327 research outputs found

    Dehydrogenation of ammonia-borane by cationic Pd(II) and Ni(II) complexes in a nitromethane medium: hydrogen release and spent fuel characterization

    Get PDF
    A highly electrophilic cationic PdII complex, [Pd(MeCN)_4][BF_4]_2 (1), brings about the preferential activation of the B–H bond in ammonia-borane (NH3·BH3, AB). At room temperature, the reaction between 1 in CH_3NO_2 and AB in tetraglyme leads to Pd nanoparticles and formation of spent fuels of the general formula MeNH_xBO_y as reaction byproducts, while 2 equiv. of H_2 is efficiently released per AB equiv. at room temperature within 60 seconds. For a mechanistic understanding of dehydrogenation by 1, the chemical structures of spent fuels were intensely characterized by a series of analyses such as elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), solid state magic-angle-spinning (MAS) NMR spectra (^2H, ^(13)C, ^(15)N, and ^(11)B), and cross polarization (CP) MAS methods. During AB dehydrogenation, the involvement of MeNO2 in the spent fuels showed that the mechanism of dehydrogenation catalyzed by 1 is different from that found in the previously reported results. This AB dehydrogenation derived from MeNO_2 is supported by a subsequent digestion experiment of the AB spent fuel: B(OMe)_3 and N-methylhydroxylamine ([Me(OH)N]_2CH_2), which are formed by the methanolysis of the AB spent fuel (MeNH_xBO_y), were identified by means of ^(11)B NMR and single crystal structural analysis, respectively. A similar catalytic behavior was also observed in the AB dehydrogenation catalyzed by a nickel catalyst, [Ni(MeCN)_6][BF_4]_2 (2)

    An autoregulatory loop controlling orphan nuclear receptor DAX-1 gene expression by orphan nuclear receptor ERRγ

    Get PDF
    The estrogen receptor-related receptor gamma (ERRγ/ERR3/NR3B3) is a member of the nuclear receptor superfamily that activates transcription in the absence of ligand. However, the detailed mechanism of gene regulation by ERRγ is not fully understood. In this study we have found that the orphan nuclear receptor ERRγ activates the DAX-1 promoter, which, in turn, represses transactivation by ERRγ. Serial deletions of mouse DAX-1 (mDAX-1) gene promoter have revealed that the region responding to ERRγ is located between −129 and −121 bp and −334 and −326 bp. Gel shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated that ERRγ binds directly to the mDAX-1 promoter. Site-directed mutagenesis results demonstrated that ERRE1 (−129 to −121 bp) is more important than ERRE2 (−334 to −326 bp) which is not conserved in the human DAX-1 promoter. In addition, adenovirus-mediated overexpression of ERRγ induced DAX-1 gene expression in MCF-7 breast cancer cells that co-expressed ERRγ and DAX-1. Moreover, yeast two-hybrid and glutathione S-transferase (GST)-pull down assays demonstrated that DAX-1 physically interacted with ERRγ and inhibited ERRγ transactivation, and that this interaction was dependent on the AF-2 domain of ERRγ. In addition, in vitro competition assays showed that DAX-1 inhibited PGC-1α mediated ERRγ transactivation, via competition between these two factors for the AF-2 binding domain. We thus propose a novel autoregulatory loop that controls DAX-1 gene expression by ERRγ

    Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus.

    Get PDF
    BackgroundDiabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content.PurposeWe hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model.MethodsRat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes.ResultsQuantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization.ConclusionTwo isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP

    A Unique Instrumental Malfunction during Robotic Prostatectomy

    Get PDF
    Over the past decade, the introduction of robotics in the field of medicine has provided a new approach to patients requiring surgery, and both its advantages and disadvantages are currently under study by many groups worldwide. The use of robotics has especially been considered by the urological community as a treatment option in radical prostatectomy. The current case report is one in which the da Vinci Surgical System™, with fourth arm use was employed in radical prostatectomy. This case presents a unique occurrence in which a bolt of the Prograsper forcep became loose during an operation, leading to diminished device functionality and later impedance of its removal. A circumstance such as this has not previously been reported, so we introduce for other robotic surgeons our unique instrumental malfunction case during a robotic prostatectomy

    Acute Severe Symptomatic Hyponatremia Following Coronary Angiography

    Get PDF
    Hyponatremia is a relatively common electrolyte disorder. Although severe acute hyponatremia following coronary angiography is rare, potentially lethal neurologic manifestations may result. We describe a patient with severe, symptomatic hyponatremia, an unusual complication of coronary angiography. Lack of familiarity with contrast media-related hyponatremia caused a delay in diagnosis and therapy in our case. The diagnosis of acute hyponatremia should be considered in any patient who develops behavioral or neurologic manifestations following coronary angiography. Prompt diagnosis and treatment is essential to avoid permanent neurologic damage or death

    The effects of repeated administrations of MK-801 on ERK and GSK-3beta signalling pathways in the rat frontal cortex

    Get PDF
    Repeated administrations of NMDA receptor antagonists induce behavioural changes which resemble the symptoms of schizophrenia in animals. ERK and GSK-3beta associated signalling pathways have been implicated in the pathogenesis of psychosis and in the action mechanisms of various psychotropic agents. Here, we observed the phosphorylations of ERK and GSK-3beta and related molecules in the rat frontal cortex after repeated intraperitoneal injections of MK-801, over periods of 1, 5, and 10 d. Repeated treatment with 0.5, 1, and 2 mg/kg MK-801 increased the phosphorylation levels of the MEK-ERK-p90RSK and Akt-GSK-3beta pathways and concomitantly and significantly increased CREB phosphorylation in the rat frontal cortex. However, single MK-801 treatment did not induce these significant changes. In addition, the immunoreactivities of HSP72, Bax, and PARP were not altered, which suggests that neuronal damage may not occur in the rat frontal cortex in response to chronic MK-801 treatment. These findings suggest that chronic exposure to MK-801 may induce pro-survival and anti-apoptotic activity without significant neuronal damage in the rat frontal cortex. Moreover, this adaptive change might be associated with the psychotomimetic action of MK-801
    corecore