256 research outputs found
An extinction rule for a class of 1D quasicrystals
We study decorated one-dimensional quasicrystal obtained by a non-standard
projection of a part of two-dimensional lattice. We focus on the impact of
varying relative positions of decorated sites. First, we give general
expression for the structure factor. Subsequently we analyze an example of
extinction rule.Comment: 5 pages, 2 figures, LaTex2e, to appear in ICQ9 Proceeding
(Philosophical Magazine
Density functional theory calculations and vibrational spectroscopy on iron spin-crossover compounds
Iron complexes with a suitable ligand field undergo spin-crossover (SCO),
which can be induced reversibly by temperature, pressure or even light.
Therefore, these compounds are highly interesting candidates for optical
information storage, for display devices and pressure sensors. The SCO
phenomenon can be conveniently studied by spectroscopic techniques like Raman
and infrared spectroscopy as well as nuclear inelastic scattering, a technique
which makes use of the M\"ossbauer effect. This review covers new developments
which have evolved during the last years like, e.g. picosecond infrared
spectroscopy and thin film studies but also gives an overviewon newtechniques
for the theoretical calculation of spin transition phenomena and vibrational
spectroscopic data of SCO complexes
Pressure-induced changes of the vibrational modes of spin-crossover complexes studied by nuclear resonance scattering of synchrotron radiation
Nuclear inelastic scattering (NIS) spectra were recorded for the
spin-crossover complexes STP and ETP (STP =
[Fe(1,1,1-trisf[N-(2-pyridylmethyl)-N-methylamino]methylg- ethane)](ClO4)2 and
ETP =
[Fe(1,1,1-trisf[N-(2-pyridylmethyl)-N-methylamino]methylg-butane)](ClO4)2) at
30 K and at room temperature and also at ambient pressure and applied pressure
(up to 2.6 GPa). Spin transition from the high-spin (HS) to the low-spin (LS)
state was observed by lowering temperature and also by applying pressure at
room temperature and has been assigned to the hardening of iron-bond stretching
modes due to the smaller volume in the LS isomer
Elucidating the structural composition of a Fe-N-C catalyst by nuclear and electron resonance techniques
Fe–N–C catalysts are very promising materials for fuel cells and metal–air batteries. This work gives fundamental insights into the structural composition of an Fe–N–C catalyst and highlights the importance of an in‐depth characterization. By nuclear‐ and electron‐resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of α‐iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Fe–N–C catalysts prepared by pyrolysis at 900 °C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with end‐on bonded oxygen as one of the axial ligands
Allotetraploidization in Brachypodium May Have Led to the Dominance of One Parent’s Metabolome in Germinating Seeds
Seed germination is a complex process during which a mature seed resumes metabolic activity to prepare for seedling growth. In this study, we performed a comparative metabolomic analysis of the embryo and endosperm using the community standard lines of three annual Brachypodium species, i.e., B. distachyon (Bd) and B. stacei (Bs) and their natural allotetraploid B. hybridum (BdBs) that has wider ecological range than the other two species. We explored how far the metabolomic impact of allotetraploidization would be observable as over-lapping changes at 4, 12, and 24 h after imbibition (HAI) with water when germination was initiated. Metabolic changes during germination were more prominent in Brachypodium embryos than in the endosperm. The embryo and endosperm metabolomes of Bs and BdBs were similar, and those of Bd were distinctive. The Bs and BdBs embryos showed increased levels of sugars and the tricarboxylic acid cycle compared to Bd, which could have been indicative of better nutrient mobilization from the endosperm. Bs and BdBs also showed higher oxalate levels that could aid nutrient transfer through altered cellular events. In Brachypodium endosperm, the thick cell wall, in addition to starch, has been suggested to be a source of nutrients to the embryo. Metabolites indicative of sugar metabolism in the endosperm of all three species were not prominent, suggesting that mobilization mostly occurred prior to 4 HAI. Hydroxycinnamic and monolignol changes in Bs and BdBs were consistent with cell wall remodeling that arose following the release of nutrients to the respective embryos. Amino acid changes in both the embryo and endosperm were broadly consistent across the species. Taking our data together, the formation of BdBs may have maintained much of the Bs metabolome in both the embryo and endosperm during the early stages of germination. In the embryo, this conserved Bs metabolome appeared to include an elevated sugar metabolism that played a vital role in germination. If these observations are confirmed in the future with more Brachypodium accessions, it would substantiate the dominance of the Bs metabolome in BdBs allotetraploidization and the use of metabolomics to suggest important adaptive changes
Crosstalk between transcription factors in regulation of the human glutathione S-transferase P1 gene expression in Me45 melanoma cells
Aim. The human GSTP1 is a major enzyme of phase II detoxification in the most cell types. Aberrant expression of GSTP1 is associated with carcinogenesis and development of multidrug resistance. The GSTP1 gene expression is regulated at multiple levels including transcriptional, post-transcriptional and post-translational. We concentrated our attention on the transcriptional level of regulation. Methods. Transient transfection of Me45 melanoma cells with constructs containing the luciferase gene under the control of complete and truncated GSTP1 promoter was utilized to identify a role of different promoter regions in regulation of the gene transcription in Me45 cells. To identify the transcription factors, interacting with the GSTP1 promoter sites, the competitive EMSA and super shift assay were applied. Results. GSTP1 transcription in Me45 cells is positively regulated by binding NF-kB to the cognate site and ERb in complex with unknown protein to the ARE site; the complex of ERb with c-Fos negatively regulates the gene expression via CRE site. The interaction of c-Fos/ERb with GSTP1 CRE site and indirect interaction of ERb with GSTP1 ARE were identified. Conclusions. The positive regulation of the human GSTP1 gene in Me45 melanoma cells is exerted via NF-kB and ARE sites and the negative one via CRE site of the promoter. ERb is indirectly involved in the regulation of GSTP1 transcription. It is bound via c-Fos with CRE site and via unknown protein with ARE site
Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition
We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic
topological transition at pressures of about 40 GPa. This topological change of
the Fermi surface manifests itself through anomalous behavior of the Debye
sound velocity, c/a lattice parameter ratio and M\"ossbauer center shift
observed in our experiments. First-principles simulations within the dynamic
mean field approach demonstrate that the transition is induced by many-electron
effects. It is absent in one-electron calculations and represents a clear
signature of correlation effects in hcp Fe
DFT Calculations as a Tool to Analyse Quadrupole Splittings of Spin Crossover Fe(II) complexes
Density functional methods have been applied to calculate the quadrupole
splitting of a series of iron(II) spin crossover complexes. Experimental and
calculated values are in reasonable agreement. In one case spin-orbit coupling
is necessary to explain the very small quadrupole splitting value of 0.77 mm/s
at 293 K for a high-spin isomer
- …