339 research outputs found

    Determining the HI content of galaxies via intensity mapping cross-correlations

    Get PDF
    We propose an innovative method for measuring the neutral hydrogen (HI) content of an optically-selected spectroscopic sample of galaxies through cross-correlation with HI intensity mapping measurements. We show that the HI-galaxy cross-power spectrum contains an additive shot noise term which scales with the average HI brightness temperature of the optically-selected galaxies, allowing constraints to be placed on the average HI mass per galaxy. This approach can estimate the HI content of populations too faint to directly observe through their 21cm emission over a wide range of redshifts. This cross-correlation, as a function of optical luminosity or colour, can be used to derive HI-scaling relations. We demonstrate that this signal will be detectable by cross-correlating upcoming Australian SKA Pathfinder (ASKAP) observations with existing optically-selected samples. We also use semi-analytic simulations to verify that the HI mass can be successfully recovered by our technique in the range M_HI > 10^8 M_solar, in a manner independent of the underlying power spectrum shape. We conclude that this method is a powerful tool to study galaxy evolution, which only requires a single intensity mapping dataset to infer complementary HI gas information from existing optical and infra-red observations.Comment: 8 pages, 4 figures, submitted to MNRA

    The varying w spread spectrum effect for radio interferometric imaging

    Get PDF
    We study the impact of the spread spectrum effect in radio interferometry on the quality of image reconstruction. This spread spectrum effect will be induced by the wide field-of-view of forthcoming radio interferometric telescopes. The resulting chirp modulation improves the quality of reconstructed interferometric images by increasing the incoherence of the measurement and sparsity dictionaries. We extend previous studies of this effect to consider the more realistic setting where the chirp modulation varies for each visibility measurement made by the telescope. In these first preliminary results, we show that for this setting the quality of reconstruction improves significantly over the case without chirp modulation and achieves almost the reconstruction quality of the case of maximal, constant chirp modulation.Comment: 1 page, 1 figure, Proceedings of the Biomedical and Astronomical Signal Processing Frontiers (BASP) workshop 201

    Foreground Subtraction in Intensity Mapping with the SKA

    Full text link
    21cm intensity mapping experiments aim to observe the diffuse neutral hydrogen (HI) distribution on large scales which traces the Cosmic structure. The Square Kilometre Array (SKA) will have the capacity to measure the 21cm signal over a large fraction of the sky. However, the redshifted 21cm signal in the respective frequencies is faint compared to the Galactic foregrounds produced by synchrotron and free-free electron emission. In this article, we review selected foreground subtraction methods suggested to effectively separate the 21cm signal from the foregrounds with intensity mapping simulations or data. We simulate an intensity mapping experiment feasible with SKA phase 1 including extragalactic and Galactic foregrounds. We give an example of the residuals of the foreground subtraction with a independent component analysis and show that the angular power spectrum is recovered within the statistical errors on most scales. Additionally, the scale of the Baryon Acoustic Oscillations is shown to be unaffected by foreground subtraction.Comment: This article is part of the 'SKA Cosmology Chapter, Advancing Astrophysics with the SKA (AASKA14), Conference, Giardini Naxos (Italy), June 9th-13th 2014

    On the Parity Problem in One-Dimensional Cellular Automata

    Full text link
    We consider the parity problem in one-dimensional, binary, circular cellular automata: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. It is easy to see that the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1). We then consider only odd lattices. We are interested in determining the minimal neighbourhood that allows the problem to be solvable for any initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can possibly solve the parity problem from arbitrary initial configurations. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and we formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Measuring primordial gravitational waves from CMB B-modes in cosmologies with generalized expansion histories

    Full text link
    We evaluate our capability to constrain the abundance of primordial tensor perturbations in cosmologies with generalized expansion histories in the epoch of cosmic acceleration. Forthcoming satellite and sub-orbital experiments probing polarization in the CMB are expected to measure the B-mode power in CMB polarization, coming from PGWs on the degree scale, as well as gravitational lensing on arcmin scales; the latter is the main competitor for the measurement of PGWs, and is directly affected by the underlying expansion history, determined by the presence of a DE component. In particular, we consider early DE possible scenarios, in which the expansion history is substantially modified at the epoch in which the CMB lensing is most relevant. We show that the introduction of a parametrized DE may induce a variation as large as 30% in the ratio of the power of lensing and PGWs on the degree scale. We find that adopting the nominal specifications of upcoming satellite measurements the constraining power on PGWs is weakened by the inclusion of the extra degrees of freedom, resulting in a reduction of about 10% of the upper limits on r in fiducial models with no GWs, as well as a comparable increase in the error bars in models with non-zero r. Moreover, we find that the inclusion of sub-orbital CMB experiments, capable of mapping the B-mode power up to the angular scales affected by lensing, can restore the forecasted performances with a cosmological constant. Finally, we show how the combination of CMB data with Type Ia SNe, BAO and Hubble constant allows to constrain simultaneously r and the DE quantities in the parametrization we consider, consisting of present abundance and first redshift derivative of the energy density. We compare this study with results obtained using the forecasted lensing potential measurement precision from CMB satellite observations, finding consistent results.Comment: 17 pages, 9 figures, accepted for publication by JCAP. Modified version after the referee's comment

    "Food Addiction" in Patients with Eating Disorders is Associated with Negative Urgency and Difficulties to Focus on Long-Term Goals

    Get PDF
    Objectives: The present study aimed to investigate if eating disorder patients differ in specific personality traits depending on a positive screening of food addiction (FA) and to find a model to predict FA in eating disorder patients using measures of personality and impulsivity. Methods : Two hundred seventy eight patients, having an eating disorder, self-reported on FA, impulsivity, personality, eating and general psychopathology. Patients were then split into two groups, depending on a positive or negative result on the FA screening. Analysis of variance was used to compare means between the two groups. Stepwise binary logistic regression was used to obtain a predictive model for the presence of FA. Results: Patients with FA had lower self-directedness, and more negative urgency and lack of perseverance than patients not reporting addictive eating. The probability of FA can be predicted by high negative urgency, high reward dependence, and low lack of premeditation. Conclusion: Eating disorder patients who have more problems to pursue tasks to the end and to focus on long-term goals seem to be more likely to develop addictive eating patterns

    'Food Addiction' in Patients with Eating Disorders is Associated with Negative Urgency and Difficulties to Focus on Long-Term Goals

    Get PDF
    Objectives: The present study aimed to investigate if eating disorder patients differ in specific personality traits depending on a positive screening of food addiction (FA) and to find a model to predict FA in eating disorder patients using measures of personality and impulsivity. Methods: Two hundred seventy eight patients, having an eating disorder, self-reported on FA, impulsivity, personality, eating and general psychopathology. Patients were then split into two groups, depending on a positive or negative result on the FA screening. Analysis of variance was used to compare means between the two groups. Stepwise binary logistic regression was used to obtain a predictive model for the presence of FA. Results: Patients with FA had lower self-directedness, and more negative urgency and lack of perseverance than patients not reporting addictive eating. The probability of FA can be predicted by high negative urgency, high reward dependence, and low lack of premeditation. Conclusion: Eating disorder patients who have more problems to pursue tasks to the end and to focus on long-term goals seem to be more likely to develop addictive eating patterns

    Cosmology with a SKA HI intensity mapping survey

    Get PDF
    Advancing Astrophysics with the Square Kilometre Array June 8-13, 2014 Giardini Naxos, ItalyHI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum – thus determining the expansion and growth history of the Universe – these surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal.Web of Scienc

    Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey

    Get PDF
    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 2

    The EREBOS project -- Investigating the effect of substellar and low-mass stellar companions on late stellar evolution

    Full text link
    Eclipsing post-common envelope binaries are highly important for resolving the poorly understood, very short-lived common envelope phase. Most hot subdwarfs (sdO/Bs) are the bare He-burning cores of red giants which have lost almost all of their hydrogen envelopes. This mass loss is often triggered by common envelope interactions with close stellar or even sub-stellar companions. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the ATLAS survey, we discovered 161 new eclipsing systems showing a reflection effect by visual inspection of the light curves and using a machine-learning algorithm. The EREBOS (Eclipsing Reflection Effect Binaries from Optical Surveys) project aims at analyzing all newly discovered eclipsing binaries with reflection effect based on a spectroscopic and photometric follow up. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white dwarf catalogue. For a sub-set of our targets with observed spectra the nature could be derived by measuring the atmospheric parameter of the primary confirming that less than 10\% of our systems are not sdO/Bs with cool companions but white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and ideally suited to find the lowest mass companions to hot subdwarf stars. In the future several new photometric surveys will be carried out, which will increase the sample of this project even more giving the potential to test many aspects of common envelope theory and binary evolution.Comment: accepted in A&A, 29 pages, 18 figure
    corecore