49 research outputs found

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Online surveillance of media health event reporting in Nepal: digital disease detection from a One Health perspective

    No full text
    Abstract Background Traditional media and the internet are crucial sources of health information. Media can significantly shape public opinion, knowledge and understanding of emerging and endemic health threats. As digital communication rapidly progresses, local access and dissemination of health information contribute significantly to global disease detection and reporting. Methods Health event reports in Nepal (October 2013–December 2014) were used to characterize Nepal’s media environment from a One Health perspective using HealthMap - a global online disease surveillance and mapping tool. Event variables (location, media source type, disease or risk factor of interest, and affected species) were extracted from HealthMap. Results A total of 179 health reports were captured from various sources including newspapers, inter-government agency bulletins, individual reports, and trade websites, yielding 108 (60%) unique articles. Human health events were reported most often (n = 85; 79%), followed by animal health events (n = 23; 21%), with no reports focused solely on environmental health. Conclusions By expanding event coverage across all of the health sectors, media in developing countries could play a crucial role in national risk communication efforts and could enhance early warning systems for disasters and disease outbreaks

    Evaluación de la respuesta de cultivos celulares de (Fouquieria splendens ssp. breviflora) Fouquieriaceae bajo estrés hídrico.

    Get PDF
    Los cultivos de células vegetales son sistemas experimentales homogéneos altamente controlables que permiten el estudio de adaptaciones bajo condiciones de estrés hídrico, sin la interferencia de los diferentes tejidos y estados del desarrollo vegetal. Una aproximación para comprender esas adaptaciones, es la aparición de proteínas inducidas, resultado de la alteración en la expresión génica. El presente trabajo analizó la respuesta de cultivos de células de  Fouquieria splendens ssp. breviflora, expuestos a ácido abscísico (ABA), mediante la caracterización electroforética en cantidad y calidad de las proteínas inducibles de estrés. Se registraron polipéptidos de bajo peso molecular ( 35KDa), comunes bajo la exposición a 10 mM, seguida la asociación con 20 y 30 mM de ABA, quedando aislada la respuesta de la condición de células en cultivo sin la presencia de éste.Plant cell cultures are homogenous experimental systems, highly controllable that allow the study of short and large water stress adaptations without the interference of the different tissues and development of plants. An approach to understand these adaptations is through the presence of induced proteins; as a result of changes in genetic expression. This work analyze the response of Fouquieria splendens ssp. breviflora cell cultures exposed to abscisic acid (ABA), through the electrophoretic characterization of quantity and quality of stress induced proteins. There were recorded low molecular weight polypeptides ( 35kDa), common in experiments under ABA 10mM, followed by the association with 20 and 30mM ABA conditions, with a particularly response of cell cultures without the stress agent

    Guidelines provided for the media source selection process.

    No full text
    <p>These general guidelines were provided at the onset of pilot implementation in each country to help the team members select the best weekly media sources for surveillance.</p

    Health events identified through local media surveillance (LMS) and HealthMap’s digital disease surveillance over the 16-week evaluation period.

    No full text
    <p>Health events identified through local media surveillance (LMS) and HealthMap’s digital disease surveillance over the 16-week evaluation period.</p

    Utility of the Rose Bengal Test as a Point-of-Care Test for Human Brucellosis in Endemic African Settings: A Systematic Review.

    No full text
    In endemic African areas, such as Tanzania, Brucella spp. cause human febrile illnesses, which often go unrecognized and misdiagnosed, resulting in delayed diagnosis, underdiagnosis, and underreporting. Although rapid and affordable point-of-care tests, such as the Rose Bengal test (RBT), are available, acceptance and adoption of these tests at the national level are hindered by a lack of local diagnostic performance data. To address this need, evidence on the diagnostic performance of RBT as a human brucellosis point-of-care test was reviewed. The review was initially focused on studies conducted in Tanzania but was later extended to worldwide because few relevant studies from Tanzania were identified. Databases including Web of Science, Embase, MEDLINE, and World Health Organization Global Index Medicus were searched for studies assessing the diagnostic performance of RBT (sensitivity and specificity) for detection of human brucellosis, in comparison to the reference standard culture. Sixteen eligible studies were identified and reviewed following screening. The diagnostic sensitivity (DSe) and specificity (DSp) of RBT compared to culture as the gold standard were 87.5% and 100%, respectively, in studies that used suitable "true positive" and "true negative" patient comparison groups and were considered to be of high scientific quality. Diagnostic DSe and DSp of RBT compared to culture in studies that also used suitable "true positive" and "true negative" patient comparison groups but were considered to be of moderate scientific quality varied from 92.5% to 100% and 94.3 to 99.9%, respectively. The good diagnostic performance of RBT combined with its simplicity, quickness, and affordability makes RBT an ideal (or close to) stand-alone point-of-care test for early clinical diagnosis and management of human brucellosis and nonmalarial fevers in small and understaffed health facilities and laboratories in endemic areas in Africa and elsewhere
    corecore