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Abstract. We review different computational methods for the calculation of
photoelectron spectra and angular distributions of atoms and molecules when excited
by laser pulses using time-dependent density-functional theory (TDDFT) that are
suitable for the description of electron emission in compact spatial regions. We derive
and extend the time-dependent surface-flux method introduced in Reference [I] within
a TDDFT formalism and compare its performance to other existing methods. We
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1. Introduction

When physical systems such as atoms, molecules, clusters, or nano-objects are exposed
to an appropriately tuned radiation field there is a non-negligible chance of ionization.
Strictly speaking, electron photoemission takes place whenever the exciting field is
capable to induce a bound-to-continuum transition and results in electrons escaping with
a given kinetic energy and from a given direction. Depending on the characteristics of
the radiation, the target system, time and energy scales, there exist many mechanisms
that contribute to emit electrons and correspondingly many ways to categorize them: for
example, sequential (Fano resonances, Auger decay, autoionization/thermionic emission)
and non-sequential processes, single and double ionization, single- and multiphoton
ionization, above-threshold ionization, etc. Associated with each of these mechanisms
there is as much spectroscopic information to be extracted. In particular, knowledge
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about the ionization dynamics and on the parent system can be gained from differential
observables of the electron yield. For instance, the electron photoemission probability as
a function of the kinetic energy — the photoelectron spectrum (PES) — can give insight
into electronic energy levels, while the photoelectron angular distribution (PAD) carries
spatial information on ionic positions or directly on the electronic configurations.

If we focus on the ionization mechanism as a function of the external field parameters,
we can distinguish among different regimes. A common classification of the predominant
ionization regimes is according to the Keldysh parameter [2], originally defined for
the hydrogen atom. This parameter is given by v = \/Ep/(2U,) with Erp being the
ionization potential of the system, U, = I/(4w?) the ponderomotive energy (i.e., the
averaged quiver energy in atomic units), I the intensity of the irradiating light, and w
the frequency. For w < Eip, one distinguishes two ionization regimes according to the
Keldysh parameter: the perturbative or nonlinear multiphoton ionization regime (MPI) [3]
which is associated with v > 1 and the strong-field ionization regime with v < 1.

In the multiphoton regime, the laser action results in a vertical excitation of a bound
electron into the continuum by absorption of several photons. Nevertheless, weak and
moderate lasers can promote electrons also far into the continuum by absorption of
multiple photons above the ionization threshold. This non-perturbative process is called
above-threshold ionization (ATI) [4] and yields to spectra which decay exponentially in
energy and that are characterized by a series of peaks separated by w.

In the past decade, research in the photoelectron spectroscopy of finite systems
has focused predominantly on the strong-field regime which is characterized by the
onset of optical field ionization. At sufficiently high field strengths, the barrier of the
binding Coulomb potential is suppressed which results in a tunneling current that follows
adiabatically the variation of the laser field [5]. Above-threshold ionization still prevails
in this regime, however, it is more suitably explained as interferences between coherent
photoelectron wavepackets emitted at different times within the laser cycle.

Photoelectron spectra and angular distributions in the strong-field regime are
particularly rich in information on ionization dynamics since field-driven rescattering
is involved. This process was described by a classical three-step model, also called
simpleman’s model [6, [7] and was later extended to a quantum description (strong-field
approximation) [8] using the Keldysh—Faisal-Reiss approximation [2, 9] [10]. According
to the three-step model the electron is first released by tunnel ionization. The tunneled
electron is then accelerated in the laser field where it acquires a kinetic energy. Depending
on the release time, electrons either leave the parent ion directly or are driven back
towards the parent ion once the laser field changes its sign [I1]. Applications of the
field-driven rescattering process are manifold. For instance, rescattering coherent
electron wavepackets can be used to self-interrogate the parent molecular structure.
This phenomenon is exploited for laser-induced electron diffraction (LIED) [12] [13] to
image molecular structures. Rescattering and direct photoelectron wavepackets can also
interfere coherently which allows to study holographic pattern in photoemission spectra
and angular distributions [I4]. Nevertheless, reading recollision induced diffraction
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images can become a complex task as several processes compete on similar time and
energy scales [15].

Concerning materials and investigated species in photoemission experiments, research
has extended to larger and denser systems in the previous years. Quite recently,
signatures of strong-field physics were found by experiments in metallic surfaces [16]
and nanostructures [17], clusters [I8], and dielectric nanospheres [19]. For instance, the
exploration of photoionization processes in metal nanotips is currently a strongly evolving
field of research. The combination of femtosecond laser pulses and a sharp metal tip
is considered as a laser-driven ultrafast electron emitter on the nanometer scale with
prospective applications as electron source in electron microscopy, electron diffraction
and for free electron lasers, as an extremely sensitive carrier-envelope phase sensor, or as
generators of high-harmonic radiation [20, 21} 22], 23].

Calculation of PADs from the perturbative to the strong-field regime, and accurate
modeling of photoemission experiments on a broad range of materials at the same time,
can only be achieved by a comprehensive approach. In general, the interaction between
electrons in an atom or a molecule and a laser field is difficult to treat theoretically,
and several approximations are usually employed. For one-electron systems, PES and
PAD can be calculated exactly by directly solving the time-dependent Schrédinger
equation (TDSE). The most straightforward way is by projecting the wavefunction
obtained from the TDSE at the end of the pulse onto continuum states [24]. Another
approach where the calculation of the continuum eigenstates is avoided, is the resolvent
technique [25]. Both methods need to propagate the wavefunction until the end of
the pulse in a large space domain in order to obtain the correct distribution of the
ejected electrons. For simple cases this problem can be overcome by the use of spherical
coordinates. Also geometrical splitting techniques [26, 27, 28] turn out to be very useful
to reduce computational cost.

For more than two electrons, the exact solution of the TDSE in three dimensions is
unfeasible and basically all ab-initio calculations for multielectron systems are performed
under the single-active electron (SAE) approximation. In the SAE only one electron
interacts with the external field while the other electrons are frozen. This approximation
was successfully employed in several photoemission studies for atoms and molecules in
strong laser fields [29, [30] [31]. Besides the TDSE, Floquet theory [32, 33|, the strong-field
approximation [34, [35] and semi-classical methods [36, 37, 38|, 39] based on ionization
rates [40] are used in the strong-field regime. For weak lasers, plane wave methods [41],
the independent atomic center approximation [42] and (multiphoton) perturbation
theory [43, 144] [45] are usually employed. However, such approaches reproduce dynamics
only qualitatively, and their failure to describe multielectron (correlation) effects and
their often oversimplified assumptions for the continuum state call for better schemes.

The inclusion of exchange-correlation effects for a system of many interacting
electrons can be achieved within time-dependent density-functional theory (TDDFT) [40],
47]. Computations of electronic excitations for systems with up to a few hundred
atoms are currently most widely carried out employing this method. TDDFT offers
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a reasonable trade-off between accuracy and computational cost, where other, more
accurate, methods [48], 49| would not be feasible. In spite of transferring all the many-
body problems into an unknown exchange-correlation functional, the calculation of PES
and PAD in TDDFT is not straightforward. While the total ionization yield can be
calculated directly, differential quantities cannot be expressed in terms of the electron
density. Methods based on TDDFT, therefore, assume that PES and PAD can be
directly obtained from the time-dependent Kohn-Sham orbitals. Nevertheless, a close
correspondence between spectroscopic data and Kohn-Sham orbitals exists when using
self-interaction-free exchange and correlation functionals [50].

For TDDF'T there are only two methods to compute PES and PAD that can be
formulated in finite volumes and that do not require to explicitly calculate continuum
states [51]: the sampling point method (SPM) [52, 53] and the mask method (MM) [54].
Both of them were extensively and successfully used for the calculation of photoelectron
spectra of atoms, molecules, and clusters [55], model systems for nano-tips [56], and for
various experimental setups from time-resolved (pump-probe) spectroscopy [57, 58] to
strong-field ionization of atoms exposed the x-rays [59]. However, both methods present
limitations in practical applications. For instance, MM becomes demanding to converge
for low kinetic energies (E < 1 eV). This is because MM requires Fourier transforms
of the wavefunctions. Thus, small energy steps and consequently small momenta are
associated with large spatial dimension that become increasingly large as we decrease
the step. Furthermore, the use of Fourier transforms prevents efficient parallelization
in spatial domains which in turns limits the size of the largest simulation box to a
single computational node memory. On the other end, SPM is less limited from the
computational stand point, but is unreliable especially in the strong-field regime. This
is due to the strong assumptions that it needs which are difficult to assess and in turn
require comparatively large simulations boxes to appropriately converge.

A promising alternative method was proposed in Ref. [I], [60], and a preliminary
version of the same method in Ref. [61] — the time-dependent surface flux method
(t-SURFF). t—-SURFF has been so far employed only for few-electron systems either
with TDSE [1, 60, 62] or in combination with multiconfigurational time-dependent
Hartree-Fock [61]. In this paper, we extend this method for the first time to TDDFT.
In Sec. [2, we present the theory alongside the sampling point and mask methods to
illustrate differences and common traits and proceed with a real world comparison
on a characteristic set of examples in Sec. [3] For the sake of simplicity, we restrict
ourselves here and following to spin-unpolarized many-electron systems. Nevertheless,
all expressions and calculations can be trivially extended to include spin polarization.

Atomic units will be used throughout (m. = e = A = 1) unless otherwise indicated.
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2. Theory

2.1. Space partitioning and momentum distribution

Below, we formally present the theoretical framework and assumptions that are common
to all the three methods detailed in the next sections. In this paper, we describe the
many-body electron dynamics at the level of TDDFT [46], 47]. In this context, the
electronic density of a many-body system

p(r,t) = Z loi(r; )7

is obtained from an auxiliary one — the Kohn-Sham (KS) system — of non-interacting
fermions which wavefunction is represented by a single Slater determinant W(r;t)
composed of N orbitals ¢;(r;t). These orbitals satisfy the time-dependent KS equations

1Wypi(r;t) = Hys ¢i(rst) (1)
with the time-dependent KS Hamiltonian
. A
Hs[p](r;t) = = + Vkslpl(r:1) (2)
and the time-dependent KS potential
r';t
Vislp](r;t) = Vexe (13 1) + / d*’ ﬁ + Vielpl(rit) (3)

composed by the external field of the ions and the laser field, the classical Hartree and
the exchange and correlation (xc) potential. Once the time-dependent density is obtained
by solving these equations, it is in principle possible to access any kind of observable
provided it is expressed as a functional of p(r, ).

The momentum probability distribution of emitted electrons P(k), i.e. the
probability to measure an electron with momentum k at a detector positioned far
away from a target system, is the observable we aim to describe. In this work, we focus
on the formulations that can be applied to real-space implementations and that require
the knowledge of the wavefunction in a limited volume. All these approaches are resting
on two principal assumptions.

The first assumption is that the dynamics of ionization can be accurately described
by two different Hamiltonians localized in adjacent spatial regions A and B separated by
a surface S as in Fig. [1| — we here choose a spherical surface of radius rg, but the shape
can be general. More specifically, we assume that in A the electrons can be described
with the KS Hamiltonian of Eq. [2] while in B they follow the exactly solvable Volkov
Hamiltonian

A9() = (1) = 5 |17 - A“)r @)

2 c
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Figure 1. Schematic description of space partitioning in the surface flux, sampling
point, and mask methods. A surface S (here chosen as spherical) separates the space
into region A which is described by TDDFT and the Volkov propagation region B.

governing the time evolution of free electrons in an external field A(¢). This means that
the total time-dependent Hamiltonian H(r;t) describing our system can be expressed as
a combination of these two spatially localized Hamitonians,

< | Ha(r;t) = HAgs(r;t) re A
H(r’t)_{ﬁB(r;t):fIv(sr;t) reB ’ ©)

and that electrons in B can be safely described as free, independent particles. The
quality of such an assumption is limited by the error in the truncation of the tail of the
Coulomb potential and ultimately depends on the position of S relative to the target
system. While this is exact in the proximity of the detector — at an infinite distance —
and certainly bad in the vicinity of the system — where electrons are strongly interacting
with each other and with the external potential — its range of applicability in many
relevant situations is quite large. In practice, however, one has to converge the final
results with respect to S.

Under the assumption that the space partitioning is a good approximation, we can
represent the wavefunction in B with a KS Slater determinant W2 (r;t) yet expand each
orbital ©P(r;t) on Volkov waves as follows

oB(r;1) = / by () v(rs; 1) (6)

where

1 / INCRE
Xk(r;t) = (27T)—3/26—1‘1>(k;t)ezk1" , with ®(k;t) = —/ dr [k _ ﬂ} (7)

[\)
o

are the exact solutions of the time-dependent Schrodinger equation for the Volkov
Hamiltonian in Eq. |4 ®(k;?) is the Volkov phase and b;(k) is the spectral amplitude
of the ith KS orbital. Volkov waves are essentially plane waves with an additional
time-dependent phase.
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The second assumption is that in the long time limit, for ¢ > 7", bound and ionized
electronic wavefunctions are well localized in A and B, respectively. In other words, we
demand that the total density is given by p(r;T) = p? + p? with

N N
=> et TP, =) lef TP, (8)
=1 =1

and with ¢ (r; T) (¢B(r; T)) being the ith KS orbital localized in A (B) at time T'. This
is exact for T' — oo, while for finite values of T' one has to propagate for a time long
enough such that slowest escaping electrons have reached region B.

Under the former assumptions the total number of electrons escaped from A at
time 7', which is precisely the integral of the total density in B, can be expressed as

N
Nege = /d?’r p(r;T) = /d3r pP(r;T) = Z/dgk b (k)2 (9)
5 i=1
where we used Eq. [6] to obtain the rightmost expression. Since the momentum distribution
P(k) is the differential probability associated with the total number of escaped electrons
we can use the completeness of Volkov functions to invert Eq. [f] and obtain that

P = e _ Db 2|xk NPT (10)

From this equation it is apparent how P(k) connects with the spectral amplitude b;(k)

of the scattering orbitals expanded on Volkov waves. Less resolved quantities, like the
energy-resolved photoelectron probability P(E = k?/2), can be obtained from P(k) by
direct integration.

The three methods which we describe in the next sections, essentially provide
different approaches to obtain b;(k) from the knowledge of the KS orbitals in A only.
Our aim is to have an expression for b;(k) which can be efficiently implemented in a
real space three dimensional representation, that is accurate from linear to strong-field
regimes and with an energy resolution comparable to experiment (AE ~ 0.05 eV). As
we will show in the following, the SPM is straightforward to implement efficiently and
provides a large flexibility in reciprocal space. However, it is unreliable in the mid- to
strong-field regimes where it requires the use of unpractically large simulation boxes
to properly converge under its working assumptions. MM, in contrast, yields reliable
and precise results in all regimes, however, a computationally efficient implementation
is more involved as Fourier transforms are needed. Moreover, when using this method
the reciprocal space grid is constrained by the choice of the real-space one and spectra
at low kinetic energies are difficult to retrieve. t-SURFF can be derived in a TDDFT
formalism without any additional assumptions. The grid in momentum space can be
chosen arbitrarily which allows the calculation of PES and PAD up to high precision and
resolution. Furthermore, by introducing an additional parameter (the angular momentum
cut-off Ly.y) the method can be efficiently implemented in three dimensions.
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2.2. Sampling point method

The sampling point method (SPM) is the oldest and least accurate amongst the methods
we discuss in this work [52]. It was first presented without formal theoretical derivation
and justified only on the basis of its results on practical calculations. We hereby present
a derivation with particular attention to the conditions under which it is supposed to
work reliably.

The SPM is based on the idea that P(k) can be calculated by the simple knowledge
of the time dependence of each orbital sampled only at a single point rg of the surface
S in Fig. [I] Besides the assumptions discussed in the previous section, it rests on the
additional conditions that (i) rg is positioned at a sufficiently large distance such that
the ionized wavepackets arrive when the laser pulse has been switched off (for ¢t > T,se)
and (4) with a final momentum directed along rg, i.e., k = ke,,.

Under these conditions we can drop the field A(¢) in the Volkov phase which then
describes free particles, and explicitly write the expansion of Eq. [0] as

©B(rg;t) = (27r)3/2/dk bi(k,Qrs)eZk”S’let/Q : (11)

where we express the momentum vector in spherical coordinates k = (k,€,,) to stress
the form enforced to the final momentum by condition (ii). A Fourier transform in the
time domain is then sufficient to impose the free particle dispersion relation, F = k?/2,
and extract the Volkov amplitudes with the following result

5P (rs: E) = / dt PP (rg: 1) — ﬂ@(\/zE,Qrs). (12)
V2 2FE(2m)3

To obtain the above relation we used the time condition (i) and the Dirac delta §(E—k?/2)
resulting from the time integral to simplify Eq. [[I} At this point the momentum
distribution probability can be straightforwardly obtained from Eq. [10] as

( (\/ﬁ Qrs)) = 2F(2m) Z|% rg; B, (13)

where we explicitly inverted the dispersion relatlon to obtain the momentum magnitude
k = +/2E. This implies that k is always positive and therefore we must further impose
that (74i) at the sampling point, the electrons are strictly outgoing.

The SPM working conditions are asymptotically valid for rg positioned at an
infinitely large distance from the system, but quickly degrade as we move closer. The
most stringent condition is the time constraint (i) since it directly forces rg to be
positioned at a distance that proportionally grows with the laser switch-off time 7}, se.

A simple way to overcome this limitation was proposed in Ref. [53]. It substantially
reduces to keeping the full Volkov phase, including the field, in the expansion of Eq. [f]
and to compensate it in the Fourier time integral. The Fourier exponent i Et in Eq. [12]is
thus substituted with the Volkov phase i®(k;t) evaluated at k = v/2Fe,,

/ dt P VPersD B (1) (14)

Blpe B) —
éi (rS7E)_\/%
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The photoelectron momentum distribution is then obtained by simply replacing ¢Z(rg; F)
with éf (rs; F) in Eq. Owing to the presence of the Volkov phase in the time integral
this variant goes under the name of phase-augmented sampling point method (PA-SPM).

Even though this approach is superior to the simple SPM, it is still limited by
conditions (ii) and (iii). The validity of these conditions is difficult to assess in practical
calculations since it strongly depends on the electron dynamics induced by the external
field and can only be taken under control by converging the final results with respect to
the position of rg.

2.3. Surface fluz method

In contrast to the SPM, the time-dependent surface flux method (t-SURFF) [1I, 60, 61]
makes no further assumption besides the ones discussed in Sec. 2.1} Thus, for instance,
it can handle situations where electrons are driven by the laser field back towards
the emission site like in the backscattering regime. We here describe a derivation
alternative to the one present in the literature. Our derivation is based on the flux of
the current-density operator through S (see the scheme of Fig. [1]) that is suitable for
TDDEFT.

Owing to the space and Hamiltonian partitioning explained in Sec. 2.1, we can
describe the electronic wavefunctions with both W 4(r;t) and Wg(r;t) on the surface S
that separates region A and B. Using the continuity equation we thus express the total
number of escaped electron N at time T in terms of the flux integral

T T
dp(r;t :
NeSCZ/dt/dgr pg;, ):_/dt/d“'<‘PB!j!qu>
0 B o s
T
== [t [ao (ol (15)
=9 s

of the single-particle, gauge-invariant, current-density operator

i) =, Kvi - Z%) 5(r — 1)) +6(r — ;) <vi - é)] , (16)

evaluated over W (r;t) and Wp(r;t) or the orbitals which they are composed of. We
then replace the bra in Eq. [I5 and insert the expansion Eq. [6]in Volkov states

Newe = —iidt/da : /d3k (b;?‘(k)Jl(f)) (17)

with Jl(:) = <Xk|ji|gof‘). Since the choice of the subscript A and B in the brakets of
Eq. [15]is arbitrary, we can equivalently choose the opposite order and obtain that N
is also equal to Eq. [I7] complex conjugated. Comparing Egs. [9] with [I7] and its complex
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conjugated for each single orbital yields the final expression for the spectral amplitude

T
b;(k) = —/dt/da-ij), (18)
0 S

in terms of the Volkov projected single-particle current density J l(f). The momentum
probability distribution P(k) can then be obtained from Eq. [10| by summing up |b;(k)|?
over the orbital index 1.

From Eq. it is apparent that the extension to TDDFT is straightforward. In
practical implementations one needs to calculate J 1(5) for a given set of k and accumulate
its flux integral over time. To this end, one needs only to keep track of the KS orbitals
@A(r;t) and their gradients over S while the Volkov waves (and their gradients) are
analytical. In principle, provided S is positioned far enough from the system, there is
no restriction to the choice of its shape. However, we found that a spherical surface is
advantageous from the numerical standpoint as it allows to expand the Volkov waves in
spherical harmonics to decouple k and r. This in turn, requires to truncate the integrals
over the sphere up to a given maximum angular momentum IL,,,, and thus introduces
an additional parameter to converge (see Appendix A). In practice, we observed that
Lyax = 100 is enough for a large class of problems involving moderately strong fields
(I £10"W/cm?).

Finally, we mention that a variant of the sampling point method can be derived by
truncating the surface integral in Eq. [18|to a single point (see Appendix B). This leads
to an alternative expression similar to the one for PA-SPM. In our tests, however, we
found that this variant did not present any significant improvement over PA-SPM and
therefore we did not develop it further.

2.4. Mask method

Similar in philosophy to t-SURFF, the mask method (MM) is derived under the same
assumption on the ionization process. We here recall the salient traits and remind the
reader to Ref. [54], 57, 58| for further details.

As discussed in Sect. 2.1] in the long-time limit of an ionization process, we can
assume that the electronic density and hence the wavefunction splits into two spatially
separated parts. A practical way to implement this splitting for a generic time t is to
use a mask function M (r) on each KS orbital as follows

pir;t) = M(r)pi(r;t) + [1 = M(0)]pi(r;t) = @i (r;8) + o (r;1) . (19)
where M (r) is a continuous function equal to 1 in the inner part of A and that smoothly
decays to 0 in B.

Using the the mask we can formally write the solution of the TDKS equations in
the whole space as a set of coupled equations,

{ (UA)) = MUt t) [[94(2)) + [WP())]

[UP()) = [L— MU, ) [[94(®) + [P (1)] .
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using the time evolution operator

Ut t) = exp{—i/tt ﬁm)m} , (21)

with the time-boundary condition |[¥Z(t = 0)) = 0 and with a mask operator defined as
M = > i1 M(r;)d(r; — ).

Owing to the asymptotic condition Eq. 4| on the Hamiltonian, |[¥Z(¢)) evolves
under the action of ﬁy, and we indicate with U,(t',t) the associated evolution operator.
Since H, is diagonal in momentum and Hys is almost local in real space, we can write
the equation of motion in a mixed real and momentum space representation. In this
representation we can integrate Eq. [20] by recursively applying the discrete time evolution
operator U(At) = U(t + At, t) as follows

(r|UA(t + At)) = <r|M(A](At)l\Iff‘(t)> + <r|MUv(At)|\I/B(t)A) A (22)

O Pt + At)) = (xl[1 = MU(AG[PA(E)) + (xl[1 — MU (AW (2))
with the initial condition (y,|¥UZ(t = 0)) = 0. These equations can be written in a
closed form for (r|U4(¢)) and (xi|¥Z(¢)), by including the following set of equations,
here explicitly expanded for each KS orbital

(| MU (A (1)) = M (x)(x|U (A1) (1))

(x| N0, (A2 (1)) = M(x) [ el O () &k

CadlL = S0 [(0) = [ )L — M) |0 (AD]A (6)dr

Oul[1 = MU (AP (1) = (xleo? (8) — [ Oalr) (e MU (A8) | 0F (8)) dr

Once Eqgs. and are propagated up to time 7', the momentum distribution
is straightforwardly obtained by summing up the square modulus of the KS orbitals
as in Eq. , namely: P(k) = S [(xa|@P(T))|>. Unlike the approaches described
in the previous sections, since Eqgs. 22| and [23] include the boundary conditions for the
wavefunctions in A and B, there is no need for additional absorbing boundaries.

(23)

In a numerical implementation the evaluations of the integrals in Eq. must
undergo some level of discretization. In particular, substituting Fourier integrals with
Fourier series introduces unwanted periodic boundaries conditions that reintroduce
ionized wavepackets into the simulation box and eventually lead to instability (for details
see the appendix of Ref. [54]).

A stabler scheme can be obtained by simplifying Eq. 23| under the assumption that
the electron flow is only outward from A. In this case we can omit the term responsible
for the introduction of charge from B, and obtain the modified set of equations

([ NO(A8)|pA (1) = M) E[T(AD)]pA W)
(x| MO, (AD)]eB(1)) = 0 A
Ol = MIU (A (1)) = [ Oaclr)[1 = M (x)](e|U(A) | (1)) dr
(a1 = MIUL (At |97 (1)) = (e (8))
Together with Eq. [22| it defines a modified scheme completely equivalent to the previous

(24)

one in the limit where rg is big enough to justify the outgoing flow condition. We note
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that, compared to Eq.[23] the first two equations in Eq. [24] governing the evolution of
the real-space components of the wavefunction in A, are no longer connected with the
momentum-space ones. For this reason the propagation is thus equivalent to a time
propagation with a mask function absorber that can introduce spurious reflections at the
boundaries. Such reflections can, in principle, be reduced by using the most appropriate
mask function absorber or a complex absorbing potential casted in the form of a mask
function [63]. In the energy range where the mask function absorbs well, it is possible to
carry out stable simulations for long times.

3. Examples

In the following, we illustrate the above mentioned approaches with a few examples.
Unless otherwise specified, we use TDDFT at the level of the time-dependent (adiabatic)
local-density approximation (ALDA) [64], augmented by an average-density self-
interaction correction (SIC) [65] which corrects the tail of the Coulomb potential and
yields an accurate ionization potential. Furthermore, in order to prevent artificial
reflections at the borders of the simulation box we employ absorbing boundary conditions.
In all the simulations the ions were clamped to their equilibrium positions.

All numerical calculations were performed with the real-time, real-space TDDFT
code OCTOPUS freely available under the GNU public license [66), [67].

3.1. Hydrogen atom

We here present a comparison of all the methods discussed in this paper. To this end, we
choose as a benchmark test the case of above-threshold ionization (ATI) in an hydrogen
atom. Clearly, there is no need to use TDDF'T for a one-electron system, and our interest
here is focused to assess the numerical performance and the accuracy of the different
methods. For this reason the simulations were carried out at the level of single-particle
TDSE.

We choose a Cartesian grid of spherical shape with radius r,,x = 90 a.u. including
an outer shell of width 40 a.u. with a complex absorbing potential of height n = —0.2 [63].
We employ a pulse of N, = 20 cycles, linearly polarized along the z-axis with wavelength
A = 800nm (w = 1.55€V), and intensity I = 5 x 10 W/cm?. Photoelectrons are
collected until shortly after the pulse, where the total ionization amounts to Neg ~ 1073,
The surface points for the t-SURFF method and the sampling points for the SPM
are both located on a sphere of radius rg = 50 a.u. directly in front of the absorbing
zone. The flux is evaluated with the expansion in spherical harmonic