1,689 research outputs found

    Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance.

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) progression is associated with suppression of host cell-mediated immunity and local immune escape mechanisms. Our aim was to assess the immune function in terms of expression of TNF, IFNG and FOXP3 in CRC. METHODS: Sixty patients with CRC and 15 matched controls were recruited. TaqMan quantitative PCR and methylation-specific PCR was performed for expression and DNA methylation analysis of TNF, IFNG and FOXP3. Survival analysis was performed over a median follow-up of 48 months. RESULTS: TNF was suppressed in tumour and IFNG was suppressed in peripheral blood mononuclear cells (PBMCs) of patients with CRC. Tumours showed enhanced expression of FOXP3 and was significantly higher when tumour size was >38 mm (median tumour size; P=0.006, Mann-Whitney U-test). Peripheral blood mononuclear cell IFNG was suppressed in recurrent CRC (P=0.01). Methylated TNFpromoter (P=0.003) and TNFexon1 (P=0.001) were associated with significant suppression of TNF in tumours. Methylated FOXP3cpg was associated with significant suppression of FOXP3 in both PBMC (P=0.018) and tumours (P=0.010). Reduced PBMC FOXP3 expression was associated with significantly worse overall survival (HR=8.319, P=0.019). CONCLUSIONS: We have detected changes in the expression of immunomodulatory genes that could act as biomarkers for prognosis and future immunotherapeutic strategies

    Herd-level animal management factors associated with the occurrence of bovine neonatal pancytopenia in calves in a multicountry study

    Get PDF
    Since 2007, mortality associated with a previously unreported haemorrhagic disease has been observed in young calves in several European countries. The syndrome, which has been named ‘bovine neonatal pancytopenia’ (BNP), is characterised by thrombocytopenia, leukocytopenia and a panmyelophthisis. A herd-level case-control study was conducted in four BNP affected countries (Belgium, France, Germany and the Netherlands) to identify herd management risk factors for BNP occurrence. Data were collected using structured face-to-face and telephone interviews of farm managers and their local veterinarians. In total, 363 case farms and 887 control farms were included in a matched multivariable conditional logistic regression analysis. Case-control status was strongly associated with the odds of herd level use of the vaccine PregSure® BVD (PregSure, Pfizer Animal Health) (matched adjusted odds ratio (OR) 107.2; 95% CI: 41.0–280.1). This was also the case for the practices of feeding calves colostrum from the calf’s own dam (OR 2.0; 95% CI: 1.1–3.4) or feeding pooled colostrum (OR 4.1; 95% CI: 1.9–8.8). Given that the study had relatively high statistical power and represented a variety of cattle production and husbandry systems, it can be concluded with some confidence that no other herd level management factors are competent causes for a sufficient cause of BNP occurrence on herd level. It is suggested that genetic characteristics of the dams and BNP calves should be the focus of further investigations aimed at identifying the currently missing component causes that together with PregSure vaccination and colostrum feeding represent a sufficient cause for occurrence of BNP in calves

    Elevated Atmospheric Carbon Dioxide Concentrations Amplify Alternaria alternata Sporulation and Total Antigen Production

    Get PDF
    Background Although the effect of elevated carbon dioxide (CO2) concentration on pollen production has been established in some plant species, impacts on fungal sporulation and antigen production have not been elucidated. Objective Our purpose was to examine the effects of rising atmospheric CO2 concentrations on the quantity and quality of fungal spores produced on timothy (Phleum pratense) leaves. Methods Timothy plants were grown at four CO2 concentrations (300, 400, 500, and 600 μmol/mol). Leaves were used as growth substrate for Alternaria alternata and Cladosporium phlei. The spore abundance produced by both fungi, as well as the size (microscopy) and antigenic protein content (ELISA) of A. alternata, were quantified. Results Leaf carbon-to-nitrogen ratio was greater at 500 and 600 μmol/mol, and leaf biomass was greater at 600 μmol/mol than at the lower CO2 concentrations. Leaf carbon-to-nitrogen ratio was positively correlated with A. alternata spore production per gram of leaf but negatively correlated with antigenic protein content per spore. At 500 and 600 μmol/mol CO2 concentrations, A. alternata produced nearly three times the number of spores and more than twice the total antigenic protein per plant than at lower concentrations. C. phlei spore production was positively correlated with leaf carbon-to-nitrogen ratio, but overall spore production was much lower than in A. alternata, and total per-plant production did not vary among CO2 concentrations. Conclusions Elevated CO2 concentrations often increase plant leaf biomass and carbon-to-nitrogen ratio. Here we demonstrate for the first time that these leaf changes are associated with increased spore production by A. alternata, a ubiquitous allergenic fungus. This response may contribute to the increasing prevalence of allergies and asthma

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition

    Longer pregnancy and slower fetal development in women with latent "asymptomatic" toxoplasmosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to confirm that women with latent toxoplasmosis have developmentally younger fetuses at estimated pregnancy week 16 and to test four exclusive hypotheses that could explain the observed data.</p> <p>Methods</p> <p>In the present retrospective cohort study we analysed by the GLM (general linear model) method data from 730 <it>Toxoplasma</it>-free and 185 <it>Toxoplasma</it>-infected pregnant women.</p> <p>Results</p> <p>At pregnancy week 16 estimated from the date of the last menstruation, the mothers with latent toxoplasmosis had developmentally younger fetuses based on ultrasound scan (<it>P </it>= 0.014). Pregnancy of <it>Toxoplasma</it>-positive compared to <it>Toxoplasma</it>-negative women was by about 1.3 days longer, as estimated both from the date of the last menstruation (<it>P </it>= 0.015) and by ultrasonography (<it>P </it>= 0.025).</p> <p>Conclusion</p> <p>The most parsimonious explanation for the observed data is retarded fetal growth during the first weeks of pregnancy in <it>Toxoplasma</it>-positive women. The phenomenon was only detectable in multiparous women, suggesting that the immune system may play some role in it.</p

    Ecosystem development after mangrove wetland creation : plant–soil change across a 20-year chronosequence

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Ecosystems 15 (2012): 848-866, doi:10.1007/s10021-012-9551-1.Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses

    Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup

    Get PDF
    Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk

    International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed
    corecore