67 research outputs found

    Human Impacts Flatten Rainforest-Savanna Gradient and Reduce Adaptive Diversity in a Rainforest Bird

    Get PDF
    Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions

    Summer soil drying exacerbated by earlier spring greening of northern vegetation

    Get PDF
    Earlier vegetation greening under climate change raises evapotranspiration and thus lowers spring soil moisture, yet the extent and magnitude of this water deficit persistence into the following summer remain elusive. We provide observational evidence that increased foliage cover over the Northern Hemisphere, during 1982–2011, triggers an additional soil moisture deficit that is further carried over into summer. Climate model simulations independently support this and attribute the driving process to be larger increases in evapotranspiration than in precipitation. This extra soil drying is projected to amplify the frequency and intensity of summer heatwaves. Most feedbacks operate locally, except for a notable teleconnection where extra moisture transpired over Europe is transported to central Siberia. Model results illustrate that this teleconnection offsets Siberian soil moisture losses from local spring greening. Our results highlight that climate change adaptation planning must account for the extra summer water and heatwave stress inherited from warming-induced earlier greening

    Mapping evolutionary process: a multi-taxa approach to conservation prioritization

    Get PDF
    Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization

    Using Remote Sensing to Map the Risk of Human Monkeypox Virus in the Congo Basin

    Get PDF
    Although the incidence of human monkeypox has greatly increased in Central Africa over the last decade, resources for surveillance remain extremely limited. We conducted a geospatial analysis using existing data to better inform future surveillance efforts. Using active surveillance data collected between 2005 and 2007, we identified locations in Sankuru district, Democratic Republic of Congo (DRC) where there have been one or more cases of human monkeypox. To assess what taxa constitute the main reservoirs of monkeypox, we tested whether human cases were associated with (i) rope squirrels (Funisciurus sp.), which were implicated in monkeypox outbreaks elsewhere in the DRC in the 1980s, or (ii) terrestrial rodents in the genera Cricetomys and Graphiurus, which are believed to be monkeypox reservoirs in West Africa. Results suggest that the best predictors of human monkeypox cases are proximity to dense forests and associated habitat preferred by rope squirrels. The risk of contracting monkeypox is significantly greater near sites predicted to be habitable for squirrels (OR = 1.32; 95% CI 1.08–1.63). We recommend that semi-deciduous rainforests with oil-palm, the rope squirrel’s main food source, be prioritized for monitoring

    Impacts of large-scale climatic disturbances on the terrestrial carbon cycle

    Get PDF
    BACKGROUND: The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO(2 )growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO(2 )increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98. RESULTS: We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO(2 )flux. CONCLUSION: Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events

    Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mosquito vectors of <it>Plasmodium </it>spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife.</p> <p>Methods</p> <p><it>Plasmodium </it>DNA from wild-caught <it>Coquillettidia </it>spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female <it>Coquillettidia aurites </it>were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites.</p> <p>Results</p> <p>In total, 33% (85/256) of mosquito pools tested positive for avian <it>Plasmodium </it>spp., harbouring at least eight distinct parasite lineages. Sporozoites of <it>Plasmodium </it>spp. were recorded in salivary glands of <it>C. aurites </it>supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest <it>C. aurites</it>, <it>Coquillettidia pseudoconopas </it>and <it>Coquillettidia metallica </it>as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families.</p> <p>Conclusion</p> <p>Identifying the major vectors of avian <it>Plasmodium </it>spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes.</p

    CO2 seasonality indicates origins of post-Pinatubo sink

    No full text

    Economic Conditions Predict Prevalence of West Nile Virus

    Get PDF
    Understanding the conditions underlying the proliferation of infectious diseases is crucial for mitigating future outbreaks. Since its arrival in North America in 1999, West Nile virus (WNV) has led to population-wide declines of bird species, morbidity and mortality of humans, and expenditures of millions of dollars on treatment and control. To understand the environmental conditions that best explain and predict WNV prevalence, we employed recently developed spatial modeling techniques in a recognized WNV hotspot, Orange County, California. Our models explained 85–95% of the variation of WNV prevalence in mosquito vectors, and WNV presence in secondary human hosts. Prevalence in both vectors and humans was best explained by economic variables, specifically per capita income, and by anthropogenic characteristics of the environment, particularly human population and neglected swimming pool density. While previous studies have shown associations between anthropogenic change and pathogen presence, results show that poorer economic conditions may act as a direct surrogate for environmental characteristics related to WNV prevalence. Low-income areas may be associated with higher prevalence for a number of reasons, including variations in property upkeep, microhabitat conditions conducive to viral amplification in both vectors and hosts, host community composition, and human behavioral responses related to differences in education or political participation. Results emphasize the importance and utility of including economic variables in mapping spatial risk assessments of disease
    corecore