906 research outputs found

    Magnetic properties of single-crystalline CeCuGa3

    Full text link
    The magnetic behavior of single-crystalline CeCuGa3 has been investigated. The compound forms in a tetragonal BaAl4-type structure consisting of rare-earth planes separated by Cu-Ga layers. If the Cu-Ga site disorder is reduced, CeCuGa3 adopts the related, likewise tetragonal BaNiSn3-type structure, in which the Ce ion are surrounded by different Cu and Ga layers and the inversion symmetry is lost. In the literature conflicting reports about the magnetic order of CeCuGa3 have been published. Single crystals with the centrosymmetric structure variant exhibit ferromagnetic order below approx. 4 K with a strong planar anisotropy. The magnetic behavior above the transition temperature can be well understood by the crystal-field splitting of the 4f Hund's rule ground-state multiplet of the Ce ions

    Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin splitting in high mobility GaAs/AlGaAs devices

    Get PDF
    We suggest an approach for characterizing the zero-field spin splitting of high mobility two-dimensional electron systems, when beats are not readily observable in the Shubnikov-de Haas effect. The zero-field spin splitting and the effective magnetic field seen in the reference frame of the electron is evaluated from a quantitative study of beats observed in radiation-induced magnetoresistance oscillations.Comment: 4 pages, 4 color figure

    The Spectroscopic Classification and Explosion Properties of SN2009nz Associated with GRB091127 at z=0.490

    Get PDF
    We present spectroscopic observations of GRB091127 (z=0.490) at the peak of the putative associated supernova, SN2009nz. Subtracting a late-time spectrum of the host galaxy, we isolate the contribution of SN2009nz and uncover broad features typical of nearby GRB-SNe. This establishes unambiguously that GRB091127 was accompanied by a broad-lined Type Ic SN, and links a cosmological long burst with a standard energy release (E_gamma,iso ~ 1.1e52 erg) to a massive star progenitor. The spectrum of SN2009nz closely resembles that of SN2006aj, with SN2003dh also providing an acceptable match, but has significantly narrower features than SNe 1998bw and 2010bh, indicative of a lower expansion velocity. The photospheric velocity inferred from the SiII 6355 absorption feature, v_ph ~ 17,000 km/s, is indeed closer to that of SNe 2006aj and 2003dh than to the other GRB-SNe. Combining the measured velocity with the light curve peak brightness and width, we estimate the following explosion parameters: M_Ni ~ 0.35 M_sun, E_K ~ 2.3e51 erg, and M_ej ~ 1.4 M_sun, similar to those of SN2006aj. These properties indicate that SN2009nz follows a trend of lower M_Ni for GRB-SNe with lower E_K and M_ej. Equally important, since GRB091127 is a typical cosmological burst, the similarity of SN2009nz to SN2006aj either casts doubt on the claim that XRF060218/SN2006aj was powered by a neutron star, or indicates that the nature of the central engine is encoded in the SN properties but not in the prompt emission. Future spectra of GRB-SNe at z > 0.3, including proper subtraction of the host galaxy contribution, will shed light on the full dispersion of SN properties for standard long GRBs, on the relation between SNe associated with sub-energetic and standard GRBs, and on a potential dispersion in the associated SN types.Comment: Submitted to ApJ; 11 pages; 2 tables; 4 figures; emulateapj styl

    Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models

    Full text link
    We report on the observations of 14 dwarf spheroidal galaxies with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope provides a new opportunity to test particle dark matter models through the expected gamma-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf spheroidal galaxies, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearby and among the most extreme dark matter dominated environments. No significant gamma-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the gamma-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10^-9 photons cm^-2 s^-1. Using recent stellar kinematic data, the gamma-ray flux limits are combined with improved determinations of the dark matter density profile in 8 of the 14 candidate dwarfs to place limits on the pair annihilation cross-section of WIMPs in several widely studied extensions of the standard model. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e.g. in models where supersymmetry breaking occurs via anomaly mediation. The gamma-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e^+e^- data, including low-mass wino-like neutralinos and models with TeV masses pair-annihilating into muon-antimuon pairs. (Abridged)Comment: 25 pages, 4 figures, accepted to ApJ, Corresponding authors: J. Cohen-Tanugi, C. Farnier, T.E. Jeltema, E. Nuss, and S. Profum

    Lateral Distribution of Muons in IceCube Cosmic Ray Events

    Get PDF
    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations

    TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider

    Full text link
    The TESLA Technical Design Report Part III: Physics at an e+e- Linear ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full quality figures can be obtained from http://tesla.desy.de/tdr. Editors - R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa

    Spin dynamics in semiconductor nanocrystals

    Full text link
    Time-resolved Faraday rotation is used to study both transverse and longitudinal spin relaxation in chemically-synthesized CdSe nanocrystals (NCs) 22-80 Angstroms in diameter. The precession of optically-injected spins in a transverse magnetic field occurs at distinct frequencies whose assignment to electron and exciton spins is developed through systematic studies of the size-dependence and theoretical calculations. It is shown that the transverse spin lifetime is limited by inhomogeneous dephasing to a degree that cannot be accounted for by the NC size distribution alone. Longitudinal spin relaxation in these NCs occurs on several distinct timescales ranging from 100 ps-10 microseconds and exhibits markedly different dependencies on temperature and field in comparison to transverse spin relaxation.Comment: 25 pages, 11 figures, tabl
    corecore