1,324 research outputs found

    Robust Localization in 3D Prior Maps for Autonomous Driving.

    Full text link
    In order to navigate autonomously, many self-driving vehicles require precise localization within an a priori known map that is annotated with exact lane locations, traffic signs, and additional metadata that govern the rules of the road. This approach transforms the extremely difficult and unpredictable task of online perception into a more structured localization problem—where exact localization in these maps provides the autonomous agent a wealth of knowledge for safe navigation. This thesis presents several novel localization algorithms that leverage a high-fidelity three-dimensional (3D) prior map that together provide a robust and reliable framework for vehicle localization. First, we present a generic probabilistic method for localizing an autonomous vehicle equipped with a 3D light detection and ranging (LIDAR) scanner. This proposed algorithm models the world as a mixture of several Gaussians, characterizing the z-height and reflectivity distribution of the environment—which we rasterize to facilitate fast and exact multiresolution inference. Second, we propose a visual localization strategy that replaces the expensive 3D LIDAR scanners with significantly cheaper, commodity cameras. In doing so, we exploit a graphics processing unit to generate synthetic views of our belief environment, resulting in a localization solution that achieves a similar order of magnitude error rate with a sensor that is several orders of magnitude cheaper. Finally, we propose a visual obstacle detection algorithm that leverages knowledge of our high-fidelity prior maps in its obstacle prediction model. This not only provides obstacle awareness at high rates for vehicle navigation, but also improves our visual localization quality as we are cognizant of static and non-static regions of the environment. All of these proposed algorithms are demonstrated to be real-time solutions for our self-driving car.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133410/1/rwolcott_1.pd

    Cost Effectiveness of the US Geological Survey\u27s Stream-gaging Program in New York

    Get PDF
    The U.S. Geological Survey conducted a 5-year nationwide analysis to define and document the most cost effective means of obtaining streamflow data. This report describes the stream gaging network in New York and documents the cost effectiveness of its operation; it also identifies data uses and funding sources for the 174 continuous-record stream gages currently operated (1983). Those gages as well as 189 crest-stage, stage-only, and groundwater gages are operated with a budget of 1.068million.Onegagingstationwasidentifiedashavinginsufficientreasonforcontinuousoperationandwasconvertedtoacrest−stagegage.Currentoperationofthe363−stationprogramrequiresabudgetof1.068 million. One gaging station was identified as having insufficient reason for continuous operation and was converted to a crest-stage gage. Current operation of the 363-station program requires a budget of 1.068 million/yr. The average standard error of estimation of continuous streamflow data is 13.4%. Results indicate that this degree of accuracy could be maintained with a budget of approximately 1.006millionifthegagingresourceswereredistributedamongthegages.Theaveragestandarderrorfor174stationswascalculatedforfivehypotheticalbudgets.Aminimumbudgetof1.006 million if the gaging resources were redistributed among the gages. The average standard error for 174 stations was calculated for five hypothetical budgets. A minimum budget of 970,000 would be needed to operated the 363-gage program; a budget less than this does not permit proper servicing and maintenance of the gages and recorders. Under the restrictions of a minimum budget, the average standard error would be 16.0%. The maximum budget analyzed was $1.2 million, which would decrease the average standard error to 9.4%. (Author \u27s abstract

    Temperature Dependence Of Wood Surface Energy

    Get PDF
    A thorough understanding of the wood surface is required to engineer adhesive bonding in composite applications. A surface analysis technique, dynamic contact angle (DCA) analysis, was used to examine the effects of temperature on the wood surface as measured by the contact angle and surface energy. A hydrophobic surface transition was found on the wood surface at 60 C, which coincides with the glass transition of lignin as measured by differential scanning calorimetry. The change in the surface at the glass transition can be attributed to the diffusion of nonpolar molecular groups to the surface. This could be the result of the migration and deposition of extractives, reorientation of macromolecules, or a combination of the two. Similar behavior has been observed in synthetic amorphous polymers. Although the surface of wood is complex, the results indicate that it can be investigated and understood like synthetic polymer materials

    Time-resolved energy transfer from single chloride terminated nanocrystals to graphene

    Full text link
    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4 times reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

    The polymicrobial nature of biofilm infection

    Get PDF
    The model of biofilm infection was first proposed over a decade ago. Recent scientific advances have added much to our understanding of biofilms, usually polymicrobial communities, which are commonly associated with chronic infection. Metagenomics has demonstrated that bacteria pursuing a biofilm strategy possess many mechanisms for encouraging diversity. By including multiple bacterial and/or fungal species in a single community, biofilms obtain numerous advantages, such as passive resistance, metabolic cooperation, byproduct influence, quorum sensing systems, an enlarged gene pool with more efficient DNA sharing, and many other synergies, which give them a competitive advantage. Routine clinical cultures are ill-suited for evaluating polymicrobial infections. DNA methods utilizing PCR methods, PCR/mass spectroscopy and sequencing have demonstrated their ability to identify microorganisms and quantitate their contribution to biofilms in clinical infections. A more robust model of biofilm infection along with more accurate diagnosis is rapidly translating into improved clinical outcomes

    Walking the walk: a phenomenological study of long distance walking

    Get PDF
    Evidence suggests that regular walking can elicit significant psychological benefits although little evidence exists concerning long distance walking. The purpose of this study was to provide detailed accounts of the experiences of long distance walkers. Phenomenological interviews were conducted with six long distance walkers. Data were transcribed verbatim before researchers independently analyzed the transcripts. Participants reported a cumulative effect with positive feelings increasing throughout the duration of the walk. Long distance walking elicited positive emotions, reduced the effects of life-stress, and promoted an increased sense of well-being and personal growth. Results are aligned to theories and concepts from positive psychology

    The MINERΜ\nuA Data Acquisition System and Infrastructure

    Full text link
    MINERΜ\nuA (Main INjector ExpeRiment Μ\nu-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINERΜ\nuA employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINERΜ\nuA data acquisition system (DAQ) including the read-out electronics, software, and computing architecture.Comment: 34 pages, 16 figure

    Questioning policy, youth participation and lifestyle sports

    Get PDF
    Young people have been identified as a key target group for whom participation in sport and physical activity could have important benefits to health and wellbeing and consequently have been the focus of several government policies to increase participation in the UK. Lifestyle sports represent one such strategy for encouraging and sustaining new engagements in sport and physical activity in youth groups, however, there is at present a lack of understanding of the use of these activities within policy contexts. This paper presents findings from a government initiative which sought to increase participation in sport for young people through provision of facilities for mountain biking in a forest in south-east England. Findings from qualitative research with 40 young people who participated in mountain biking at the case study location highlight the importance of non-traditional sports as a means to experience the natural environments through forms of consumption which are healthy, active and appeal to their identities. In addition, however, the paper raises questions over the accessibility of schemes for some individuals and social groups, and the ability to incorporate sports which are inherently participant-led into state-managed schemes. Lifestyle sports such as mountain biking involve distinct forms of participation which present a challenge for policy-makers who seek to create and maintain sustainable communities of youth participants
    • 

    corecore