t) =

∫
d3k bi(k)χk(r; t) , (6)

where

χk(r; t) = (2π)−3/2e−ıΦ(k;t)eıkr , with Φ(k; t) =
1

2

t∫
0

dτ

[
k− A(τ)

c

]2

(7)

are the exact solutions of the time-dependent Schrödinger equation for the Volkov
Hamiltonian in Eq. 4, Φ(k; t) is the Volkov phase and bi(k) is the spectral amplitude
of the ith KS orbital. Volkov waves are essentially plane waves with an additional
time-dependent phase.
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The second assumption is that in the long time limit, for t ≥ T , bound and ionized
electronic wavefunctions are well localized in A and B, respectively. In other words, we
demand that the total density is given by ρ(r;T ) = ρA + ρB with

ρA =
N∑
i=1

|ϕA
i (r;T )|2 , ρB =

N∑
i=1

|ϕB
i (r;T )|2 , (8)

and with ϕA
i (r;T ) (ϕB

i (r;T )) being the ith KS orbital localized in A (B) at time T . This
is exact for T → ∞, while for finite values of T one has to propagate for a time long
enough such that slowest escaping electrons have reached region B.

Under the former assumptions the total number of electrons escaped from A at
time T , which is precisely the integral of the total density in B, can be expressed as

Nesc =

∫
B

d3r ρ(r;T ) =

∫
d3r ρB(r;T ) =

N∑
i=1

∫
d3k |bi(k)|2 (9)

where we used Eq. 6 to obtain the rightmost expression. Since the momentum distribution
P (k) is the differential probability associated with the total number of escaped electrons
we can use the completeness of Volkov functions to invert Eq. 6 and obtain that

P (k) =
d3Nesc

d3k
=

N∑
i=1

|bi(k)|2 =
N∑
i=1

∣∣〈χk(T )|ϕB
i (T )〉

∣∣2 . (10)

From this equation it is apparent how P (k) connects with the spectral amplitude bi(k)

of the scattering orbitals expanded on Volkov waves. Less resolved quantities, like the
energy-resolved photoelectron probability P (E = k2/2), can be obtained from P (k) by
direct integration.

The three methods which we describe in the next sections, essentially provide
different approaches to obtain bi(k) from the knowledge of the KS orbitals in A only.
Our aim is to have an expression for bi(k) which can be efficiently implemented in a
real space three dimensional representation, that is accurate from linear to strong-field
regimes and with an energy resolution comparable to experiment (∆E ∼ 0.05 eV). As
we will show in the following, the SPM is straightforward to implement efficiently and
provides a large flexibility in reciprocal space. However, it is unreliable in the mid- to
strong-field regimes where it requires the use of unpractically large simulation boxes
to properly converge under its working assumptions. MM, in contrast, yields reliable
and precise results in all regimes, however, a computationally efficient implementation
is more involved as Fourier transforms are needed. Moreover, when using this method
the reciprocal space grid is constrained by the choice of the real-space one and spectra
at low kinetic energies are difficult to retrieve. t–SURFF can be derived in a TDDFT
formalism without any additional assumptions. The grid in momentum space can be
chosen arbitrarily which allows the calculation of PES and PAD up to high precision and
resolution. Furthermore, by introducing an additional parameter (the angular momentum
cut-off Lmax) the method can be efficiently implemented in three dimensions.
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2.2. Sampling point method

The sampling point method (SPM) is the oldest and least accurate amongst the methods
we discuss in this work [52]. It was first presented without formal theoretical derivation
and justified only on the basis of its results on practical calculations. We hereby present
a derivation with particular attention to the conditions under which it is supposed to
work reliably.

The SPM is based on the idea that P (k) can be calculated by the simple knowledge
of the time dependence of each orbital sampled only at a single point rS of the surface
S in Fig. 1. Besides the assumptions discussed in the previous section, it rests on the
additional conditions that (i) rS is positioned at a sufficiently large distance such that
the ionized wavepackets arrive when the laser pulse has been switched off (for t ≥ Tpulse)
and (ii) with a final momentum directed along rS, i.e., k = kerS .

Under these conditions we can drop the field A(t) in the Volkov phase which then
describes free particles, and explicitly write the expansion of Eq. 6 as

ϕB
i (rS; t) = (2π)−3/2

∫
dk bi(k,ΩrS)eıkrS−ık

2t/2 , (11)

where we express the momentum vector in spherical coordinates k = (k,ΩrS) to stress
the form enforced to the final momentum by condition (ii). A Fourier transform in the
time domain is then sufficient to impose the free particle dispersion relation, E = k2/2,
and extract the Volkov amplitudes with the following result

ϕ̃B
i (rS;E) =

1√
2π

∫
dt eiEtϕB

i (rS; t) =
eı
√

2ErS√
2E(2π)3

bi(
√

2E,ΩrS) . (12)

To obtain the above relation we used the time condition (i) and the Dirac delta δ(E−k2/2)

resulting from the time integral to simplify Eq. 11. At this point the momentum
distribution probability can be straightforwardly obtained from Eq. 10 as

P
(
k = (

√
2E,ΩrS)

)
= 2E(2π)3

N∑
i=1

∣∣ϕ̃B
i (rS;E)

∣∣2 , (13)

where we explicitly inverted the dispersion relation to obtain the momentum magnitude
k =
√

2E. This implies that k is always positive and therefore we must further impose
that (iii) at the sampling point, the electrons are strictly outgoing.

The SPM working conditions are asymptotically valid for rS positioned at an
infinitely large distance from the system, but quickly degrade as we move closer. The
most stringent condition is the time constraint (i) since it directly forces rS to be
positioned at a distance that proportionally grows with the laser switch-off time Tpulse.

A simple way to overcome this limitation was proposed in Ref. [53]. It substantially
reduces to keeping the full Volkov phase, including the field, in the expansion of Eq. 6
and to compensate it in the Fourier time integral. The Fourier exponent iEt in Eq. 12 is
thus substituted with the Volkov phase iΦ(k; t) evaluated at k =

√
2EerS ,

ξ̃Bi (rS;E) =
1√
2π

∫
dt eıΦ(

√
2EerS ;t) ϕB

i (rS; t) . (14)
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The photoelectron momentum distribution is then obtained by simply replacing ϕ̃B
i (rS;E)

with ξ̃Bi (rS;E) in Eq. 13. Owing to the presence of the Volkov phase in the time integral
this variant goes under the name of phase-augmented sampling point method (PA-SPM).

Even though this approach is superior to the simple SPM, it is still limited by
conditions (ii) and (iii). The validity of these conditions is difficult to assess in practical
calculations since it strongly depends on the electron dynamics induced by the external
field and can only be taken under control by converging the final results with respect to
the position of rS.

2.3. Surface flux method

In contrast to the SPM, the time-dependent surface flux method (t–SURFF) [1, 60, 61]
makes no further assumption besides the ones discussed in Sec. 2.1. Thus, for instance,
it can handle situations where electrons are driven by the laser field back towards
the emission site like in the backscattering regime. We here describe a derivation
alternative to the one present in the literature. Our derivation is based on the flux of
the current-density operator through S (see the scheme of Fig. 1) that is suitable for
TDDFT.

Owing to the space and Hamiltonian partitioning explained in Sec. 2.1, we can
describe the electronic wavefunctions with both ΨA(r; t) and ΨB(r; t) on the surface S
that separates region A and B. Using the continuity equation we thus express the total
number of escaped electron Nesc at time T in terms of the flux integral

Nesc =

T∫
0

dt

∫
B

d3r
dρ(r; t)

dt
= −

T∫
0

dt

∫
S

dσ · 〈ΨB |̂j|ΨA〉

= −
N∑
i=1

T∫
0

dt

∫
S

dσ · 〈ϕB
i |̂ji|ϕA

i 〉 (15)

of the single-particle, gauge-invariant, current-density operator

ĵi(r) =
1

2ı

[(
∇i − ı

A

c

)
δ(r− ri) + δ(r− ri)

(
∇i − ı

A

c

)]
, (16)

evaluated over ΨA(r; t) and ΨB(r; t) or the orbitals which they are composed of. We
then replace the bra in Eq. 15 and insert the expansion Eq. 6 in Volkov states

Nesc = −
N∑
i=1

T∫
0

dt

∫
S

dσ ·
∫
d3k

(
b∗i (k)J

(i)
k

)
(17)

with J
(i)
k ≡ 〈χk |̂ji|ϕA

i 〉. Since the choice of the subscript A and B in the brakets of
Eq. 15 is arbitrary, we can equivalently choose the opposite order and obtain that Nesc

is also equal to Eq. 17 complex conjugated. Comparing Eqs. 9 with 17 and its complex
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conjugated for each single orbital yields the final expression for the spectral amplitude

bi(k) = −
T∫

0

dt

∫
S

dσ · J(i)
k , (18)

in terms of the Volkov projected single-particle current density J
(i)
k . The momentum

probability distribution P (k) can then be obtained from Eq. 10 by summing up |bi(k)|2
over the orbital index i.

From Eq. 18 it is apparent that the extension to TDDFT is straightforward. In
practical implementations one needs to calculate J(i)

k for a given set of k and accumulate
its flux integral over time. To this end, one needs only to keep track of the KS orbitals
ϕA
i (r; t) and their gradients over S while the Volkov waves (and their gradients) are

analytical. In principle, provided S is positioned far enough from the system, there is
no restriction to the choice of its shape. However, we found that a spherical surface is
advantageous from the numerical standpoint as it allows to expand the Volkov waves in
spherical harmonics to decouple k and r. This in turn, requires to truncate the integrals
over the sphere up to a given maximum angular momentum Lmax and thus introduces
an additional parameter to converge (see Appendix A). In practice, we observed that
Lmax ≈ 100 is enough for a large class of problems involving moderately strong fields
(I . 1014 W/cm2).

Finally, we mention that a variant of the sampling point method can be derived by
truncating the surface integral in Eq. 18 to a single point (see Appendix B). This leads
to an alternative expression similar to the one for PA-SPM. In our tests, however, we
found that this variant did not present any significant improvement over PA-SPM and
therefore we did not develop it further.

2.4. Mask method

Similar in philosophy to t–SURFF, the mask method (MM) is derived under the same
assumption on the ionization process. We here recall the salient traits and remind the
reader to Ref. [54, 57, 58] for further details.

As discussed in Sect. 2.1, in the long-time limit of an ionization process, we can
assume that the electronic density and hence the wavefunction splits into two spatially
separated parts. A practical way to implement this splitting for a generic time t is to
use a mask function M(r) on each KS orbital as follows

ϕi(r; t) = M(r)ϕi(r; t) + [1−M(r)]ϕi(r; t) = ϕA
i (r; t) + ϕB

i (r; t) , (19)

where M(r) is a continuous function equal to 1 in the inner part of A and that smoothly
decays to 0 in B.

Using the the mask we can formally write the solution of the TDKS equations in
the whole space as a set of coupled equations,{

|ΨA(t′)〉 = M̂Û(t′, t)
[
|ΨA(t)〉+ |ΨB(t)〉

]
|ΨB(t′)〉 = [1− M̂ ]Û(t′, t)

[
|ΨA(t)〉+ |ΨB(t)〉

] , (20)
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using the time evolution operator

Û(t′, t) = exp

{
−i
∫ t′

t

Ĥ(τ)dτ

}
, (21)

with the time-boundary condition |ΨB(t = 0)〉 = 0 and with a mask operator defined as
M̂ =

∑
i=1 M(ri)δ(ri − r′i).

Owing to the asymptotic condition Eq. 4 on the Hamiltonian, |ΨB(t)〉 evolves
under the action of Ĥv, and we indicate with Uv(t

′, t) the associated evolution operator.
Since Ĥv is diagonal in momentum and ĤKS is almost local in real space, we can write
the equation of motion in a mixed real and momentum space representation. In this
representation we can integrate Eq. 20 by recursively applying the discrete time evolution
operator Û(∆t) ≡ Û(t+ ∆t, t) as follows{

〈r|ΨA(t+ ∆t)〉 = 〈r|M̂Û(∆t)|ΨA(t)〉+ 〈r|M̂Ûv(∆t)|ΨB(t)〉
〈χk|ΨB(t+ ∆t)〉 = 〈χk|[1− M̂ ]Û(∆t)|ΨA(t)〉+ 〈χk|[1− M̂ ]Ûv(∆t)|ΨB(t)〉 , (22)

with the initial condition 〈χk|ΨB(t = 0)〉 = 0. These equations can be written in a
closed form for 〈r|ΨA(t)〉 and 〈χk|ΨB(t)〉, by including the following set of equations,
here explicitly expanded for each KS orbital

〈r|M̂Û(∆t)|ϕA
i (t)〉 = M(r)〈r|Û(∆t)|ϕA

i (t)〉
〈r|M̂Ûv(∆t)|ϕB

i (t)〉 = M(r)
∫
〈r|χk〉〈χk|ϕB

i (t)〉d3k

〈χk|[1− M̂ ]Û(∆t)|ϕA
i (t)〉 =

∫
〈χk|r〉[1−M(r)]〈r|Û(∆t)|ϕA

i (t)〉d3r

〈χk|[1− M̂ ]Ûv(∆t)|ϕB
i (t)〉 = 〈χk|ϕB

i (t)〉 −
∫
〈χk|r〉〈r|M̂Ûv(∆t)|ϕB

i (t)〉d3r

. (23)

Once Eqs. 22 and 23 are propagated up to time T , the momentum distribution
is straightforwardly obtained by summing up the square modulus of the KS orbitals
as in Eq. 10, namely: P (k) =

∑N
i=1 |〈χk|ϕB

i (T )〉|2. Unlike the approaches described
in the previous sections, since Eqs. 22 and 23 include the boundary conditions for the
wavefunctions in A and B, there is no need for additional absorbing boundaries.

In a numerical implementation the evaluations of the integrals in Eq. 23 must
undergo some level of discretization. In particular, substituting Fourier integrals with
Fourier series introduces unwanted periodic boundaries conditions that reintroduce
ionized wavepackets into the simulation box and eventually lead to instability (for details
see the appendix of Ref. [54]).

A stabler scheme can be obtained by simplifying Eq. 23 under the assumption that
the electron flow is only outward from A. In this case we can omit the term responsible
for the introduction of charge from B, and obtain the modified set of equations

〈r|M̂Û(∆t)|ϕA
i (t)〉 = M(r)〈r|Û(∆t)|ϕA

i (t)〉
〈r|M̂Ûv(∆t)|ϕB

i (t)〉 = 0

〈χk|[1− M̂ ]Û(∆t)|ϕA
i (t)〉 =

∫
〈χk|r〉[1−M(r)]〈r|Û(∆t)|ϕA

i (t)〉d3r

〈χk|[1− M̂ ]Ûv(∆t)|ϕB
i (t)〉 = 〈χk|ϕB

i (t)〉

. (24)

Together with Eq. 22 it defines a modified scheme completely equivalent to the previous
one in the limit where rS is big enough to justify the outgoing flow condition. We note
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that, compared to Eq. 23, the first two equations in Eq. 24 governing the evolution of
the real-space components of the wavefunction in A, are no longer connected with the
momentum-space ones. For this reason the propagation is thus equivalent to a time
propagation with a mask function absorber that can introduce spurious reflections at the
boundaries. Such reflections can, in principle, be reduced by using the most appropriate
mask function absorber or a complex absorbing potential casted in the form of a mask
function [63]. In the energy range where the mask function absorbs well, it is possible to
carry out stable simulations for long times.

3. Examples

In the following, we illustrate the above mentioned approaches with a few examples.
Unless otherwise specified, we use TDDFT at the level of the time-dependent (adiabatic)
local-density approximation (ALDA) [64], augmented by an average-density self-
interaction correction (SIC) [65] which corrects the tail of the Coulomb potential and
yields an accurate ionization potential. Furthermore, in order to prevent artificial
reflections at the borders of the simulation box we employ absorbing boundary conditions.
In all the simulations the ions were clamped to their equilibrium positions.

All numerical calculations were performed with the real-time, real-space TDDFT
code Octopus freely available under the GNU public license [66, 67].

3.1. Hydrogen atom

We here present a comparison of all the methods discussed in this paper. To this end, we
choose as a benchmark test the case of above-threshold ionization (ATI) in an hydrogen
atom. Clearly, there is no need to use TDDFT for a one-electron system, and our interest
here is focused to assess the numerical performance and the accuracy of the different
methods. For this reason the simulations were carried out at the level of single-particle
TDSE.

We choose a Cartesian grid of spherical shape with radius rbox = 90 a.u. including
an outer shell of width 40 a.u. with a complex absorbing potential of height η = −0.2 [63].
We employ a pulse of Nc = 20 cycles, linearly polarized along the z-axis with wavelength
λ = 800 nm (ω = 1.55 eV), and intensity I = 5 × 1013 W/cm2. Photoelectrons are
collected until shortly after the pulse, where the total ionization amounts to Nesc ∼ 10−3.
The surface points for the t–SURFF method and the sampling points for the SPM
are both located on a sphere of radius rS = 50 a.u. directly in front of the absorbing
zone. The flux is evaluated with the expansion in spherical harmonics, Eq. 29, up to
a maximum angular momentum Lmax = 20. The data of the MM is extracted from
Ref. [54] where a box of radius rbox = 60 a.u. and a mask absorber of width 10 a.u. was
used.

Figure 2 shows the total spectra obtained with the three different methods. Apart
from the SPM, all methods compare quite well and display a series of ATI peaks
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Figure 2. Calculated photoelectron spectra of hydrogen exposed to a 20-optical-cycle
laser pulse with a peak intensity of I = 5×1013 W/cm2 and a frequency of ω = 0.057 a.u.,
obtained with the t–SURFF, mask (MM), and sampling point methods (SPM and
PA-SPM).

separated by the photon energy ω = 0.057 a.u. In contrast, the SPM presents a
featureless background for low-energies which, as the energy increases, transforms into
a series of peaks roughly spaced by ω, but with the wrong onset. For this reason, we
conclude that the SPM is not suitable for laser excitations in this regime (γ = 1.5).

The different quality of the results can be better assessed from the angle-resolved
spectra. Figure 3 displays high-resolution density plots of the spectra as a function of
the kinetic energy E and the angle ϑ measured with respect to the laser polarization
axis, obtained with t–SURFF (left), MM (middle), and PA-SPM (right).

The ATI peaks unfold into rings with a number of stripes equal to the angular
momentum quantum number of the dominant partial wave in the final state plus one [68].
The low-energy region shows a peculiar nodal pattern which is induced by the long-range
Coulomb potential. The pattern for the t–SURFF method compares very well with
the MM and with similar calculations in the literature [69]. This demonstrates that
t–SURFF is indeed a reliable tool to calculate photoelectron energy-angular distributions
in this regime.

Comparing t–SURFF method and MM to PA-SPM, we observe significant differences.
While the emission is preferentially along the laser polarization in all cases, PA-SPM
underestimates the emission in other directions. In particular, it hardly reproduces
the stripes perpendicular to the laser polarization and the low-energy region which is
sensitive to the tail of the Coulomb potential. This failure suggests that the contribution
of electrons with momentum not parallel to rS neglected by PA-SPM is crucial to form
these interference patterns. Therefore, we can conclude that only t–SURFF and MM
can be recommended for mid- to strong-field regimes and that all variants of SPM
should be avoided. Finally, we mention that the single-point approximation of the
t–SURFF method (see Appendix B) yields results (not shown) which are in line with
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Figure 3. Calculated photoelectron energy-angular distributions of hydrogen exposed
to a 20-optical-cycle laser pulse with a peak intensity of I = 5 × 1013 W/cm2 and a
frequency of ω = 0.057 a.u., obtained with the surface flux (left panel), mask (middle
panel), and (phase-augmented) sampling point methods (right panel).

those obtained with PA-SPM.

3.2. C60 fullerene

Compared to the previous section, we here tackle the more challenging problem in the
rescattering regime (γ < 1) where the use of TDDFT is mandatory. Following Ref. [70],
we consider the fullerene C60 exposed to a strong laser pulse, linearly polarized along
the z-axis with frequency ω = 1.36 eV, intensity I = 1014 W/cm2, and pulse length
Tpulse = 24 fs. In Ref. [70] the positively charged ionic background of the molecule
was approximated by a jellium shell and calculations where performed in cylindrical
coordinates. As already mentioned in the reference, this model suffers from the fact that
returning electrons collide with a jellium well instead of a carbon ion which eventually
leads to an underestimation of high-energy electrons. This is a limitation since the
angular pattern of rescattered electrons is actually influenced by the interatomic distances
as it results from the interference of waves scattering from different ionic centers [71, 72].
This is crucial, for instance, for laser-induced electron diffraction [12, 13]. Therefore, we
choose a three dimensional description which includes the ionic background by modeling
each atom with a pseudo-potential [73]. In what follows we consider only a single
orientation of the molecule relative to the laser polarization.

t–SURFF allows for computational boxes of the order of the free electron quiver
amplitude which for our laser is xp = 27 a.u. Here we used rbox = 70 a.u. with the
surface being located at rS = 50 a.u. in front of a complex absorbing potential of width
20 a.u. and height η = −1.0. A crucial parameter of the t–SURFF implementation is
the angular momentum cut-off Lmax. Figure 4 shows the obtained spectra for different
Lmax. From the figure it is clear that convergence is obtained first for the direct electrons
(E < 2Up) at Lmax ∼ 30, and only later, for much higher Lmax ∼ 80, in the plateau
region. Nevertheless, all spectra show a large plateau in the range of E = 30− 125 eV
up to the cut-off located at around E(SFA)

cut = 10.007Up + 0.538EIP.



Modeling of electron photoemission in nanostructures with TDDFT 15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

0 1 2 3 4 5

In
te

ns
it
y

[a
rb

.u
ni

ts
]

E [a.u.]

2Up 10Up

E
(SFA)
cut

Lmax = 15
30
50
70
80

Figure 4. Calculated photoelectron spectra of C60 exposed to a fs pulse with a peak
intensity of I = 1.6 × 1014 W/cm2 and a frequency of ω = 0.05 a.u., obtained for
different cut-offs Lmax in the expansion in spherical harmonics Eq. 29.

Angular-resolved quantities are displayed in Fig. 5 (Lmax = 80). The angles ϑ and
ϕ are measured with respect to the laser polarization axis, see Fig. 5 (a). The left part
of Fig. 5 (b) shows the full angular-resolved PES averaged over the angle ϕ, while in the
right part we find the PAD obtained from an integration of the angular-resolved PES
over the high-energy range of 50–160 eV. As one can see, in this energy range, almost all
photoelectrons are emitted with an angle ϑ ≤ 45◦, i.e., in a cone in forward-backward
direction. This in contrast to the jellium model, where the integrated PAD is strongly
peaked around ϑ = 0◦, we get a larger portion of electrons scattered sidewards. This
confirms that the PAD of rescattered electrons is highly sensible to the ionic structure of
the target.

Figure 5 (c) displays the momentum distribution P (k) as a function of the momenta
k‖ and k⊥ parallel and perpendicular to the laser polarization axis, respectively. The
angular-resolved PES is now decomposed by two circles of maximum radii kr ≈ 1.26A0

which are shifted by ±A0/c with respect to the origin. This specific shape is the result
of the rescattering process and characteristic of the LIED regime. LIED features can
be interpreted with the semianalytical models provided by the quantitative rescattering
theory. According to the quantitative rescattering theory [71, 72, 74], photoelectrons are
released by tunnel ionization with an initial velocity of near zero. They then quiver in
the laser field before returning back towards the target ion with incident momentum k0

where they scatter elastically in all directions with scattered momentum kr (|kr| = |k0|).
The maximum kinetic energy that quiver electrons can gain in the laser field corresponds
to k2

r/2 = 3.2Up = 3.2/4 · A2
0, and since the elastic collision occurs in the laser field,

photoelectrons gain an additional momentum A(tr)/c from the field at the recollision
time tr. The calculated PAD in Fig. 5 (c) fits well with this model. The elastic scattering
occurs in all directions. Thus, for a realistic simulation of strong-field ionization it
is necessary to use an atomistic model which appropriately describes the rescattering
process.
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Figure 5. (a) Geometry of C60 fullerene and angles (ϑ, ϕ) of the outgoing electrons
measured with respect to the laser polarization axis (along the z-axis). (b) Color
map of calculated angle-resolved photoelectron spectrum of C60 as a function of the
kinetic energy E and emission angle ϑ, in logarithmic scale. The full three-dimensional
momentum distribution was averaged over the angle ϕ. The right part of (b) shows the
PAD obtained from the integration of the angular-resolved PES over the high-energy
range of 50–160 eV, normalized to 1 at 0◦. The laser pulse parameters are: ω = 1.36 eV,
Tpulse = 24 fs, I = 1.6 × 1014W/cm2. (c) Similar to (b), but as a function of the
momenta k‖ and k⊥ parallel and perpendicular to the laser polarization, respectively.
(d) Photoelectron spectra for different emission angles ϑ and total PES (in logarithmic
scale).

Figure 5 (d) finally shows photoelectron spectra for different emission angles ϑ.
Electrons with highest kinetic energies are emitted exclusively along the laser polarization
axis, as can be seen at the line for ϑ = 0◦. The cut-off is most clearly seen in the total
spectrum and fits well with the theoretical prediction E(SFA)

cut . Spectra of electrons that
are emitted sidewards, also exhibit cut-offs, but with values smaller than E(SFA)

cut .

3.3. Organic molecules

In this section, we move from the strong-field regime to the linear one where the laser
intensity is weak, still the photon fluence is large enough to justify the use of a classical
description for the electromagnetic field.

In this regime, electrons need to absorb only one photon to ionize. Much like in the
photoelectric effect, electrons ejected in this regime carry information about the energy
level of their parent system encoded in the kinetic energy spectrum. The spectrum is
composed of a series of peaks positioned at kinetic energies Ei = ω − E(i)

IP where E(i)
IP is

the ionization potential of the ith state of the system. This fact can be easily derived
from time-dependent perturbation theory using Fermi’s golden rule which, apart from
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an inessential scaling factor, reads

P (k) ∝
∑
i

|〈Ψf (k)|A · p̂|Ψi〉|2 δ(Ef − Ei − ω) . (25)

This equation describes the probability to excite an electron from an initial state |Ψi〉 to
|Ψf〉 separated by E(i)

IP = Ef − Ei using an external field coupled with the dipole matrix
element A · p̂ with p̂ being the momentum operator.

Using Eq. 25 as a starting point in Ref. [75] it was first shown that photoelectrons
carry also information about the orbitals from which they originate. This information is
encoded in the PAD, and can be isolated making the assumption that the final state is a
plane wave |Ψf (k)〉 ≈ |k〉, and that the initial state can be decomposed into separated
orbitals |ϕi〉. Under these assumptions, and restricting to energies Ei infinitesimally
close to |ϕi〉, Eq. 25 becomes

P (k) ∝ |〈k|A · p̂|ϕi〉|2 = |A · k|2|ϕ̃i(k)|2 , (26)

where k is constrained to a spherical energy shell Ei = k2/2 = ω − E(i)
IP and where with

|ϕ̃i(k)|2 we indicate the Fourier transform of the orbital. Thus, apart from a purely
geometrical factor |A · k|2, the angular distribution of photoelectrons turns out to be
proportional to the Fourier transform of the parent orbital. The geometrical factor can
be eliminated by summing up the PADs obtained with two perpendicular polarizations,
for instance along x and y,

PU(k) = Px(k) + Py(k) ∝ (|Akx|2 + |Aky|2)|ϕ̃i(k)|2 = 2E2
iA

2|ϕ̃i(k)|2 , (27)

and we obtain a direct connection between the Fourier transform of orbitals and
photoelectron data. Combining incoherently PADs obtained with perpendicular
polarizations is equivalent to the use of a single unpolarized pulse. For this reason
we named PU(k) the result of the previous equation.

It must be noted that the aforementioned relation is not universal and is supposed to
be valid only for a limited set of molecules and orbitals [75]. The class of planar organic
molecules satisfy these conditions and is thus well suited to illustrate the concept. To
this end, we calculated PU(k) ab-initio for a selection of organic molecules: naphtalene,
anthracene, tetracene, and perylenetetracarboxylic dianhydride (PTCDA). The results
are reported in Fig. 6 (a–d) where we used a laser pulse with ω = 54.4 eV, Tpulse = 9 fs,
and I = 108 W/cm2 and cut at the energy shells corresponding to the HOMO for each
molecule, namely EH = 46.2, 47.2, 47.8, 46.6 eV, respectively. All the photoelectron
calculations were performed using MM.

In each panel we split the figure in two parts and directly compare PU(k) (on the
left) to the Fourier transform of the HOMO orbital |ϕ̃HOMO(k)|2 (on the right). By
comparing right and left parts of each panel it is clear that Eq. 27 well describes each
photoelectron distribution. In a first approximation all these molecules exhibit a similar
structure and differ mainly by the number of phenyl rings. For this reason it is not
surprising that all the PAD look similar except for small features forming close to zero
momentum. This can be indeed understood in terms of Fourier transform where the lobes
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Figure 6. PADs and PECDs for a selection of organic molecules. From left to right
in each column we report results for a different molecule: naphtalene (a,e), anthracene
(b,f), tetracene (c,g) , and PTCDA (d,h). In the top row PADs are obtained using
an unpolarized field, see Eq.27, with ω = 54.4 eV, Tpulse = 9 fs, and I = 108 W/cm2.
For all the molecules we oriented the axis such that the x (y) axis is along the longest
(shortest) molecular axis while the z axis is perpendicular to the plane of the molecule.
Each panel is split in two: in the left part we plot the PAD obtained by the ab-initio
simulation using the mask method evaluated on the energy shell corresponding to
electrons associated with the HOMO (see text), on the right we plot the Fourier
transform of the HOMO orbital evaluated on the same energy shell. In the bottom row
we show PECD maps resulting by subtracting the PADs obtained with left and right
circularly polarized pulses. The laser has the same parameters as the one used for the
top row but circularly polarized on the z-y plane.

positioned at ky = ±1 a.u. can be associated with a dominant pattern well localized in
space – the phenyl ring. This base pattern is repeated for an increasing number of times
(and in different directions) as we increase the size of the molecule, and this contributes
to create small features in the short wavelengths in reciprocal space (large extension in
real space).

Once established the validity of Eq. 27 it is a natural step to attempt a Fourier
inversion and reconstruct the orbitals in real space from the photoemission data. This,
however, is not possible since PU (k) provides only information on the square modulus of
the Fourier transform and we lack information about its phase. There have been different
attempts in the literature to address this problem and to a large extent they reduce to
different levels of educated guessing. For instance, in Ref. [75], the phase was arbitrarily
chosen, while in Ref. [76] it was selected with a self-consistent procedure and in Ref. [77]
it was identified by correlating group-symmetry arguments with photoelectron circular
dichroism (PECD).
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In what follows we focus on the last approach. To this end, we calculate the PECD
maps subtracting the PAD obtained with left (σ+) and right (σ−) circularly polarized
laser pulses PCD(k) = P+(k)− P−(k). For the calculations we choose a field polarized
on the y-z axis provided that all the molecules are oriented with the longer (shorter)
molecular axis on along x (y) and that z is perpendicular to the molecular plane. The
results are shown in Fig. 6 (e–h). Given that none of the molecules in our set have
a specific handedness one would expect to see zero dichroism, but clearly the PECD
maps in the figure are not. The apparent discrepancy comes from the fact that it is our
observation setup that has a defined handedness and therefore we can observe a dichroic
effect even on molecules without a specifc handedness [78]. Furthermore, the results for
PTCDA in Fig. 6 (d) and (h) are in good agreement with the one measured in Ref. [77],
especially considering that the experiment was carried out with molecules deposited on
a metallic surface while our calculations are in the vacuum.

We conclude by observing that the final wave approximation we made to derive
Eq. 26, is inconsistent with a non-zero PECD. In fact, for circularly polarized light,
Eq. 26 becomes

P±(k) ∝ |〈k|Ap̂y ± iAp̂z|ϕi〉|2 = Py(k) + Pz(k)± i(D∗yDz −DyD
∗
z) (28)

where Dy,z = 〈k|Ap̂y,z|ϕi〉 is the dipole matrix element. The resulting PECD is
PCD(k) = 4|Dy||Dz| sin(∠Dz − ∠Dy) and depends on the phase difference between
the two dipole matrix elements of y and z. Approximating the final wavefunction as
a plane wave implies that the matrix element Dy,z = Aky,zϕ̃(k) has a phase which is
independent of the direction y,z and thus PCD(k) = 0. In order to have a non-zero PECD
one has to go beyond the single plane wave final state approximation. Going beyond this
approximation may also disclose information on the phase intrinsically encoded in the
PECD and possibly allow Fourier inversion without the need of additional information
on the group symmetry of the molecule. However, interesting, further investigation along
this line is beyond the scope of the current paper.

4. Discussion

Among the presented approaches to calculate photoelectron spectra with TDDFT,
the sampling point method appears to be the most straightforward one to implement
without effecting much the computational time. However, the errors of the SPM may
become severe since the quiver motion of the electron in the laser field is described only
approximately at the position of the sampling point. This might lead to inaccurate
photoelectron spectra in the strong-field regime. To avoid this, one is forced to choose the
size of the box such that electron flow and laser field do not overlap at the sampling point.
For example, an electron with kinetic energy of 125 eV travels a distance of ≈ 125 a.u.
within one femtosecond. Therefore, one would need to choose box sizes of hundreds of
Bohr in order to obtain reliable spectra of systems exposed to laser pulses consisting of
only a few cycles. This basically rules out a computationally efficient usage of the SPM
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in three dimensions for strong fields. With the PA-SPM the situation improves, but
still the results can be inaccurate if the photoelectrons have a non-negligible transversal
momentum component at the sampling point.

The mask method, in principle, describes the time evolution of independent particles
in the analyzed region (for short-range potentials) exactly as it projects the orbitals onto
Volkov states which include the correct phase. This avoids the problem of overlapping
electron flow and laser field and allows to choose box sizes which only have to accomodate
the quiver motion. Moreover, MM also allows electrons to come back from region B.
However, Fourier transforms of the single-particle wavefunctions in the absorbing region
are involved. Thus, periodic boundaries are automatically imposed and the resolution
in kinetic-energy space depends on grid spacing and width of the absorbing zone.
Additionally, the implementation of absorbing boundaries has to be done through a mask
function, although it also can be cast in terms of an additional imaginary potential in
the Schrödinger equation.

The surface flux method can be seen as a combination of SPM and MM rectifying
the disadvantages of both methods. In contrast to the SPM, t–SURFF can be properly
derived within a TDDFT formalism. Like in the MM, box sizes can be reduced to
approximately the range of the electron quiver amplitude as the quiver motion can be
described reliably at the position where the spectrum is evaluated (i.e., the surface). On
the other hand, the grid in momentum space can be chosen arbitrarily up to an energy
range of Emax . min{π/∆t, (π/∆x)2/2}, where ∆t are the time step and ∆x the grid
spacing used in the numerical computation. The surface is transparent which means that
it allows electrons from region A entering region B and vice versa and that it can be
combined with any kind of boundary condition. The calculation of the flux includes the
plane wave factor eıkr and spatial derivatives of the orbitals that need to be evaluated
on a closed surface. Therefore, interpolation may be required and the implementation
of the t–SURFF method is more involved than in the SPM. However, it can be fully
parallelized in grid points and orbitals.

5. Conclusion

In this paper, we have reviewed the theoretical methods for the calculation of
photoelectron spectra within TDDFT: the sampling point method (SPM), the time-
dependent surface flux method t–SURFF, and the mask method (MM). While SPM and
MM were already established in the framework of TDDFT, t–SURFF is new and has
been so far employed in conjunction with other theory levels. We exported t–SURFF
to TDDFT using a novel derivation in terms of the flux of the current density operator
and discussed how the expansion in spherical harmonics can be crucial for an efficient
implementation in real space codes.

We presented a direct comparison of all the three methods. Our benchmark was the
simulation of the characteristic photoelectron angular distribution (PAD) of ATI peaks
in an hydrogen atom. In our test, t–SURFF emerged as the best method combining
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the flexibility and light computational cost of the SPM with the accuracy of the MM in
excellent agreement with previously published results.

With t–SURFF we investigated electron emission from the C60 molecule exposed
to an intense IR laser field. To the best of our knowledge this is the first time that
a TDDFT atomistic simulation of strong-field ionization of such a large molecule is
presented in the literature. The PES can be separated into direct and rescattered parts
with a smooth plateau up to a cut-off at around ESFA

cut = 10Up. The calculated angular
distributions can be well explained with the quantitative rescattering theory and exhibit
enhanced sidewards scattering which is completely missing in the same simulation with
a jellium model. This underlines the relevance of a theoretical description of strong-field
phenomena at the atomistic level.

Finally, we discussed the problem of orbital reconstruction from photoemission data.
To this end, we performed simulations with both linearly and circularly polarized pulses
on different planar organic molecules. We illustrated how the PAD from unpolarized
fields is strongly connected with the Fourier transform of the molecular orbital from
which the electrons originate and discussed the problem of Fourier inversion to recover
the orbital from photoelectron data. We also performed photoelectron circular dichroism
(PECD) simulations that are in good agreement with published data. Furthermore, we
showed how non-zero PECD is in direct contrast with perturbation theory models in
which the final state is approximated with a single plane wave and discussed how, going
beyond this approximation, may constitute a possible venue to systematically recover
the phase for orbital reconstruction.
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Appendix A

The main complication for a computationally efficient implementation of Eq. 18 in three
dimensions is the plane wave factor eıkr in the Volkov state Eq. 7 as the number of
surface points and the k-grid become large. Therefore, we integrate on a sphere with
d2σ = r2

S dΩr and expand the plane wave factor in spherical harmonics:

bi(k) = −r
2
S

2ı

∫
dt

∫
dΩr χ

∗
k

[
∇i + ık− 2ı

A

c

]
ϕA
i · er
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= − 4πr2
S

2ı(2π)3/2

∑
lm

(−ı)ljl(kr)Ylm(Ωk)

∫
dt eıΦ(k,t) × (29)

(
ık− 2ı

A

c

)∫
dΩr Y

∗
lm(Ωr) er ϕ

A
i︸ ︷︷ ︸

S
(1)
lm(t)

+

∫
dΩr Y

∗
lm(Ωr) ∂rϕ

A
i︸ ︷︷ ︸

S
(2)
lm (t)

 .

The expansion has the strong advantage that it decouples the surface integrals S(1)
lm(t) and

S
(2)
lm (t) from the k-grid. The integration can be performed efficiently by using the Gaussian

quadrature on interpolated Gaussian nodes up to a cutoff angular momentum Lmax.
For a given Lmax, the number of integration nodes is independent of the size of the
computational box.

Appendix B

The connection between t–SURFF and PA-SPM is to skip the surface integral in Eq. 18
and to consider only a single point, namely the one pointing in k-direction. In three
dimensions, we proceed by replacing J

(i)
k → J

(i)
k · δ(2)(Ωk − Ωr) and obtain:

balt
i (k) = −

T∫
0

dtJ
(i)
k (r,Ωk; t) · ek

= − e−ıkr

2ı(2π)3/2

∫
dt eıΦ(k;t)

[
∇i + ık− 2ı

A

c

]
ϕi(r,Ωk; t) · ek (30)

Assuming ∂rξ̃(r,Ωk;ω) =
√

2ωı ξ̃(r,Ωk;ω) and identifying k =
√

2ω, we recover (except
for a normalization factor and the term accounting for the vector potential) the result
from the PA-SPM.
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