171 research outputs found

    Atomic Representations of Local and Global Chemistry in Complex Alloys

    Full text link
    The exceptional properties observed in complex concentrated alloys (CCAs) arise from the interplay between crystalline order and chemical disorder at the atomic scale, complicating a unique determination of properties. In contrast to conventional alloys, CCA properties emerge as distributions due to varying local chemical environments and the specific scale of measurement. Currently there are few ways to quantitatively define, track, and compare local alloy compositions (versus a global label, i.e. equiatomic) contained in a CCA. Molecular dynamics is used here to build descriptive metrics that connect a global alloy composition to the diverse local alloy compositions that define it. A machine-learned interatomic potential for MoNbTaTi is developed and we use these metrics to investigate how property distributions change with excursions in global-local composition space. Short-range order is examined through the lens of local chemistry for the equiatomic composition, demonstrating stark changes in vacancy formation energy with local chemistry evolution.Comment: Version 2: editing and figure improvements, overall content unchanged. 15 pages, 6 main figures, 1 supplemental figur

    Occurrence of Cryptosporidium Oocysts in Leisure Pools in the UK, 2017, and Modelling of Oocyst Contamination Events

    Get PDF
    Cryptosporidium is a major cause of diarrhoea outbreaks linked to swimming pools, but little is known about the frequency of contamination. The primary aim was to investigate the occurrence and concentration, through sampling and modelling, of Cryptosporidium oocysts in leisure pools. Secondary aims were to compare detections with operational parameters, provide the evidence-base for guidance, and improve sampling capacity and interpretation for public health investigations. Up to 1000 L pool water was sampled during swim sessions once weekly for 10 weeks from 8 August 2017 at six volunteer pools. Oocysts were detected by microscopy in 12/59 (20%) pool water samples, at least once in each pool; 8/12 (66%) detections were in August when bather loads were highest. At three pools, 1 L filter backwash was sampled weekly and oocysts were detected in 2/29 (7%) samples, following detections in pool water. The probabilities of a bather contaminating the pool ranged from 1 in 1000 to over 1 in 10,000. Monte Carlo analysis showed that when high bather numbers caused contamination on over 70% of days, multiple events per day were more likely than single events. In these generally well-managed leisure pools, Cryptosporidium risk related to high bather loads. We conclude that public awareness campaigns for bather hygiene, and reminding pool operators of current guidance for managing faecal accidents, should be ahead of peak swim season

    Cooperation between CYB5R3 and NOX4 via coenzyme Q mitigates endothelial inflammation

    Get PDF
    NADPH oxidase 4 (NOX4) regulates endothelial inflammation by producing hydrogen peroxide (H2O2) and to a lesser extent O2•-. The ratio of NOX4-derived H2O2 and O2•- can be altered by coenzyme Q (CoQ) mimics. Therefore, we hypothesize that cytochrome b5 reductase 3 (CYB5R3), a CoQ reductase abundant in vascular endothelial cells, regulates inflammatory activation. To examine endothelial CYB5R3 in vivo, we created tamoxifen-inducible endothelium-specific Cyb5r3 knockout mice (R3 KO). Radiotelemetry measurements of systolic blood pressure showed systemic hypotension in lipopolysaccharides (LPS) challenged mice, which was exacerbated in R3 KO mice. Meanwhile, LPS treatment caused greater endothelial dysfunction in R3 KO mice, evaluated by acetylcholine-induced vasodilation in the isolated aorta, accompanied by elevated mRNA expression of vascular adhesion molecule 1 (Vcam-1). Similarly, in cultured human aortic endothelial cells (HAEC), LPS and tumor necrosis factor α (TNF-α) induced VCAM-1 protein expression was enhanced by Cyb5r3 siRNA, which was ablated by silencing the Nox4 gene simultaneously. Moreover, super-resolution confocal microscopy indicated mitochondrial co-localization of CYB5R3 and NOX4 in HAECs. APEX2-based electron microscopy and proximity biotinylation also demonstrated CYB5R3's localization on the mitochondrial outer membrane and its interaction with NOX4, which was further confirmed by the proximity ligation assay. Notably, Cyb5r3 knockdown HAECs showed less total H2O2 but more mitochondrial O2•-. Using inactive or non-membrane bound active CYB5R3, we found that CYB5R3 activity and membrane translocation are needed for optimal generation of H2O2 by NOX4. Lastly, cells lacking the CoQ synthesizing enzyme COQ6 showed decreased NOX4-derived H2O2, indicating a requirement for endogenous CoQ in NOX4 activity. In conclusion, CYB5R3 mitigates endothelial inflammatory activation by assisting in NOX4-dependent H2O2 generation via CoQ.This work was supported by National Institutes of Health (NIH) R01 awards [R01 HL 133864 (A.C.S), R01 HL 128304 (A.C.S), R01 HL 149825 (A.C.S), R01 HL 153532 (A.C.S), R01 GM 125944 (F.J.S.), R01 DK 112854 (F.J.S.), 1S10OD021540-01 (Center for Biologic Imaging, University of Pittsburgh), 1S10RR019003-01 (Simon Watkins (S.W.)), 1S10RR025488-01 (S.W.), 1S10RR016236-01 (S.W)]. American Heart Association (AHA) [Established Investigator Award 19EIA34770095 (A.C.S.)], Post-doctoral Fellowship 19POST34410028 (S.Y.)]. American Society of Hematology (ASH) Minority Hematology Graduate Award (A.M.D-O.). Junta de Andalucía grant BIO-177 (P.N.), the FEDER Funding Program from the European Union and Spanish Ministry of Science, Innovation and Universities grant RED2018-102576-T (P.N.)

    AML risk stratification models utilizing ELN-2017 guidelines and additional prognostic factors: a SWOG report.

    Get PDF
    Background: The recently updated European LeukemiaNet risk stratification guidelines combine cytogenetic abnormalities and genetic mutations to provide the means to triage patients with acute myeloid leukemia for optimal therapies. Despite the identification of many prognostic factors, relatively few have made their way into clinical practice. Methods: In order to assess and improve the performance of the European LeukemiaNet guidelines, we developed novel prognostic models using the biomarkers from the guidelines, age, performance status and select transcript biomarkers. The models were developed separately for mononuclear cells and viable leukemic blasts from previously untreated acute myeloid leukemia patients (discovery cohort, Results: Models using European LeukemiaNet guidelines were significantly associated with clinical outcomes and, therefore, utilized as a baseline for comparisons. Models incorporating age and expression of select transcripts with biomarkers from European LeukemiaNet guidelines demonstrated higher area under the curve and C-statistics but did not show a substantial improvement in performance in the validation cohort. Subset analyses demonstrated that models using only the European LeukemiaNet guidelines were a better fit for younger patients (age \u3c 55) than for older patients. Models integrating age and European LeukemiaNet guidelines visually showed more separation between risk groups in older patients. Models excluding results for Conclusions: While European LeukemiaNet guidelines remain a critical tool for triaging patients with acute myeloid leukemia, the findings illustrate the need for additional prognostic factors, including age, to improve risk stratification

    Transcriptome dynamics of CD4⁺ T cells during malaria maps gradual transit from effector to memory

    Get PDF
    The dynamics of CD4⁺ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4⁺ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (T_H1) and follicular helper T (T_(FH)) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated T_H1 and T_(FH) trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between T_(FH) and central memory were revealed, with antimalarials modulating these responses and boosting T_H1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4⁺ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene–gene correlations (http://haquelab.mdhs.unimelb.edu.au/cd4_memory/)

    Loss of cardiomyocyte CYB5R3 impairs redox equilibrium and causes sudden cardiac death

    Get PDF
    Sudden cardiac death (SCD) in patients with heart failure (HF) is allied with an imbalance in reduction and oxidation (redox) signaling in cardiomyocytes; however, the basic pathways and mechanisms governing redox homeostasis in cardiomyocytes are not fully understood. Here, we show that cytochrome b5 reductase 3 (CYB5R3), an enzyme known to regulate redox signaling in erythrocytes and vascular cells, is essential for cardiomyocyte function. Using a conditional cardiomyocyte-specific CYB5R3-knockout mouse, we discovered that deletion of CYB5R3 in male, but not female, adult cardiomyocytes causes cardiac hypertrophy, bradycardia, and SCD. The increase in SCD in CYB5R3-KO mice is associated with calcium mishandling, ventricular fibrillation, and cardiomyocyte hypertrophy. Molecular studies reveal that CYB5R3-KO hearts display decreased adenosine triphosphate (ATP), increased oxidative stress, suppressed coenzyme Q levels, and hemoprotein dysregulation. Finally, from a translational perspective, we reveal that the high-frequency missense genetic variant rs1800457, which translates into a CYB5R3 T117S partial loss-of-function protein, associates with decreased event-free survival (~20%) in Black persons with HF with reduced ejection fraction (HFrEF). Together, these studies reveal a crucial role for CYB5R3 in cardiomyocyte redox biology and identify a genetic biomarker for persons of African ancestry that may potentially increase the risk of death from HFrEF.These studies were supported by NIH grants R35 HL 161177 (to ACS), R01 HL 133864 (to ACS), R01 HL 128304 (to ACS), R41 HL15098 (to GS), R01 GM 122091 (to PHT), GM125944 (to FJS), R01 DK112854 (to FJS), R21 NS112787 (to MF), NS121706 (to YLW), EB023507 (to YLW), F31 HL149241 (to HMS), and F31 HL151173 (to JCG). Support was also provided by American Heart Association grants 19EIA34770095 (to ACS), AHA 18CDA34140024 (to YLW), and 19PRE34380152 (to NTC); the Spanish Ministry of Health (grant FIS PI17-01286); Junta de Andalucía BIO-177 and the FEDER Funding Program from the European Union and CIBERER (U729)-ISCIII (to PN); Department of Defense W81XWH1810070 (to YLW); and Vitalant. This research was supported in part by the University of Pittsburgh Center for Research Computing through the resources provided. Specifically, this work used the HTC cluster, which is supported by NIH award number S10OD028483.Peer reviewe

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Small-scale, semi-automated purification of eukaryotic proteins for structure determination

    Get PDF
    A simple approach that allows cost-effective automated purification of recombinant proteins in levels sufficient for functional characterization or structural studies is described. Studies with four human stem cell proteins, an engineered version of green fluorescent protein, and other proteins are included. The method combines an expression vector (pVP62K) that provides in vivo cleavage of an initial fusion protein, a factorial designed auto-induction medium that improves the performance of small-scale production, and rapid, automated metal affinity purification of His8-tagged proteins. For initial small-scale production screening, single colony transformants were grown overnight in 0.4 ml of auto-induction medium, produced proteins were purified using the Promega Maxwell 16, and purification results were analyzed by Caliper LC90 capillary electrophoresis. The yield of purified [U-15N]-His8-Tcl-1 was 7.5 μg/ml of culture medium, of purified [U-15N]-His8-GFP was 68 μg/ml, and of purified selenomethione-labeled AIA–GFP (His8 removed by treatment with TEV protease) was 172 μg/ml. The yield information obtained from a successful automated purification from 0.4 ml was used to inform the decision to scale-up for a second meso-scale (10–50 ml) cell growth and automated purification. 1H–15N NMR HSQC spectra of His8-Tcl-1 and of His8-GFP prepared from 50 ml cultures showed excellent chemical shift dispersion, consistent with well folded states in solution suitable for structure determination. Moreover, AIA–GFP obtained by proteolytic removal of the His8 tag was subjected to crystallization screening, and yielded crystals under several conditions. Single crystals were subsequently produced and optimized by the hanging drop method. The structure was solved by molecular replacement at a resolution of 1.7 Å. This approach provides an efficient way to carry out several key target screening steps that are essential for successful operation of proteomics pipelines with eukaryotic proteins: examination of total expression, determination of proteolysis of fusion tags, quantification of the yield of purified protein, and suitability for structure determination
    corecore