1,152 research outputs found
Antibody validation of immunohistochemistry for biomarker discovery: Recommendations of a consortium of academic and pharmaceutical based histopathology researchers
As biomarker discovery takes centre-stage, the role of immunohistochemistry within that process is increasing. At the same time, the number of antibodies being produced for ‘‘research use’’ continues to rise and it is important that antibodies to be used as biomarkers are validated for specificity and sensitivity before use. This guideline seeks to provide a stepwise approach for the validation of an antibody for immunohistochemical assays, reflecting the views of a consortium of academic and pharmaceutical based histopathology researchers. We propose that antibodies are placed into a tier system, level 1–3, based on evidence of their usage in immunohistochemistry, and that the degree of validation required is proportionate to their place on that tier
Extreme High-Field Superconductivity in Thin Re Films
We report the high-field superconducting properties of thin, disordered Re
films via magneto-transport and tunneling density of states measurements. Films
with thicknesses in the range of 9 nm to 3 nm had normal state sheet
resistances of 0.2 k to 1 k and corresponding
transition temperatures in the range of 6 K to 3 K. Tunneling spectra were
consistent with those of a moderate coupling BCS superconductor.
Notwithstanding these unremarkable superconducting properties, the films
exhibited an extraordinarily high upper critical field. We estimate their
zero-temperature to be more than twice the Pauli limit. Indeed, in 6
nm samples the estimated reduced critical field 5.6 T/K is
among the highest reported for any elemental superconductor. Although the sheet
resistances of the films were well below the quantum resistance ,
their 's approached the theoretical upper limit of a strongly
disordered superconductor for which .Comment: 12 pages, 10 figure
The Distribution, Excitation and Formation of Cometary Molecules: Methanol, Methyl Cyanide and Ethylene Glycol
We present an interferometric and single dish study of small organic species
toward Comets C/1995 O1 (Hale-Bopp) and C/2002 T7 (LINEAR) using the BIMA
interferometer at 3 mm and the ARO 12m telescope at 2 mm. For Comet Hale-Bopp,
both the single-dish and interferometer observations of CH3OH indicate an
excitation temperature of 105+/-5 K and an average production rate ratio
Q(CH3OH)/Q(H2O)~1.3% at ~1 AU. Additionally, the aperture synthesis
observations of CH3OH suggest a distribution well described by a spherical
outflow and no evidence of significant extended emission. Single-dish
observations of CH3CN in Comet Hale-Bopp indicate an excitation temperature of
200+/-10 K and a production rate ratio of Q(CH3CN)/Q(H2O)~0.017% at ~1 AU. The
non-detection of a previously claimed transition of cometary (CH2OH)2 toward
Comet Hale-Bopp with the 12m telescope indicates a compact distribution of
emission, D<9'' (<8500 km). For the single-dish observations of Comet T7
LINEAR, we find an excitation temperature of CH3OH of 35+/-5 K and a CH3OH
production rate ratio of Q(CH3OH)/Q(H2O)~1.5% at ~0.3 AU. Our data support
current chemical models that CH3OH, CH3CN and (CH2OH)2 are parent nuclear
species distributed into the coma via direct sublimation off cometary ices from
the nucleus with no evidence of significant production in the outer coma.Comment: accepted for publication in Ap
State-of-the-art in lean design engineering:a literature review on white collar lean
Lean is usually associated with the ‘operations’ of a manufacturing enterprise; however, there is a growing awareness that these principles may be transferred readily to other functions and sectors. The application to knowledge-based activities such as engineering design is of particular relevance to UK plc. Hence, the purpose of this study has been to establish the state-of-the-art, in terms of the adoption of Lean in new product development, by carrying out a systematic review of the literature. The authors' findings confirm the view that Lean can be applied beneficially away from the factory; that an understanding and definition of value is key to success; that a set-based (or Toyota methodology) approach to design is favoured together with the strong leadership of a chief engineer; and that the successful implementation requires organization-wide changes to systems, practices, and behaviour. On this basis it is felt that this review paper provides a useful platform for further research in this topic
Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated
using an imaging charge-coupled device (CCD) camera. A spatial resolution less
than 15 m has been achieved, which is equivalent to an UCN energy
resolution below 2 pico-electron-volts through the relation . Here, the symbols , , and are the
energy resolution, the spatial resolution, the neutron rest mass and the
gravitational acceleration, respectively. A multilayer surface convertor
described previously is used to capture UCNs and then emits visible light for
CCD imaging. Particle identification and noise rejection are discussed through
the use of light intensity profile analysis. This method allows different types
of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM
- …