21 research outputs found

    New Strategies in Sport Nutrition to Increase Exercise Performance.

    Get PDF
    Despite over 50 years of research, the field of sports nutrition continues to grow at a rapid rate. Whilst the traditional research focus was one that centred on strategies to maximize competition performance, emerging data in the last decade has demonstrated how both macronutrient and micronutrient availability can play a prominent role in regulating those cell signalling pathways that modulate skeletal muscle adaptations to endurance and resistance training. Nonetheless, in the context of exercise performance, it is clear that carbohydrate (but not fat) still remains king and that carefully chosen ergogenic aids (e.g. caffeine, creatine, sodium bicarbonate, beta-alanine, nitrates) can all promote performance in the correct exercise setting. In relation to exercise training, however, it is now thought that strategic periods of reduced carbohydrate and elevated dietary protein intake may enhance training adaptations whereas high carbohydrate availability and antioxidant supplementation may actually attenuate training adaptation. Emerging evidence also suggests that vitamin D may play a regulatory role in muscle regeneration and subsequent hypertrophy following damaging forms of exercise. Finally, novel compounds (albeit largely examined in rodent models) such as epicatechins, nicotinamide riboside, resveratrol, β-hydroxy β-methylbutyrate, phosphatidic acid and ursolic acid may also promote or attenuate skeletal muscle adaptations to endurance and strength training. When taken together, it is clear that sports nutrition is very much at the heart of the Olympic motto, Citius, Altius, Fortius (faster, higher, stronger)

    An explosive-degrading cytochrome P450- activity and its targeted application for the phytoremediation of RDX

    No full text
    AF449421AAQ03207U41998 The widespread presence in the environment of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), one of the most widely used military explosives, has raised concern owing to its toxicity and recalcitrance to degradation. To investigate the potential of plants to remove RDX from contaminated soil and water, we engineered Arabidopsis thaliana to express a bacterial gene xplA encoding an RDX-degrading cytochrome P450 (ref. 1). We demonstrate that the P450 domain of XplA is fused to a flavodoxin redox partner and catalyzes the degradation of RDX in the absence of oxygen. Transgenic A. thaliana expressing xplA removed and detoxified RDX from liquid media. As a model system for RDX phytoremediation, A. thaliana expressing xplA was grown in RDX-contaminated soil and found to be resistant to RDX phytotoxicity, producing shoot and root biomasses greater than those of wild-type plants. Our work suggests that expression of xplA in landscape plants may provide a suitable remediation strategy for sites contaminated by this class of explosives
    corecore