55 research outputs found

    DNA Methylation of the ABO Promoter Underlies Loss of ABO Allelic Expression in a Significant Proportion of Leukemic Patients

    Get PDF
    Background: Loss of A, B and H antigens from the red blood cells of patients with myeloid malignancies is a frequent occurrence. Previously, we have reported alterations in ABH antigens on the red blood cells of 55% of patients with myeloid malignancies. Methodology/Principal Findings: To determine the underlying molecular mechanisms of this loss, we assessed ABO allelic expression in 21 patients with ABH antigen loss previously identified by flow cytometric analysis as well as an additional 7 patients detected with ABH antigen changes by serology. When assessing ABO mRNA allelic expression, 6/12 (50%) patients with ABH antigen loss detected by flow cytometry and 5/7 (71%) of the patients with ABH antigen loss detected by serology had a corresponding ABO mRNA allelic loss of expression. We examined the ABO locus for copy number and DNA methylation alterations in 21 patients, 11 with loss of expression of one or both ABO alleles, and 10 patients with no detectable allelic loss of ABO mRNA expression. No loss of heterozygosity (LOH) at the ABO locus was observed in these patients. However in 8/11 (73%) patients with loss of ABO allelic expression, the ABO promoter was methylated compared with 2/10 (20%) of patients with no ABO allelic expression loss (P = 0.03). Conclusions/Significance: We have found that loss of ABH antigens in patients with hematological malignancies is associated with a corresponding loss of ABO allelic expression in a significant proportion of patients. Loss of ABO allelic expression was strongly associated with DNA methylation of the ABO promoter.Tina Bianco-Miotto, Damian J. Hussey, Tanya K. Day, Denise S. O'Keefe and Alexander Dobrovi

    Mutation detection by analysis of DNA heteroduplexes in TILLING populations of diploid species

    Get PDF
    In the beginning of mutation research, mutations could only be detected indirectly through the analysis of the phenotypic alterations that they caused. The detection of mutations at the DNA level became possible with the development of sequencing methods. Nowadays, there are many different methods and strategies that have been created for mutation detection, both in natural and mutagenised populations. The strategies differ in accuracy and sensitivity, as well as in the laboratory facilities, time, costs and efforts that are required. The majority of them involve the pooling of DNA samples and the amplification of a gene (fragment) of interest followed by heteroduplex formation. One of the popular strategies for mutation identification takes advantage of the specific endonuclease (e.g. CEL I) that recognises and cuts heteroduplexes precisely at the 3′ position of the mismatch site. The cleaved fragments are usually visualised through electrophoresis in a polyacrylamide gel using LI-COR sequencers, but agarose electrophoresis may also be used for this purpose, although with less sensitivity. A different mutation identification strategy, which is based on the high-resolution melting (HRM) technique, may be the method of choice when working with a short gene or a gene fragment whose length optimally does not exceed 400 bp

    Biochemical and Molecular Mechanisms of Folate Transport in Rat Pancreas; Interference with Ethanol Ingestion

    Get PDF
    Folic acid is an essential nutrient that is required for one-carbon biosynthetic processes and for methylation of biomolecules. Deficiency of this micronutrient leads to disturbances in normal physiology of cell. Chronic alcoholism is well known to be associated with folate deficiency which is due, in part to folate malabsorption. The present study deals with the mechanistic insights of reduced folate absorption in pancreas during chronic alcoholism. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and the mechanisms of alcohol associated reduced folate uptake was studied in pancreas. The folate transport system in the pancreatic plasma membrane (PPM) was found to be acidic pH dependent one. The transporters proton coupled folate transporter (PCFT) and reduced folate carrier (RFC) are involved in folate uptake across PPM. The folate transporters were found to be associated with lipid raft microdomain of the PPM. Ethanol ingestion decreased the folate transport by reducing the levels of folate transporter molecules in lipid rafts at the PPM. The decreased transport efficiency of the PPM was reflected as reduced folate levels in pancreas. The chronic ethanol ingestion led to decreased pancreatic folate uptake. The decreased levels of PCFT and RFC expression in rat PPM were due to decreased association of these proteins with lipid rafts (LR) at the PPM

    The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression

    Get PDF
    Introduction: The seven in absentia homolog 2 (SIAH2) protein plays a significant role in the hypoxic response by regulating the abundance of hypoxia-inducible factor-α; however, its role in breast carcinoma is unclear. We investigated the frequency and expression pattern of SIAH2 in two independent cohorts of sporadic breast cancers.Methods: Immunohistochemical evaluation of SIAH2protein expression was conducted in normal breast tissues and in tissue microarrays comprising ductal carcinoma in situ (DCIS) and a cohort of invasive breast carcinomas. Correlation analysis was performed between SIAH2 and clinicopathological variables and intrinsic breast cancer subgroups and validated in a cohort of 293 invasive ductal carcinomas. Promoter methylation, gene copy number and mRNA expression of SIAH2 were determined in a panel of basal-like tumors and cell lines.Results: There was a significant increase in nuclear SIAH2 expression from normal breast tissues through to DCIS and progression to invasive cancers. A significant inverse correlation was apparent between SIAH2 and estrogen receptor and progesterone receptor and a positive association with tumor grade, HER2, p53 and an intrinsic basal-like subtype. Logistic regression analysis confirmed the significant positive association between SIAH2 expression and the basal-like phenotype. No SIAH2 promoter methylation was identified, yet there was a significant correlation between SIAH2 mRNA and gene copy number. SIAH2-positive tumors were associated with a shorter relapse-free survival in univariate but not multivariate analysis.Conclusions: SIAH2 expression is upregulated in basal-like breast cancers via copy number changes and/or transcriptional activation by p53 and is likely to be partly responsible for the enhanced hypoxic drive through abrogation of the prolyl hydroxylases

    High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial growth factor receptor (<it>EGFR</it>) and <it>KRAS </it>mutation status have been reported as predictive markers of tumour response to <it>EGFR </it>inhibitors. High resolution melting (HRM) analysis is an attractive screening method for the detection of both known and unknown mutations as it is rapid to set up and inexpensive to operate. However, up to now it has not been fully validated for clinical samples when formalin-fixed paraffin-embedded (FFPE) sections are the only material available for analysis as is often the case.</p> <p>Methods</p> <p>We developed HRM assays, optimised for the analysis of FFPE tissues, to detect somatic mutations in <it>EGFR </it>exons 18 to 21. We performed HRM analysis for <it>EGFR </it>and <it>KRAS </it>on DNA isolated from a panel of 200 non-small cell lung cancer (NSCLC) samples derived from FFPE tissues.</p> <p>Results</p> <p>All 73 samples that harboured <it>EGFR </it>mutations previously identified by sequencing were correctly identified by HRM, giving 100% sensitivity with 90% specificity. Twenty five samples were positive by HRM for <it>KRAS </it>exon 2 mutations. Sequencing of these 25 samples confirmed the presence of codon 12 or 13 mutations. <it>EGFR </it>and <it>KRAS </it>mutations were mutually exclusive.</p> <p>Conclusion</p> <p>This is the first extensive validation of HRM on FFPE samples using the detection of <it>EGFR </it>exons 18 to 21 mutations and <it>KRAS </it>exon 2 mutations. Our results demonstrate the utility of HRM analysis for the detection of somatic <it>EGFR </it>and <it>KRAS </it>mutations in clinical samples and for screening of samples prior to sequencing. We estimate that by using HRM as a screening method, the number of sequencing reactions needed for <it>EGFR </it>and <it>KRAS </it>mutation detection can be reduced by up to 80% and thus result in substantial time and cost savings.</p

    Promoter methylation analysis of O6-methylguanine-DNA methyltransferase in glioblastoma: detection by locked nucleic acid based quantitative PCR using an imprinted gene (SNURF) as a reference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic silencing of the <it>MGMT </it>gene by promoter methylation is associated with loss of <it>MGMT </it>expression, diminished DNA-repair activity and longer overall survival in patients with glioblastoma who, in addition to radiotherapy, received alkylating chemotherapy with carmustine or temozolomide. We describe and validate a rapid methylation sensitive quantitative PCR assay (MS-qLNAPCR) using Locked Nucleic Acid (LNA) modified primers and an imprinted gene as a reference.</p> <p>Methods</p> <p>An analysis was made of a database of 159 GBM patients followed between April 2004 and October 2008. After bisulfite treatment, methylated and unmethylated CpGs were recognized by LNA primers and molecular beacon probes. The <it>SNURF </it>promoter of an imprinted gene mapped on 15q12, was used as a reference. This approach was used because imprinted genes have a balanced copy number of methylated and unmethylated alleles, and this feature allows an easy and a precise normalization.</p> <p>Results</p> <p>Concordance between already described nested MS-PCR and MS-qLNAPCR was found in 158 of 159 samples (99.4%). The MS-qLNAPCR assay showed a PCR efficiency of 102% and a sensitivity of 0.01% for LNA modified primers, while unmodified primers revealed lower efficiency (69%) and lower sensitivity (0.1%). <it>MGMT </it>promoter was found to be methylated using MS-qLNAPCR in 70 patients (44.02%), and completely unmethylated in 89 samples (55.97%). Median overall survival was of 24 months, being 20 months and 36 months, in patients with <it>MGMT </it>unmethylated and methylated, respectively. Considering <it>MGMT </it>methylation data provided by MS-qLNAPCR as a binary variable, overall survival was different between patients with GBM samples harboring <it>MGMT </it>promoter unmethylated and other patients with any percentage of <it>MGMT </it>methylation (p = 0.003). This difference was retained using other cut off values for <it>MGMT </it>methylation rate (i.e. 10% and 20% of methylated allele), while the difference was lost when 50% of <it>MGMT </it>methylated allele was used as cut-off.</p> <p>Conclusions</p> <p>We report and clinically validate an accurate, robust, and cost effective MS-qLNAPCR protocol for the detection and quantification of methylated <it>MGMT </it>alleles in GBM samples. Using MS-qLNAPCR we demonstrate that even low levels of <it>MGMT </it>promoter methylation have to be taken into account to predict response to temozolomide-chemotherapy.</p

    Androgen receptor expression predicts breast cancer survival: the role of genetic and epigenetic events

    Get PDF
    Background: Breast cancer outcome, including response to therapy, risk of metastasis and survival, is difficult to predict using currently available methods, highlighting the urgent need for more informative biomarkers. Androgen receptor (AR) has been implicated in breast carcinogenesis however its potential to be an informative biomarker has yet to be fully explored. In this study, AR protein levels were determined in a cohort of 73 Grade III invasive breast ductal adenocarcinomas

    Levels of DNA methylation vary at CpG sites across the BRCA1 promoter, and differ according to triple negative and "BRCA-like" status, in both blood and tumour DNA

    Get PDF
    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies
    corecore