19 research outputs found

    First outline and baseline data of a randomized, controlled multicenter trial to evaluate the health economic impact of home telemonitoring in chronic heart failure — CardioBBEAT

    Get PDF
    Background: Evidence that home telemonitoring for patients with chronic heart failure (CHF) offers clinical benefit over usual care is controversial as is evidence of a health economic advantage. Methods: Between January 2010 and June 2013, patients with a confirmed diagnosis of CHF were enrolled and randomly assigned to 2 study groups comprising usual care with and without an interactive bi-directional remote monitoring system (Motiva®^{®}). The primary endpoint in CardioBBEAT is the Incremental Cost-Effectiveness Ratio (ICER) established by the groups' difference in total cost and in the combined clinical endpoint "days alive and not in hospital nor inpatient care per potential days in study" within the follow-up of 12 months. Results: A total of 621 predominantly male patients were enrolled, whereof 302 patients were assigned to the intervention group and 319 to the control group. Ischemic cardiomyopathy was the leading cause of heart failure. Despite randomization, subjects of the control group were more often in NYHA functional class III-IV, and exhibited peripheral edema and renal dysfunction more often. Additionally, the control and intervention groups differed in heart rhythm disorders. No differences existed regarding risk factor profile, comorbidities, echocardiographic parameters, especially left ventricular and diastolic diameter and ejection fraction, as well as functional test results, medication and quality of life. While the observed baseline differences may well be a play of chance, they are of clinical relevance. Therefore, the statistical analysis plan was extended to include adjusted analyses with respect to the baseline imbalances. Conclusions: CardioBBEAT provides prospective outcome data on both, clinical and health economic impact of home telemonitoring in CHF. The study differs by the use of a high evidence level randomized controlled trial (RCT) design along with actual cost data obtained from health insurance companies. Its results are conducive to informed political and economic decision-making with regard to home telemonitoring solutions as an option for health care. Overall, it contributes to developing advanced health economic evaluation instruments to be deployed within the specific context of the German Health Care System

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Supervised machine learning of environmental energy consumption types by AI algorithms targeting CO2 emission reduction and avoidance of bad air quality by giving recommendations

    No full text
    Behrens G, Schlender K, Brandt M, Kösling P. Supervised machine learning of environmental energy consumption types by AI algorithms targeting CO2 emission reduction and avoidance of bad air quality by giving recommendations. In: Schaldach R, Simon K-H, Weismüller J, Wohlgemuth V, eds. Environmental Informatics: Computational Sustainability. Skaker; 2019: 381 ff

    Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and silicon rubber materials

    No full text
    Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU) and silicone rubber (SiR), were compared due their material properties. Both naive catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, whereas the samples after removal were compared according to the implanted time in patient. The macroscopic, mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was analysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure, especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. (C) 2016 Elsevier Ltd. All rights reserved
    corecore