118 research outputs found

    Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions

    Get PDF
    Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments. In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward. We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone–behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions

    Life-history and hormonal control of aggression in black redstarts: blocking testosterone does not decrease territorial aggression, but changes the emphasis of vocal behaviours during simulated territorial intrusions

    Get PDF
    Introduction: Many studies in behavioural endocrinology attempt to link territorial aggression with testosterone, but the exact relationship between testosterone and territorial behaviour is still unclear and may depend on the ecology of a species. The degree to which testosterone facilitates territorial behaviour is particularly little understood in species that defend territories during breeding and outside the breeding season, when plasma levels of testosterone are low. Here we suggest that species that defend territories in contexts other than reproduction may have lost the direct regulation of territorial behaviour by androgens even during the breeding season. In such species, only those components of breeding territoriality that function simultaneously as sexually selected signals may be under control of sex steroids.<p></p> Results: We investigated black redstarts (Phoenicurus ochruros), a species that shows periods of territoriality within and outside of the breeding season. We treated territorial males with an anti-androgen and an aromatase inhibitor during the breeding season to block both the direct and indirect effects of testosterone. Three and ten days after the treatment, implanted males were challenged with a simulated territorial intrusion. The treatment did not reduce the overall territorial response, but it changed the emphasis of territoriality: experimental males invested more in behaviours addressed directly towards the intruder, whereas placebo-treated males put most effort into their vocal response, a component of territoriality that may be primarily directed towards their mating partner rather than the male opponent.<p></p> Conclusions: In combination with previous findings, these data suggest that overall territoriality may be decoupled from testosterone in male black redstarts. However, high levels of testosterone during breeding may facilitate-context dependent changes in song

    Testosterone affects song modulation during simulated territorial intrusions in male black redstarts (Phoenicurus ochruros)

    Get PDF
    Although it has been suggested that testosterone plays an important role in resource allocation for competitive behavior, details of the interplay between testosterone, territorial aggression and signal plasticity are largely unknown. Therefore, we investigated if testosterone acts specifically on signals that communicate the motivation or ability of individuals to engage in competitive situations in a natural context. We studied the black redstart, a territorial songbird species, during two different life-cycle stages, the early breeding phase in spring and the non-breeding phase in fall. Male territory holders were implanted with the androgen receptor blocker flutamide (Flut) and the aromatase inhibitor letrozole (Let) to inhibit the action of testosterone and its estrogenic metabolites. Controls received a placebo treatment. Three days after implantation birds were challenged with a simulated territorial intrusion (STI). Song was recorded before, during and after the challenge. In spring, both treatment groups increased the number of elements sung in parts of their song in response to the STI. However, Flut/Let-implanted males reacted to the STI with a decreased maximum acoustic frequency of one song part, while placebo-implanted males did not. Instead, placebo-implanted males sang the atonal part of their song with a broader frequency range. Furthermore, placebo-, but not Flut/Let-implanted males, sang shorter songs with shorter pauses between parts in the STIs. During simulated intrusions in fall, when testosterone levels are naturally low in this species, males of both treatment groups sang similar to Flut/Let-implanted males during breeding. The results suggest that song sung during a territorial encounter is of higher competitive value than song sung in an undisturbed situation and may, therefore, convey information about the motivation or quality of the territory holder. We conclude that testosterone facilitates context-dependent changes in song structures that may be honest signals of male quality in black redstarts

    Stressful Dieting: Nutritional Conditions but Not Compensatory Growth Elevate Corticosterone Levels in Zebra Finch Nestlings and Fledglings

    Get PDF
    Unfavourable conditions throughout the period of parental care can severely affect growth, reproductive performance, and survival. Yet, individuals may be affected differently, depending on the developmental period during which constraints are experienced. Here we tested whether the nestling phase compared to the fledgling phase is more susceptible to nutritional stress by considering biometry, physiology, sexually selected male ornaments and survival using zebra finches (Taeniopygia guttata) as a model species. As nestlings (day 0–17) or fledglings (day 17–35), subjects were raised either on low or high quality food. A low quality diet resulted in significantly elevated baseline corticosterone titres in both nestlings and fledglings. Subjects showed substantial compensatory growth after they had experienced low quality food as nestlings but catch-up growth did neither lead to elevated baseline corticosterone titres nor did we detect long term effects on biometry, male cheek patch, or survival. The compensation for temporally unfavourable environmental conditions reflects substantial phenotypic plasticity and the results show that costs of catch-up growth were not mediated via corticosterone as a physiological correlate of allostatic load. These findings provide new insights into the mechanisms and plasticity with which animals respond to periods of constraints during development as they may occur in a mistiming of breeding

    Females alter their song when challenged in a sex-role reversed bird species

    Get PDF
    Birdsong serves to attract mates and to deter territorial rivals. Even though song is not restricted to males, this dual function has almost exclusively been demonstrated for male song. To test the generality of hypotheses on birdsong, we investigated female song in the sex-role reversed, classically polyandrous African black coucal (Centropus grillii) in the context of female–female competition. We compared spontaneously vocalizing females with females vocally responding to a playback simulating a conspecific intruder. Females changed vocal parameters in response to playbacks: They lowered the pitch of their vocalizations and enhanced the duration of song elements when being challenged. Also, the composition of the vocalizations was altered. There was no significant correlation between pitch and body size parameters in spontaneous song, but there was for response songs, with larger females having a lower pitch. These changes in vocal properties suggest that the vocalizations are important for mutual assessment of competitive abilities in females. Our findings confirm the general role of intrasexual competition in vocal communication of birds

    Traffic noise exposure depresses plasma corticosterone and delays offspring growth in breeding zebra finches.

    Get PDF
    The impact of human activity on the acoustic environment is overwhelming, with anthropogenic noise reaching even remote areas of the planet. The World Health Organization has identified noise pollution as one of the leading environmental health risks in humans, and it has been linked to a myriad of short- and long-term health effects in exposed individuals. However, less is known about the health effects of anthropogenic noise exposure on animals. We investigated long- and short-term effects of traffic noise on zebra finches breeding in small communal aviaries, using a repeated measures design. Birds bred in both noise and no-noise conditions, and we measured baseline plasma glucocorticoid levels before, during and after breeding. In addition, we assayed immune function, measured reproductive success and offspring growth and compared rates of extra-pair paternity of breeding adults. Breeding birds had significantly lower baseline plasma corticosterone levels when exposed to traffic noise than when they were not exposed to noise playback. In addition, the nestlings reared during noise exposure were lighter than nestlings of the same parents when breeding in control conditions. Our results suggest that traffic noise poses a more severe hurdle to birds at more vulnerable stages of their life history, such as during reproductive events and ontogeny. While chronic exposure to traffic noise in our birds did not, by itself, prove to be a sufficient stressor to cause acute effects on health or reproductive success in exposed individuals, it did result in disruptions to normal glucocorticoid profiles and delayed offspring growth. However, animals living in urban habitats are exposed to a multitude of anthropogenic disturbances, and it is likely that even species that appear to be thriving in noisy environments may suffer cumulative effects of these multiple disturbances that may together impact their fitness in urban environments

    Traffic noise disrupts vocal development and suppresses immune function

    Get PDF
    Noise pollution has been linked to learning and language deficits in children, but the causal mechanisms connecting noise to cognitive deficiencies remain unclear because experimental models are lacking. Here, we investigated the effects of noise on birdsong learning, the primary animal model for vocal learning and speech development in humans. We found that traffic noise exposure retarded vocal development and led to learning inaccuracies. In addition, noise suppressed immune function during the sensitive learning period, indicating that it is a potent stressor for birds, which is likely to compromise their cognitive functions. Our results provide important insights into the consequences of noise pollution and pave the way for future studies using birdsong as an experimental model for the investigation of noise-induced learning impairments

    The relationship between daily behavior, hormones, and a color dimorphism in a seabird under natural continuous light

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by Elsevier in Hormones and Behavior on 08/02/2021.Available online: https://www.sciencedirect.com/science/article/pii/S0018506X2100009X?via%3DihubThe predictable oscillation between the light of day and the dark of night across the diel cycle is a powerful selective force that has resulted in anticipatory mechanisms in nearly all taxa. At polar latitude, however, this oscillation becomes highly attenuated during the continuous light of polar day during summer. A general understanding of how animals keep time under these conditions is poorly understood. We tested the hypothesis that the common murre (a seabird, Uria aalge) can use melatonin and corticosterone, hormones associated with timekeeping, to track the diel cycle despite continuous light. We also tested the assumption that common murres breeding during polar summer schedule their colony attendance by time of day and sex, as they do at subpolar latitude. In the Atlantic population, common murres have a plumage color dimorphism associated with fitnessrelated traits, and we investigated the relationship of this dimorphism with colony attendance, melatonin, and corticosterone. The common murres did not schedule their attendance behavior by time of day or sex, yet they had higher concentrations of melatonin and, to a more limited extent, corticosterone during “night” than “day”. Melatonin also linked to behavioral state. The two color morphs tended to have different colony-attendance behavior and melatonin concentrations, lending support for balancing selection maintaining the plumage dimorphism. In common murres, melatonin can signal time of day despite continuous light, and the limited diel variation of corticosterone contributes to the mounting evidence that polar-adapted birds and mammals require little or no diel variation in circulating glucocorticoids during polar day. Arctic Circadian rhythm Color dimorphism Continuous light Corticosterone profile Daily rhythm Glucocorticoid profile Melatonin profile Midnight sun Uria aalgeacceptedVersio

    Melatonin and corticosterone profiles under polar day in a seabird with sexually opposite activity-rhythms

    Get PDF
    The 24 h geophysical light-dark cycle is the main organizer of daily rhythms, scheduling physiology and behavior. This cycle attenuates greatly during the continuous light of summer at polar latitudes, resulting in species-specific and even individual-specific patterns of behavioral rhythmicity, but the physiological mechanisms underlying this variation are poorly understood. To address this knowledge gap and to better understand the roles of the hormones melatonin and corticosterone in rhythmic behavior during this ‘polar day’, we exploited the behavior of thick-billed murres (Uria lomvia), a charadriiform seabird with sexually opposite (‘antiphase’) activity-rhythms that have a duration of 24 h. Melatonin concentration in the plasma of inactive males was unexpectedly high around midday and subsequently fell during a sudden decrease in light intensity as the colony became shaded. Corticosterone concentration in plasma did not vary with time of day or activity in either sex. While the reasons for these unusual patterns remain unclear, we propose that a flexible melatonin response and little diel variation of corticosterone may be adaptive in thick-billed murres, and perhaps other polar birds and mammals, by stabilizing glucocorticoids’ role of modulating energy storage and mobilization across the diel cycle and facilitating the appropriate reaction to unexpected stimuli experienced across the diel cycle while attending the colony
    corecore