116 research outputs found

    Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid

    Get PDF
    The mapping of electrostatic potentials and magnetic fields in liquids usingelectron holography has been considered to be unrealistic. Here, we showthat hydrated cells ofMagnetospirillum magneticumstrain AMB-1 and assem-blies of magnetic nanoparticles can be studied using off-axis electronholography in a fluid cell specimen holder within the transmission electronmicroscope. Considering that the holographic object and reference waveboth pass through liquid, the recorded electron holograms show sufficientinterference fringe contrast to permit reconstruction of the phase shift ofthe electron wave and mapping of the magnetic induction from bacterialmagnetite nanocrystals. We assess the challenges of performingin situmagne-tization reversal experiments using a fluid cell specimen holder, discussapproaches for improving spatial resolution and specimen stability, and outlinefuture perspectives for studying scientific phenomena, ranging from interpar-ticle interactions in liquids and electrical double layers at solid–liquidinterfaces to biomineralization and the mapping of electrostatic potentialsassociated with protein aggregation and folding

    Extension of Bethe's diffraction model to conical Geometry: application to near field optics

    Full text link
    The generality of the Bethe's two dipole model for light diffraction through a subwavelength aperture in a conducting plane is studied in the radiation zone for coated conical fiber tips as those used in near field scanning optical microscopy. In order to describe the angular radiated power of the tip theoretically, we present a simple, analytical model for small apertures (radius < 40 nm) based on a multipole expansion. Our model is able to reproduce the available experimental results. It proves relatively insensitive to cone angle and aperture radius and contains, as a first approximation, the empirical two-dipole model proposed earlier

    Creation of Rydberg Polarons in a Bose Gas

    Get PDF
    We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a pp-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, nn. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.Comment: 5 pages, 3 figure

    Theory of excitation of Rydberg polarons in an atomic quantum gas

    Get PDF
    We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass. Mean-field and classical descriptions of the spectrum are derived as approximations of the many-body theory. The various approaches are applied to experimental observations of polarons created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate.Comment: 14 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1706.0371

    Diffraction of light by a planar aperture in a metallic screen

    Full text link
    We present a complete derivation of the formula of Smythe [Phys.Rev.72, 1066 (1947)] giving the electromagnetic field diffracted by an aperture created in a perfectly conducting plane surface. The reasoning, valid for any excitating field and any hole shape, makes use only of the free scalar Green function for the Helmoltz equation without any reference to a Green dyadic formalism. We compare our proof with the one previously given by Jackson and connect our reasoning to the general Huygens Fresnel theorem.Comment: J. Math. Phys. 47, 072901 (2006

    Diffraction by a small aperture in conical geometry: Application to metal coated tips used in near-field scanning optical microscopy

    Full text link
    Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve Maxwell's equations analytically using boundary conditions adapted both for the conical geometry and for the finite conductivity of a real metal. The topological properties of the diffracted field are discussed in detail and compared to those of the field diffracted through a small aperture in a flat screen, i. e. the Bethe problem. The model is applied to coated, conically tapered optical fiber tips that are used in Near-Field Scanning Optical Microscopy. It is demonstrated that such tips behave over a large portion of space like a simple combination of two effective dipoles located in the apex plane (an electric dipole and a magnetic dipole parallel to the incident fields at the apex) whose exact expressions are determined. However, the large "backward" emission in the P plane - a salient experimental fact that remained unexplained so far - is recovered in our analysis which goes beyond the two-dipole approximation.Comment: 21 pages, 6 figures, published in PRE in 200

    Directional Statistics of Preferential Orientations of Two Shapes in Their Aggregate and Its Application to Nanoparticle Aggregation

    Get PDF
    <p>Nanoscientists have long conjectured that adjacent nanoparticles aggregate with one another in certain preferential directions during a chemical synthesis of nanoparticles, which is referred to the oriented attachment. For the study of the oriented attachment, the microscopy and nanoscience communities have used dynamic electron microscopy for direct observations of nanoparticle aggregation and have been so far relying on manual and qualitative analysis of the observations. We propose a statistical approach for studying the oriented attachment quantitatively with multiple aggregation examples in imagery observations. We abstract an aggregation by an event of two primary geometric objects merging into a secondary geometric object. We use a point set representation to describe the geometric features of the primary objects and the secondary object, and formulated the alignment of two point sets to one point set to estimate the orientation angles of the primary objects in the secondary object. The estimated angles are used as data to estimate the probability distribution of the orientation angles and test important hypotheses statistically. The proposed approach was applied for our motivating example, which demonstrated that nanoparticles of certain geometries have indeed preferential orientations in their aggregates.</p

    Peptide-directed PdAu nanoscale surface segregation: Toward controlled bimetallic architecture for catalytic materials

    Get PDF
    YesBimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy, and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods was then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence dependence in both surface structure and surface composition. Replica exchange with solute tempering molecular dynamics simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.Air Force Office for Scientific Research (T.R.W., Grant No. FA9550-12-620 1-0226). S.P.E. and E.B.C. gratefully acknowledge financial support from the Army Research Office through a MURI award, W911NF-10-1-052

    Vedolizumab for the Treatment of Adults with Moderate-to-Severe Active Ulcerative Colitis: An Evidence Review Group Perspective of a NICE Single Technology Appraisal.

    Get PDF
    As part of its single technology appraisal (STA) process, the National Institute for Health and Care Excellence (NICE) invited the manufacturer of vedolizumab (Takeda UK) to submit evidence of the clinical effectiveness and cost effectiveness of vedolizumab for the treatment of patients with moderate-to-severe active ulcerative colitis (UC). The Evidence Review Group (ERG) produced a critical review of the evidence for the clinical effectiveness and cost effectiveness of the technology, based upon the company's submission to NICE. The evidence was derived mainly from GEMINI 1, a Phase 3, multicentre, randomised, double-blinded, placebo-controlled study of the induction and maintenance of clinical response and remission by vedolizumab (MLN0002) in patients with moderate-to-severe active UC with an inadequate response to, loss of response to or intolerance of conventional therapy or anti-tumour necrosis factor (TNF)-α. The clinical evidence showed that vedolizumab performed significantly better than placebo in both the induction and maintenance phases. In the post hoc subgroup analyses in patients with or without prior anti-TNF-α therapy, vedolizumab performed better then placebo (p value not reported). In addition, a greater improvement in health-related quality of life was observed in patients treated with vedolizumab, and the frequency and types of adverse events were similar in the vedolizumab and placebo groups, but the evidence was limited to short-term follow-up. There were a number of limitations and uncertainties in the clinical evidence base, which warrants caution in its interpretation-in particular, the post hoc subgroup analyses and high dropout rates in the maintenance phase of GEMINI 1. The company also presented a network meta-analysis of vedolizumab versus other biologic therapies indicated for moderate-to-severe UC. However, the ERG considered that the results presented may have underestimated the uncertainty in treatment effects, since fixed-effects models were used, despite clear evidence of heterogeneity among the trials included in the network. Results from the company's economic evaluation (which included price reductions to reflect the proposed patient access scheme for vedolizumab) suggested that vedolizumab is the most effective option compared with surgery and conventional therapy in the following three populations: (1) a mixed intention-to-treat population, including patients who have previously received anti-TNF-α therapy and those who are anti-TNF-α naïve; (2) patients who are anti-TNF-α naïve only; and (3) patients who have previously failed anti-TNF-α therapy only. The ERG concluded that the results of the company's economic evaluation could not be considered robust, because of errors in model implementation, omission of relevant comparators, deviations from the NICE reference case and questionable model assumptions. The ERG amended the company's model and demonstrated that vedolizumab is expected to be dominated by surgery in all three populations
    • …
    corecore