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Abstract 

Bimetallic nanoparticles are of immense scientific and technological interest given the 

synergistic properties observed when mixing two different metallic species at the 

nanoscale.  This is particularly prevalent in catalysis, where bimetallic nanoparticles 

often exhibit improved catalytic activity and durability over their monometallic 

counterparts.  Yet despite intense research efforts, little is understood regarding how to 

optimize bimetallic surface composition and structure synthetically using rational design 

principles.  Recently, it has been demonstrated that peptide-enabled routes for 

nanoparticle synthesis result in materials with sequence-dependent catalytic properties, 

providing an opportunity for rational design through sequence manipulation.  In this 

study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides 

containing known Pd and Au binding motifs.  The resulting nanoparticles were 

extensively characterized using high-resolution scanning transmission electron 

microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to 

atomic pair distribution function analysis.  Structural information obtained from 

synchrotron radiation methods were then used to generate model nanoparticle 

configurations using reverse Monte Carlo simulations, which illustrate sequence-

dependence in both surface structure and surface composition.  Replica exchange solute 

tempering molecular dynamic simulations were also used to predict the modes of peptide 

binding on monometallic surfaces, indicating that different sequences bind to the metal 

interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol 

oxidation experiments were performed, wherein differences in catalytic activity are 

clearly observed in materials with identical bimetallic composition.  Taken together, this 

study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced 

catalytic properties, which could be leveraged for rational bimetallic nanoparticle design 

using peptide-enabled approaches. 
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Introduction 

Metallic nanoparticles demonstrate great utility in catalytic applications due to the 

high surface area to volume ratios inherent to nanoscale materials.  Given current energy 

and environmental challenges, extensive research efforts have focused on the generation 

of highly active catalytic nanoparticles, particularly for applications concerning 

alternative energy-based technologies such as (photo)electrochemical fuel cells and 

biomass refinement processes.1, 2 Strategies for improving the catalytic activity of 

metallic nanoparticles involve the optimization of nanoparticle composition, shape, 

and/or structure, wherein the ability to predictably control the structural motifs present on 

the nanoparticle surface at the atomic scale will likely advance the discovery of materials 

with enhanced catalytic properties. Along these lines, the development of bimetallic 

nanoparticles aims to improve catalytic activity as compared with their corresponding 

monometallic counterparts by introducing synergistic improvements in catalytic 

properties arising from unique electronic and geometric effects found in bimetallic 

nanoparticles.3, 4  Yet despite increased research efforts focused on bimetallic 

nanoparticle synthesis, there is a comparatively smaller body of literature focused on 

understanding bimetallic nanoparticle composition and surface segregation as a function 

of capping agent-bimetallic interactions during and after synthesis.5, 6  More commonly, 

current studies have largely focused on the reorganization of surface atoms during 

catalysis due to reaction conditions such as applied electrical bias, changes in temperature, 

and the presence of small molecule reagents and products during catalytic reactions.7-9 

Such efforts demonstrate the need to elucidate atomic-scale structural evolution during 

catalysis, but perhaps equally important, illustrate the possibility of synthetically tuning 

bimetallic surface composition through nanoparticle-ligand interactions.  Ligand-induced 

structural dependences have been previously reported,5, 6 yet concise design strategies for 

achieving controlled bimetallic composition/structure for catalysts optimization have yet 

to be realized.  As such, bimetallic nanocatalysts are often synthesized using trial-and-

error approaches that cannot be readily translated across a variety of materials systems.  

In order to create new catalytic materials with enhanced properties in a non-Edisonian 
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fashion, rational synthetic strategies are needed that are rooted in the fundamental 

understanding of atomic-scale structure/function relationships. 

An emerging method for nanoparticle synthesis and assembly is the use of 

biomolecule-directed techniques.10, 11  Performed under energy- and environmentally-

friendly conditions (aqueous media, ambient temperature and pressure), biomolecules 

such as DNA, proteins, and peptides have been used to assemble and/or synthesize a wide 

range of nanoscale materials.12-20  In the context of catalysis, peptide-enabled synthetic 

strategies have been recently used to create nanoparticle catalysts that operate under 

aqueous conditions and low catalyst loading.18, 20 Additionally, these materials 

demonstrate catalytic property modulation that is dependent on the primary sequence of 

the capping peptide, which is non-covalently (physically) adsorbed onto the nanoparticle 

surface.21-23  Such observations suggest bio-inspired routes can be used to optimize 

catalytic properties for bimetallic systems, but can only be fully realized if sequence-

dependent structure/function relationships are better understood.  We have recently 

reported on developing such relationships using atomic-scale structural methods for 

peptide-capped monometallic catalysts,24, 25 wherein the presence of strongly-adsorbing 

residues in the peptide sequence drive formation of disordered catalytic surfaces.  Such 

strategies for monometallic systems are likely adaptable to bimetallic nanoparticles, 

while also providing a means to modulate surface composition through complex 

interactions at the biotic/abiotic interface.  Examples of peptide-enabled bimetallic 

nanoparticles are limited,26-29 and have not to date explored the possible utility of 

sequence modification to direct and manipulate the surface composition and/or structural 

order of the catalyst. 

In this contribution, we have created small (~2 nm) PdAu nanoparticles using a 

set of peptide sequences that incorporate known binding motifs for Pd and Au.  These 

nanoparticles were extensively characterized using high-resolution scanning transmission 

electron microscopy (HR-STEM), X-ray absorption fine-structure spectroscopy (XAFS), 

and high-energy X-ray diffraction (HE-XRD) coupled to atomic pair distribution function 

(PDF) analysis.  Modeling of XAFS and atomic PDF datasets provide structural 

information over varying length scales to generate experimentally-derived nanoparticle 

configurations, which were found to exhibit sequence-dependent Pd surface segregation.  
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To assess sequence-dependent structure/function relationships, electrochemical methanol 

oxidation was performed as a model reaction.  In addition, state-of-the-art replica 

exchange with solute tempering30, 31 molecular dynamics (REST-MD) simulations were 

performed at peptide-monometallic (Pd0 and Au0) interfaces to elucidate the atomic-scale 

phenomena that drive the peptide-induced phase separations in bimetallic nanoparticles. 

Overall, our findings demonstrate the capability to control surface composition and 

structural order in bimetallic nanoparticles via the choice of peptide sequence, potentially 

leading to new approaches to rationally optimize catalytic properties through predictable 

manipulation of biotic/abiotic interactions at the bimetallic nanoparticle surface.            

  

Results and Discussion 

 To evaluate the capability of exploiting interactions at the biotic/abiotic interface 

as a means to control bimetallic nanoparticle surface composition and structural order, a 

set of peptide-enabled PdAu nanoparticles were synthesized.  PdAu was chosen as a 

model system given the comparatively large amount of literature on peptide-Pd/Au 

interactions23-25, 32-34 and the well-established catalytic property enhancements observed 

in PdAu alloys.26, 35  The Pd4 peptide (TSNAVHPTLRHL), derived from M13 phage 

display experiments on bulk polycrystalline Pd,18 has been suggested to non-covalently 

bind to Pd through the histidine residues at the 6 and 11 positions in the peptide.32  

Further sequence modifications in Pd4 at the 6 and 11 positions with alanine and/or 

cysteine yield differences in catalytic properties,22, 23 which we recently discovered was 

attributed to sequence-driven surface disorder in Pd.24  Similarly, the AuBP1 peptide 

(WAGAKRLVLRRE), discovered by FliTrx selection methods on Au surfaces,36 has 

been extensively studied with using both computational and experimental methods.34, 36, 37 

Recent REST-MD simulations 34, 37 of AuBP1 adsorbed at the aqueous Au (111) interface 

have found that Trp, and to a lesser extent Arg, feature strong non-covalent interactions 

with Au interfaces. Leveraging this knowledge of Pd and Au interactions with Pd4 and 

AuBP1 peptides, we designed a hybrid peptide, termed H1 (WAGAKRHPTLRHL), that 

contains strong anchoring motifs from the N-terminal half of AuBP134 and the C-terminal 

half of Pd432.    
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Using the AuBP1, Pd4, and H1 sequences, PdAu nanoparticles were synthesized 

using an adapted method for peptide-capped Au nanoparticles (see the experimental 

section for more details).21  PdAu nanoparticles were synthesized at 3:1, 1:1, and 1:3 

Pd:Au ratios, along with pure monometallic Au and Pd nanoparticles.  STEM images 

show nanoparticle ~2 nm in size were synthesized for all bimetallic ratios and peptides, 

as highlighted for 1:3 Pd:Au nanoparticles capped with the AuBP1 peptide in Figure 1 

(see Figure S1-S3, for images for each nanoparticle).  AuBP1 capped 1:3 Pd:Au 

nanoparticles are 2.1 ± 0.9 nm in size (Figure 1a & 1b), and demonstrate ordered domains 

in high-angle annular dark field-STEM (HAADF-STEM) imaging.  While such results 

would suggest nanocrystalline order, we stress that HAADF-STEM imaging is a 2D 

representation of a 3D nanoparticle structure and only reveal crystalline order in the core 

of the nanoparticle and not surface structure.  Indeed, our previous HR-TEM work on 

peptide-capped Pd nanoparticles show atomic order in the core of the nanoparticles, but 

the images could not be used to glean structural information on the nanoparticle surface.24  

For sizing aspect ratio analysis on all bimetallic nanoparticles, see Table S1.  STEM 

energy dispersive x-ray spectroscopy (STEM-EDS) elemental mapping was performed 

(Figure 1d) for both Au and Pd (Figure 1e and 1f) to better understand the spatial 

distribution of Pd and Au in the nanoparticles.  Figure 1e illustrates concentrated Au 

signal toward the center of each nanoparticle, while the Pd signal (Figure 1f) is more 

diffuse in nature and spread over a larger area than the Au for each particle. Such an 

arrangement of EDS intensities suggests that Pd resides predominantly on the surface of 

the nanoparticles in these materials, although emphatic evidence based solely on EDS 

mapping is hard to ascertain for nanoparticles of this size.  In addition, the EDS signal 

from Pd and Au is uniform across all nanoparticles, qualitatively indicating a lack of 

chemical segregation in the nanoparticles. 

Synchrotron radiation characterization methods were implemented to understand 

the influence of peptide sequence on the resulting structure of the peptide-capped 

nanoparticles.  First, we used XAFS to probe local structure and chemistry in an element 

specific fashion.  XAFS is an established method for understanding local bimetallic 

nanoparticle structure through the identification of metal-metal coordination numbers 

(CNs).38  In this instance, XAFS experiments around the Pd K-edge and Au L3-edge can 
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provide Pd-Pd, Pd-Au, Au-Pd, and Au-Au CNs that are paramount in understanding the 

influence of peptide sequence on local atomic-scale bimetallic arrangements. X-ray 

energies were scanned from 200 eV below to 900 eV above each element’s absorption 

edge (Figure S4).  The X-ray absorption near-edge structure (XANES) spectra around the 

Au L3-edge (11.92 keV) for PdAu nanoparticles made with AuBP1, H1, and Pd4 all 

indicate the Au atoms are zerovalent as evident by similarity in XANES features to that 

of a reference Au foil (Figure S5).  Similarly, XANES features around the Pd K-edge 

(24.35 keV) indicate that the Pd in the PdAu nanoparticles is largely metallic, as 

compared to bulk Pd.  Monometallic Pd nanoparticles, conversely, exhibit XANES 

features that are more akin to oxidized Pd.  Note that such instances have been previously 

observed in peptide-capped Pd nanoparticles that were attributed to incomplete Pd2+ 

reduction, likely due to strong peptide-precursor interactions.24, 39 The lack of Pd 

oxidation in the PdAu nanoparticles is likely attributed to shifts in the Pd2+ reduction 

potential due to the presence of nucleating Au clusters. 

After background subtraction and edge-step normalization, the extended XAFS 

(EXAFS) data were converted to k-space and k2-weighted (Figure S6), then Fourier 

transformed from 2.0-12.0 Å-1 for the Au L3-edge data and 2.0-10.0 Å-1 for the Pd K-

edge data as shown in Figure 2a-f. For the Pd foil standard, a main peak is positioned at 

2.5 Å, which corresponds to the Pd-Pd nearest neighboring distance (Figure 2a-c). Note 

that due to photoelectron phase shift, this distance is lower than the observed Pd-Pd bond 

length of 2.75 Å found in fcc Pd.  As such, the nearest neighbor distances observed in 

Figure 2a-f are similarly shifted.  For Au L3-edge comparisons, the split peak from the 

Au foil standard and subsequent nanoparticles stems from Townsend-Ramsauer 

resonance and represents the nearest neighbor Au-Au bond length.  Due to the possibility 

of multiple overlapping scatterers in the bimetallic nanoparticles EXAFS data were 

modeled40 (Figure S7-9) to obtain quantitative metal-metal bond lengths (Table 1).  For 

monometallic Pd nanoparticles, Pd-Cl contributions were added due to the presences of 

unreduced Pd2+ as indicated from the Pd-XANES data (Figure S5) and previous 

observations on peptide-capped Pd nanoparticles.39 Monometallic Pd nanoparticles 

exhibited Pd-Pd bond lengths of 2.74 ± 0.02 Å, 2.71 ± 0.01 Å, and 2.76 ± 0.02 Å for 

using AuBP1, H1, and Pd4 peptides respectively.  Modeled Au-Au bond lengths of 2.88 
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± 0.01 Å, 2.87 ± 0.02 Å, and 2.84 ± 0.01 Å were obtained from AuBP1, H1 and Pd4 

capped monometallic Au nanoparticles respectively.  Note that differences in bond 

lengths from the bulk material are common in nanoscale materials due to stress and/or 

strain effects observed at the nanoscale.38, 41   

For peptide-capped PdAu bimetallic nanoparticles, metallic bond lengths modeled 

from EXAFS provide insights into the local chemical environment on an element specific 

basis (Table 1).  For example, Pd-Pd bond lengths closer to the bulk value of 2.75 Å 

would indicate a Pd fcc-like environment, while those with larger bond length would 

likely arise to structural conformation more akin to Au fcc.  Conversely, Au-Au bond 

lengths closer to the bulk value of 2.88 Å would demonstrate local Au fcc-like structure, 

while a decrease would suggest a more Pd fcc-like structural arrangement.  Similar 

observations and identifications can be made for modeled Pd-Au bond lengths as well.  

For PdAu nanoparticles capped with AuBP1, 3:1 and 1:1 PdAu demonstrate Pd metallic 

bond lengths that are more Pd fcc-like with modeled Pd-Pd and Pd-Au distances of 2.77 

± 0.02 Å and 2.80 ± 0.05 Å for 3:1 PdAu nanoparticles and 2.74 ± 0.02 Å and 2.79 ± 0.03 

Å for 1:1 PdAu nanoparticles.  Modeled Au-Au bond lengths for AuBP1-capped 3:1 and 

1:1 PdAu are reduced from the bulk value (2.83 ± 0.01 Å and 2.83 ± 0.02 Å respectively), 

but are only slightly different from bulk Au.  These findings suggest Pd atoms adopt a 

more Pd fcc-like structure, with slight shifts to larger nearest neighbor distances as 

indicated by the modeled Pd-Au distances, while Au atoms exhibit a more stained Au 

fcc-like structure.    An increase in Au composition to 1:3 Pd:Au for AuBP1 capped 

nanoparticles further exhibits a shift to longer Pd-Au and Au-Au bond lengths (2.83 ± 

0.03 Å and 2.85 ± 0.02 Å, respectively) indicating local Au structure is more similar to 

that of bulk Au, while the modeled Pd-Pd distance (2.78 ± 0.03 Å) is still more 

resemblant to bulk Pd.  From these modeled bond lengths, Pd-Pd and Au-Au are only 

slightly affected by changes in composition and are more similar to their bulk values as 

opposed a weighted average value similar to the calculated Pd-Au bonds lengths, which 

would suggest a larger degree of phase separation over bimetallic alloying.  Similar 

trends can be found from the modeled bond lengths from H1 and Pd4 capped PdAu 

bimetallic nanoparticles as shown in Table 1.    
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EXAFS modeling40 (Figure S7-9) was also used to obtain element specific metal-

metal CNs (Table 2), which are plotted vs. Pd composition Figure 2g-I, along with 

EXAFS Debye-Waller factors (Table S2).  CNs specify the number of a particular metal 

type around a central data.  For example, the Pd-Au CN is the average number of Au 

atoms around a Pd atom.  Conversely, the Au-Pd CN is the average number of Pd atoms 

around a Au atom.  For monometallic Pd nanoparticles, Pd-Pd CNs of 5.51 ± 2.65, 3.19 ± 

0.8, and 4.95 ± 2.37 were obtained using AuBP1, H1, and Pd4, respectively.  These CNs 

are significantly smaller than the expected theoretical value of 9.63 for spherical 

nanoparticles of this size.42  This can be attributed to incomplete reduction of Pd2+ to Pd0, 

as previously observed for peptide-capped Pd nanoparticles.39 Conversely, monometallic 

Au nanoparticles have Au-Au CNs of 9.23 ± 0.72, 9.82 ± 1.17, 9.76 ± 0.72 for AuBP1, 

H1, and Pd4 respectively, which are similar to theoretical values.42  For PdAu bimetallic 

nanoparticles, the calculated CNs are plotted as a function of Pd composition for each set 

of peptide-capped nanoparticles (Figure 2g-i).  Note that for completely miscible 

bimetallic nanoparticles (100% random alloy), a linear trend in CN vs. composition is 

expected.43  From the calculated CNs, each peptide has notable deviations from linearity, 

suggesting that the peptide at the biotic/abiotic interface is modulating nanoscale 

miscibility. For AuBP1 capped PdAu nanoparticles (Figure 2g), Au-Au CNs are higher 

than expected for a random alloy at 1:1 and 3:1 PdAu ratios, at 5.23 ± 1.28 and 7.00 ± 

5.42 respectively.  Additionally, the sum of Au-Pd and Au-Au CNs is greater than 8 for 

both these PdAu nanoparticles.  Given that EXAFS is an ensemble-averaged technique, 

this would suggest a majority of Au atoms are surrounded by metallic atoms (i.e. not 

surface atoms), which would exhibit a CN of 12 for a fcc metal.  For bimetallic 

nanoparticles synthesized with the H1 peptide, the calculated CNs further deviate from 

those expected for random alloys.  All Pd-Pd CNs are comparative small (1.66 ± 1.36, 

1.14 ± 1.03, and 1.52 ± 0.92 for 3:1, 1:1, and 1:3 Pd:Au nanoparticles respectively).  

Qualitatively, this would suggest minimal Pd-Pd interactions either through incorporation 

of Pd atoms in local Au environments, extensive Pd-Pd disorder, and/or Pd surface 

migration.  Enriched Pd surface composition in 3:1 and 1:1 Pd:Au nanoparticles is further 

indicated by the relatively unchanged Au-Pd and Au-Au CNs with an increase in Pd 

composition from 1:1 to 3:1 (Table 2).  Pd4-capped PdAu nanoparticles exhibit CN 
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trends that that deviate somewhat from linearity as well. The sum of Au-Au and Au-Pd 

CNs are approaching 9 or higher, which is close to the theoretical CN for monometallic 

nanoparticles of this size.42 This suggests that the Au largely segregated into the core of 

the nanoparticles.  It is important to note that the errors associated with CN calculations 

are largely contributed to the highly disordered nature of these nanoparticles,44 as 

indicated by atomic PDF analysis and subsequent RMC modeling (see below).  Taken 

together, the XAFS analysis clearly suggests PdAu phase separation in the peptide-

capped PdAu nanoparticles which is influenced by the capping peptide.         

While XAFS can provide detailed local structural information on bimetallic 

nanoparticle arrangements, structural information past the nearest neighbor coordination 

distances is challenging to obtain.  The elucidation of atomic-scale structural information 

at larger distances is critical to assess sequence-dependent structure/function relationships, 

particularly for materials that may exhibit local variation in composition.  As such, 

atomic PDF analysis of HE-XRD patterns was used to elucidate atomic-scale structural 

information over the length scale of the nanoparticles.  Atomic PDFs are obtained via the 

Fourier transform of HE-XRD patterns, providing sub-Angstrom structural data in terms 

of atomic pair distances over comparatively large distances (> 20 Å).45 Both Bragg and 

diffuse components of the HE-XRD pattern are considered, making this an optimal 

method to elucidate the atomic-scale structure of materials lacking long-range periodic 

order, such as nanomaterials.24, 45 HE-XRD patterns (Figure S10) were taken on 

lyophilized powders using 115 keV irradiation, converted into total structure functions 

(F(Q)) (Figure S11) and Fourier transformed into atomic PDFs.  Atomic pair distances 

are described in terms of relative atomic density in PDF analysis, where atomic PDF, G(r) 

= 4πr[ρ(r) – ρ0], exhibit peaks when the local atomic density (ρ(r)) is higher than the 

average atomic density (ρ0).  The PDFs oscillate to zero once the local and average 

atomic densities are equal, indicating the distance where long-range order is absent.   

Figure 3 shows the atomic PDFs for all bimetallic nanoparticles capped with 

AuBP1, H1 and Pd4 up to 10 Å.  Figure S12 & S13 present the atomic PDFs for both 

monometallic and bimetallic nanoparticles for comparison purposes, along with PDFs at 

40 Å to illustrate the lack of long range structural order.  In general, all atomic PDFs 

exhibited broadened features positioned in an fcc-type arrangement of atoms that 
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oscillates to zero at ~ 20 Å.  The aforementioned features demonstrate the lack of 

structural order in the peptide-capped PdAu nanoparticles.   Additionally, atomic PDFs 

exhibits peptide-dependent differences in relative peak intensity, peak broadening, and 

peak position at various length scales, signifying that nanoscale composition and 

structure is directly influenced by the capping peptide.  For 3:1 PdAu nanoparticles, 

noticeable differences are observed in the first peak of the PDF, which originates from 

the first nearest neighbor distances in the bimetallic nanoparticles.  For Pd4 capped PdAu 

at a 3:1 Pd:Au ratio, the first peak is centered 2.78 Å, which is slightly larger than the  

Pd-Pd nearest neighbor distance in bulk Pd of 2.75 Å  This increase may be due to 

increased disorder in the bimetallic nanoparticles or an influence of Au incorporation.  In 

3:1 Pd:Au synthesized with H1, the first peak of the PDF is centered at 2.74 Å, with a 

notable shoulder at larger pair distances.  This shoulder is likely attributed to atomic pair 

distances resembling a Au fcc lattice, which would indicate potential phase separation of 

Pd and Au.  A similar first PDF peak is noted for AuBP1 capped 3:1 Pd:Au nanoparticles 

as well.  At a 1:1 Pd:Au ratio, the first peak in the PDF for PdAu nanoparticles is located 

at a different average position for each peptide.  For Pd4 capped PdAu at this ratio, a 

metallic nearest neighbor distance of 2.82 Å is observed, while a metallic nearest 

neighbor distance of 2.78 Å is observed for AuBP1 and H1 capped nanoparticles.  These 

distances reflect an average metal-metal bond length somewhere between fcc Pd and fcc 

Au, and qualitatively suggests varying degrees of potential alloying or an ensemble 

average of bimodal populations of atoms that are either more Pd or Au-like. PdAu 

nanoparticles synthesized at a 1:3 Pd:Au ratio exhibit first PDF peaks positioned at a 

distance closely resembling a Au fcc structure, with AuBP1, H1, and Pd4 exhibiting peak 

locations at 2.82 Å,  2.80 Å, and 2.82 Å respectively.  In addition, the lack of bimodal 

features in the region of the first metallic nearest neighbor distances suggests alloy 

nanoparticle homogeneity instead of significant populations of Pd-rich or Au-rich 

nanoparticles.  Note that all reported bond lengths are consistent with EXAFS modeling 

(Table 1).  Atomic PDF features at larger pair distances, which represent longer-ranger 

coordination spheres, exhibit changes in relative magnitude, peak shape and peak 

position, an indication that the capping peptide can directly influence bimetallic 

miscibility and structural coherency across length-scale of the nanoparticle.  Overall, the 
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atomic PDFs clearly indicate atomic-scale structural differences that are certainly 

influenced by interactions with the capping peptide at the biotic/abiotic interface.     

 Atomic PDF analysis allows for structural modeling over the size of nanoparticles; 

however, directly quantifying local structure in terms of CNs cannot be obtained due to 

the lack of elemental specificity in traditional HE-XRD experiments.  This presents a 

challenge when modeling atomic PDFs, as qualitative intuition may bias structural 

modeling efforts.  Therefore, it is necessary to incorporate the CNs calculated from 

EXAFS modeling to guide atomic PDF structural analysis.  To accomplish this, reverse 

Monte Carlo (RMC) simulations are used to model bimetallic and monometallic PDFs 

using the CNs generated from EXAFS modeling as a guide.  RMC is an advantageous 

method for modeling materials lacking long range periodic order,46, 47 including 

nanomaterials,24, 25 as the method is not dependent on crystallographic constraints and is 

only guided by user inputted restrictions (see experimental section) and the experimental 

PDF data.  In RMC, atoms in a starting configuration are moved at random and new 

atomic PDFs are calculated after each move.  Atomic moves are accepted or rejected 

based on the Metropolis criterion,48 and is repeated until the RMC generated PDF 

converges to the experimental PDF.  As shown in Figure 3 (red lines), RMC generated 

PDF fit the experimental data reasonably well, with agreement factors (Rw) all below 

15%, providing experimentally accurate nanoparticle configurations.   

PdAu nanoparticle configurations generated by RMC modeling of the 

experimental PDF data and guided by EXAFS modeling results are shown in Figure 4 

(see Figure S14, for RMC cross sections).  Each nanoparticle exhibits disordered surfaces 

with surface compositions varying with differences in capping peptide.  For PdAu 

nanoparticles at a 3:1 Pd:Au ratio, a strong preference for surface Pd is clearly observed 

(Figure 4a-c).  AuBP1 capped 3:1 Pd:Au nanoparticles exhibit a larger fraction of surface 

Au atoms (Figure 4a), while H1 and Pd4 (Figure 4b&c) adapt more of a core-shell type 

of arrangement.  An analysis of surface atoms for these configurations reflect these 

observations, wherein 89.0% of surface atoms in AuBP1 capped PdAu nanoparticles are 

Pd, while 92.2 and 100% are observed for Pd4 and H1 respectively at a 3:1 Pd:Au 

composition. For nanoparticles synthesized at a 1:1 Pd:Au ratio (Figure 4d-f), RMC 

generated configurations still exhibit Pd surface segregation, which is dependent on the 
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capping peptide.  For AuBP1 and H1 capped configurations (Figure 4d&e), 66.4% and 

67.4% of surface atoms are Pd, while in Pd4 (Figure 4f) the surface of Pd atoms increases 

to 73.8%.  For PdAu nanoparticles synthesized at a 1:3 Pd:Au ratio, nanoparticle 

configurations still exhibit some enrichment of Pd, wherein 36.3% of all surface atoms 

are Pd for AuBP1 and H1 capped samples, and 42.0% surface atoms are Pd in PdAu 

capped with Pd4. In previous work of PdAu nanomaterials synthesized within the R5 

peptide template, which has no known specificity toward Pd or Au, random alloys of 

PdAu were obtained across all tested compositions.26  This indicates that deviations from 

random alloyed structures are not simply induced by common peptide functionality 

(amide bonds, hydrogen bonding moieties, etc.), but more likely through complex 

interactions at the biotic/abiotic interface that are sensitive to the primary sequence of the 

peptide.   

To examine the influence of the peptide sequence at the biotic-abiotic interface, 

atomic PDFs were calculated from the surface layers of atoms of the RMC-generated 

configurations (Figure S15, see Experimental Section for details).  For AuBP1-capped 

3:1 Pd:Au nanoparticles, a calculated metallic nearest neighbor distance is located at 2.72 

Å, which is a shorter distance than observed over the entirety of the nanoparticle.  H1-

capped PdAu nanoparticle at this ratio display a calculated nearest neighbor distance of 

2.76 Å, while 3:1 Pd:Au Pd4-capped nanoparticles exhibit a much larger comparative 

distance at 2.90 Å.  More interestingly, an even shorter feature for H1 and Pd4-capped 

3:1 PdAu nanoparticle are observed at 2.38 Å for each nanoparticle.  While profound, 

extensive surface contraction of metallic nearest-neighbor distances has been reported 

previously.49-51 In this instance, H1 and Pd4 binding likely influence surface disorder in a 

similar fashion, probably through the common amino acids at the N-terminus half of each 

peptide.  It is worth noting that the entropic nature of RMC may overestimate the surface 

bond length contraction,24 but would do so evenly across all comparable calculations 

such as those in this paper and is thus still valid for comparative purposes.  For 1:1 Pd:Au 

nanoparticles, the main surface nearest neighbor distance are calculated at 2.72 Å, 2.77 Å, 

and 2.70 Å for AuBP1, H1, and Pd4-capped nanoparticles respectively, again smaller 

than anticipated based on bulk values and those found in PDFs in Figure 3.  The smaller 

distances observed in H1 and Pd4-capped 3:1 Pd:Au nanoparticles are less pronounced, 
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appearing as shoulders to the main feature positioned at 2.40 Å and 2.47 Å respectively.  

Increasing the Au content to 1:3 Pd:Au, all peptide-capped PdAu have a calculated 

surface nearest neighbor distance at 2.76 Å, while H1 and Pd4-capped nanoparticles 

exhibit much shorter features at 2.36 Å, akin to the observations in the 3:1 Pd:Au 

nanoparticles.  Overall, this analysis suggests that peptides have multi-functionality; not 

only can the biotic/abiotic interface be used to tune composition, but also the local atomic 

disorder at the surface.      

 Next, REST-MD simulations were performed to gain insights into how the 

conformations of the adsorbed peptides may differ on the two zerovalent monometallic 

interfaces, therefore potentially offering insights into how these peptides influence the 

segregation of the metals in the nanoparticles.  Note that in general we expect that there is 

no single ‘adsorbed configuration’ can describe the surface-adsorbed state for these types 

of materials-binding sequences, which are thought to be intrinsically disordered.25 

Standard MD simulations cannot deliver adequate conformational sampling to capture 

this phenomenon37 and may give rise to misleading conclusions. Currently, there are few 

reports in the literature regarding molecular simulations of non-covalent peptide 

interactions at aqueous noble metal bimetallic interfaces. Heinz et al. reported 

simulations of a number of peptide sequences adsorbed at a stripe-morphology aqueous 

Pd/Au interface.33 Though fundamentally informative, the sharp interface between the Au 

and Pd stripes used in that study does not resemble the alloyed or core-shell structures 

observed in the PdAu nanoparticles described in the current study.  

One of the major reasons for the lack of published simulation data regarding 

adsorption of peptides at bimetallic aqueous interfaces is the complete lack of reliable 

FFs to describe the interaction of biomolecules at aqueous bimetallic interfaces consisting 

of random or layered (mimicking core-shell) arrangements of atoms. This is in stark 

contrast with the case for monometallic/peptide force-fields, which are relatively more 

mature in terms of development and validation.31, 52-54 We emphasize that merely mixing 

the known force-field parameters for Au and Pd surfaces, without extensive testing and 

validation steps, will likely produce incorrect and misleading data for peptide adsorption. 

Therefore, as a conservative measure and as a prelude to substantial future efforts to 

construct and test such FFs, we used REST-MD simulations to model each of the three 
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peptides adsorbed at either of the two monometallic aqueous interfaces, Au(111) and 

Pd(111).  In our previously published study, we showed that the binding modes of 

peptides adsorbed at the aqueous planar Au interface shared a strong degree of similarity 

with the corresponding binding modes at the aqueous Au nanoparticle interface, as 

quantified by several metrics.25 Therefore, it is highly likely that our current REST-MD 

simulations of peptides adsorbed at the aqueous Au/Pd(111) interfaces are reflective of 

the both the principal contact modes (i.e. the number, location and type of “strong 

binding” residues) and the conformational entropic contributions of these same peptide 

sequences adsorbed at the corresponding aqueous nanoparticle interface.  

Our objective with these simulations was to predict and quantify the differences 

between the adsorbed conformational ensembles of the peptides, and to investigate the 

connections between these data and the sequence-dependent enrichment phenomena 

observed in experiment. As our findings summarized herein demonstrate, the surface 

adsorption characteristics of each of the three peptide sequences at the aqueous Au(111) 

interface was found to be very similar to that at the aqueous Pd(111) interface. This 

suggests that the peptide-surface binding motif for each of the three peptides will broadly 

share a high degree of similarity over all Pd:Au ratios.   

Figure 5 shows the degree of direct contact that each residue had with the metal 

surface for each of the three peptides, calculated from our REST-MD simulation 

trajectories (percentage values are provided in Table S3). These data demonstrate that the 

general contact pattern for each of the three peptides is very similar across the two 

different metal surfaces. AuBP1 had seven and eight residues that are in direct contact 

with the Au(111) and Pd(111) interfaces respectively for more than 75% of the REST 

trajectories. Herein, we denote such residues as “anchor” residues. Moreover, these 

anchor residues were distributed throughout the length of the AuBP1 sequence (Figure 5). 

In contrast, Pd4 has on average only two anchor residues, located near each of the chain 

ends. In the case of H1, the contact pattern appears to be a blend of the contact 

characteristics of the two parent peptides, with six and five residues acting as anchors on 

Au(111) and Pd(111), respectively. In previous simulation studies regarding the 

adsorption of peptides at the aqueous Au(111) interface,25 it was possible to generate a 

measure of the degree to which enthalpic contributions played a role in peptide-surface 
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binding by first identifying which residues were anchors, and subsequently combining 

this information with the energy of adsorption of the amino-acid corresponding to each 

anchor residue. However, we cannot apply such an analysis to the Pd(111) system, 

because the adsorption energies of amino-acids to the Pd(111) interface have not been 

reported to date. Because of this limitation, here we instead used the number of anchor 

residues as a qualitative measure of relative enthalpic contributions to peptide-surface 

adsorption, with these data indicating a trend in binding strength of AuBP1 > H1 > Pd4. 

Representative snapshots of the peptides adsorbed at the aqueous metallic interfaces, 

highlighting the contact between the surface and the anchor residues (such as Arg, Trp 

and His), are provided in Figure S16 of the Supporting Information. These images, along 

with histograms (generated from the entire REST-MD trajectories) of the orientation of 

the plane of the rings, or in the case of Arg, the guanidinium group, indicate that in most 

instances these groups were, on average, oriented approximately flat on the Au surface 

(see Figure S17, Supporting Information).  

The number and relative population of distinct conformations of the peptide in the 

surface-adsorbed state are factors in determining the binding strength of a peptide for a 

given material.37 For instance, a greater number of distinct surface-adsorbed 

conformations of a peptide means that there are a greater number of basins on the 

potential energy landscape corresponding with this adsorbed system. This in turn can 

contribute to a stronger peptide-material affinity. Each distinct conformation can be 

obtained from a clustering analysis, whereby “like structures” can be grouped together 

(see the Supporting Information and previous studies25, 34, 37, 53 for more details on this 

procedure). Herein we refer to each “like structure” as a “cluster”. As detailed in earlier 

studies, the conformational entropic contribution of the adsorbed peptides, Sconf, can be 

calculated from: 

𝑆!"#$ = −
!

!!!

𝑝! ln 𝑝!  

 

where pi is the relative population of each cluster and n is the total number of clusters, as 

determined for each REST-MD trajectory. This conformational entropic contribution to 

the binding of the peptides on the two different surfaces is given in Table 3, and the 
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relative populations of the top-ten most populated clusters is provided in Table S4. As 

found with the residue-surface contact data, the three peptide sequences show very 

similar trends across the two surfaces. Specifically, differences in Sconf between the two 

metals were less than 0.1. However, the values of Sconf for the three peptides adsorbed on 

each metal surface are distinctly different. The number of clusters was greatest for Pd4, 

followed by H1, with AuBP1 having the least number of clusters. 

These results are in agreement with findings from previously-published 

simulations of AuBP1 and Pd4 adsorbed at the aqueous Au(111) interface37 generated 

using the GolP-CHARMM FF,53 where it was found that AuBP1 was a primarily an 

enthalpically-driven binder (i.e. AuBP1 supported a relatively smaller number of 

adsorbed conformations, with each conformation making strong contact with the Au 

surface through a relatively high proportion of anchor residues). These studies also found 

Pd4 to be an entropically-driven binder; this sequence featured a large number of 

adsorbed conformations, where each conformation has relatively fewer anchor residues. 

Our predictions of the intrinsically-disordered traits of the conformational ensemble for 

these peptides adsorbed when at the aqueous Au interface agree with previously-reported 

circular dichroism (CD) spectroscopy data.21 While further structural information, such as 

from nuclear magnetic resonance, Raman, or Fourier-transform infrared spectroscopies, 

would be valuable, the random-coil character of these peptides in the adsorbed state 

renders this an extremely challenging task in itself.55-57 

Our results in the present study show that this characterization is also true for the 

aqueous Pd(111) interface. Again, the hybrid sequence H1 displays characteristics 

between those of the two parent peptides. By comparing the trend in the conformational 

entropic contribution to adsorption with the degree of Pd surface segregation seen in the 

AuPd nanoparticles for each peptide, we note that the order is the same (Pd4 > H1 > 

AuBP1), and is the inverse of that observed for the enthalpic contribution, namely the 

number of anchor residues. Thus, on the basis of the peptides sequences tested here, our 

findings indicate that use of entropically-driven peptide sequences might facilitate the 

generation of core-shell AuPd particles peptides. Encouragingly, the somewhat subtle 

differences observed via the PDF functions for the enrichment of Pd atoms on the 

bimetallic nanoparticle surface are reflected by similar differences seen for the adsorption 
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modes of our three peptides on the Au and Pd surfaces. Future efforts will be directed at 

developing genuine peptide/bimetallic force-fields, which can be used to predict the 

structure of the bimetallic-nanoparticle/peptide aqueous interface. In principle these 

structures could be used as a basis for first-principles calculations of the electrocatalytic 

properties of these systems and thus make conceptual links between the peptide sequence 

and the resulting electrocatalytic response. However, in practice this goal remains elusive, 

due to the ongoing challenges in fully realizing a first-principles electrochemical 

approach.58 

The highly disordered nanoparticle surfaces and Pd surface segregation observed 

in the peptide-capped PdAu nanoparticles suggests that peptides could be used to 

potentially tune surface disorder24, 25 and surface composition.  Two significant driving 

forces behind bimetallic miscibility are cohesive energy and surface energy.7  In this 

context, Au is expected to surface segregate in a PdAu bimetallic system.  Pd exhibits a 

higher cohesive energy than Au (376 kJ/mol vs. 368 kJ/mol),59 thus providing a driving 

force for Pd to be highly coordinated with other metallic atoms.  The surface energy of 

Au is lower than Pd as well (1.50 J/m2 vs. 2.05 J/m2),60 which should further induce Au 

surface segregation.  Along these lines, previously reported computational segregation 

energies from 55 atom nanoparticles suggest Au surface segregation in a PdAu system,61 

despite bimetallic nanoparticles of this size commonly resulting in alloyed materials to 

due to lack of metal atom diffusion length.7  The Pd surface biasing observed in the 

peptide-capped Pd nanoparticles is thus heavily influenced by the interactions between 

the peptide and the bimetallic nanoparticles.  Pd surface segregation has been observed 

previously using traditional one-pot nanoparticle synthesis chemistries,62, 63 which is 

likely driven by surface interactions occurring during nanoparticle synthesis.    Note that 

interactions between the peptides and precursors may affect metal reduction and 

bimetallic miscibility,5, 24, 64-67 and will be the subject of future study to obtain a more 

complete understanding between synthesis, the driving forces behind bimetallic 

miscibility, and bimetallic/biotic surface interactions.   Nevertheless, the lack of 

modularity and complexity of commonly employed surface ligands limits surface 

segregation engineering, wherein peptides may provide a means to rationally design 

bimetallic nanoparticle surfaces. 
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To evaluate the catalytic properties of the peptide-enabled PdAu nanoparticles, 

electrocatalytic methanol oxidation experiments were performed under alkaline 

conditions using cyclic voltammetry (CV).  This testbed reaction is the anodic component 

in direct methanol fuel cells (DMFCs),68 wherein improved understanding and 

performance of alkaline electrochemical methanol oxidation could help progress the 

maturation of this technology.  For monometallic Pd nanoparticles (Figure S18a), peaks 

corresponding to the oxidation of methanol69, 70 appear at -90 mV vs. Hg/HgO for AuBP1 

and Pd4-capped nanoparticles on the forward scan, while H1-capped nanoparticles are 

completely inactive.  Pd4-capped Pd nanoparticle exhibit a four-fold increase in current 

output as compared to AuBP1-capped Pd nanoparticles, indicating the capping peptide 

can have a drastic influence on catalytic properties.  On the reverse scan, a prominent 

feature is observed at -300 mV vs. Hg/HgO for AuBP1 and Pd corresponding to the 

removal of surface absorbed CO which originates from the initial methanol oxidation in 

the forward scan (Figure S18a).  Note that a small peak is observed in H1-capped Pd 

nanoparticles at -195 mV vs. Hg/HgO, suggesting a small amount of absorbed material at 

the Pd surface is being removed in the reverse scan.  In the same scan range, very little 

methanol oxidation is observed for monometallic Au nanoparticles (Figure S18b).  These 

results are anticipated, as Au is known to have lower alcohol oxidation activity as 

compared to Pd.71, 72  In addition, Au catalyzed methanol oxidation occurs at higher 

potentials than Pd.73 

Electrochemical methanol oxidation results for peptide-capped PdAu 

nanoparticles are shown in Figure 6.  At 3:1 Pd:Au, Pd4-capped exhibit substantially 

improved methanol oxidation capability compared to Pd4-capped Pd nanoparticles (6 and 

S18).  Interestingly, bimetallic nanoparticles capped with either AuBP1 or H1 exhibit 

minimal methanol oxidation (Figure 6a).  This finding suggests the surface structure of 

the PdAu nanoparticles capped with Pd4 maintains a more ideal catalytic surface 

properties for methanol oxidation as compared to those capped with H1 or AuBP1 during 

electrochemical oxidation.  For bimetallic nanoparticles made at 1:1 Pd:Au, both Pd4 and 

AuBP1 capped nanoparticles exhibit moderate methanol oxidation, where H1 is again 

catalytically inactive (Figure 6b).  A shift in potential is noted for 1:1 Pd:Au 

nanoparticles, which now have a maximum methanol oxidation potential at -40 mV and -
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35 mV vs. Hg/HgO for Pd4 and AuBP1-capped nanoparticles respectively.  This shift in 

potential is likely due to the increased amount of Au at the nanoparticle surface, which 

oxidized methanol at higher potentials.73 Such shifts in potential at maximum methanol 

oxidation have been previously observed in other PdAu nanoparticle systems.74, 75 

Interestingly, there is also an increase in absorbant removal compared to methanol 

oxidation at a 1:1 Pd:Au vs. 3:1 Pd:Au.  For 1:3 Pd:Au, AuBP1 and Pd-capped exhibit an 

onset of methanol oxidation at ~-100 mV vs. Hg/HgO, while H1-capped nanoparticeles 

are again inactive (Figure 6c).  The increase in current does not decrease due to CO 

poisoning and continues into oxygen evolution potential window.  For comparison 

purposes, electrochemical methanol oxidation experiments were performed on 

commercially available Pd/C.  Catalyst inks were prepared in an analogous fashion to the 

peptide-capped bimetallic nanoparticles.  Surprisingly, minimal methanol oxidation was 

observed in the background corrected CV (Figure S19) at comparable potentials to the 

PdAu bimetallics, however; an anodic peak starts at ~400 mV vs Hg/HgO.  Though 

unknown at this time, we hypothesize that the increase in current is likely combination of 

Pd surface oxidation76 and possibly methanol oxidation, although the latter is more 

unlikely given the recorded potential.  The lack of methanol oxidation would suggest the 

quaternary amine ionomer is blocking catalytic sites on the bare Pd/C control, and 

furthermore, indicates that the peptides are likely still bound to the nanoparticle catalysts 

and thus influencing electrocatalytic methanol oxidation. 

The electrochemical methanol oxidation results indicate that catalytic activity is 

highly dependent on the capping peptide, which influences structural and chemical 

properties at the nanoparticle surface both after synthesis (see above) and likely during 

electrocatalysis.  Put into context, recent work by Brodsky et al. illustrates that ~30 nm 

core-shell Au@Pd with 1.5 nm Pd shell thickness maintains maximum activity activity 

for electrochemical ethanol oxidation under alkaline conditions until Au atoms begin to 

migrate to the surface.73  This was attributed to competing lattice strain and electronic 

effects, wherein lattice strain increases Pd adsorbate bonding strength while electronic 

effects results in d-orbital electron density decreases in Pd, which decreased adsorbate 

bonding in Pd.73, 77  Maximum catalytic activity is likely achieved at an optimal PdAu 

surface composition/structure, where adsorbate bonding is neither too high to prevent 
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catalytic turnovers nor too low to initiate catalysis.  In the peptide-capped bimetallic 

nanoparticles, an increase in Pd:Au ratio is noted at the surface compared to the bulk, 

particularly for Pd4 and H1 capped nanoparticles.  Changes to the surface composition 

likely occur depending on the nature of the peptide at the biotic/abiotic interface, and 

may be more pronouced than those observed by Brodsky et al.73 given that our particle 

size is much smaller (~ 2 nm vs. ~ 30 nm).  As such, we attribute increases in catalytic 

activity found in Pd4, and to a lesser extend, AuBP1-capped nanoparticles to the capping 

peptides ability to effectively resist an undesirable amount of Au surface migration that 

would reduce catalytic activity.  In addtion, the capping peptide orientation on the 

nanoparticle surface may additionally prevent methanol oxidation by blocking highly 

catalytic sites.  Substantial changes in catalyic activity with repeated cycling were not 

observed, and thus we expect the capping-peptide is still present during methanol 

oxidation experimentation.  While surface ligand removal is commonly observed in many 

metallic and bimetallic nanoparticle systems during CV experiments, typical surface 

ligands are not material specific.  Peptides, on the only hand, have an inherently high 

affinity for material surfaces as they are discovered via biocombinatorial process, often 

selected out of 109 potential binding ligands.  Taking these considerations into account, it 

is clear that the capping peptide has a profound effect on the catalytic activity for 

nanoparticles with identical bimetallic composition. Understanding structural changes 

during electrocatalysts using in-situ XAFS and HE-XRD would provide additional 

insights to sequence-dependent catalytic activities, and is the subject of future reports.     

Conclusions 
 
 In summary, PdAu bimetallic nanoparticles were synthesized using known Pd and 

Au binding peptides, along with a hybrid sequence exhibiting established binding motifs 

for both Pd and Au.  The resulting nanoparticles were ~ 2 nm in size at all bimetallic 

ratios and indicate a surface enrichment of Pd, likely attributed to strong Pd-peptide 

interactions dependent on peptide sequence.  The catalytic properties of the nanoparticles 

were evaluated for electrochemical methanol oxidation under alkaline conditions, 

wherein catalytic activity is clearly influenced by the capping-peptide for materials with 

identical bimetallic composition.  Our findings demonstrate the promising capability of 

peptides to influence bimetallic surface composition and structure, potentially providing a 
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means to rationally design peptide-enabled bimetallic nanoparticles.  A more 

comprehensive elucidation of the sequent-dependent structure/function relationships of 

these systems will be needed in the future to realize this goal. 

 
Experimental 

Nanoparticle synthesis. PdAu nanoparticles were synthesized using an adapted procedure 

for peptide-capped Au nanoparticles.21 Briefly, 500 µL of a 1.0 mM solution of peptide 

was added to 4.46 mL of water.  All three peptides (AuBP1, H1 and Pd4; see Table 1) 

were purchased from Peptide 2.0 at 95% purity.   A total of 10 µL of 0.1 M of K2PdCl4 

and/or HAuCl4 (Sigma Aldrich) to was added to this solution to the desired Pd:Au ratio.  

For example, the synthesis of 3:1 Pd:Au nanoparticles used 7.5 µL of 0.1 M K2PdCl4 and 

2.5 µL of 0.1 M HAuCl4. This solution was stirred for at least 10 min, followed by the 

addition of 30.0 µL of freshly prepared 0.1 M NaBH4 to reduce the metal salts to 

zerovalent alloyed nanoparticles. The reduction reaction was allowed to proceed 

unperturbed for at least 1 h prior to characterization or catalytic testing.  Double distilled, 

18.2 MΩ•cm water was used in all experiments. 

Characterization.  Scanning transmission electron microscopy (STEM) imaging for 

sizing analysis was performed on a spherical aberration corrected JEOL-ARM 200F 

operating at an accelerating voltage of 200 kV.  The microscope was operated in 

scanning mode, all images shown are annular dark field (ADF) STEM images.  The 

detector inner collection angle for HAADF imaging was ≈ 70 mrad; high resolution 

imaging was performed with a spot size of 8c and pixel dwell time of 25 µs. Samples 

were prepared on ultrathin carbon TEM grids (Ted Pella, USA) by drop casting 5 µL of 

nanoparticles diluted by a factor of 50 onto the grid and drying them in air. Prior to high 

resolution imaging the samples were cleaned for 45 seconds in a 97% H2, 3% O2 plasma 

to remove hydrocarbon contaminants (Fischione model 1070). Mean particle sizes for 

each unique Pd:Au ratio and peptide were determined from size measurements of at least 

200 nanoparticles from 5 randomly selected areas on the sample. Nanoparticle sizes were 

measured using custom automated image analysis MATLAB algorithms, with particle 

size distributions normalized to the total integral to yield a probability density function. 

STEM Energy dispersive x-ray spectroscopy (STEM-EDS) elemental mapping was 
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performed on a FEI Talos F200X operating at 200 kV equipped with a Bruker 

ChemiSTEM EDS system. Pixel intensities in the EDS maps for gold and palladium were 

computed by integrating the Lα1 peaks of each element.   

XAFS was performed at the 12-BM beamline, Advanced Photon Source, Argonne 

National Laboratory using a water-cooled, double crystal, fixed-exit monochromator with 

Si(111) crystals. Lyophilized powders were spread across Kapton tape for analysis at 

both the Pd K-edge (24.35 keV) and Au L3-edge (11.92 keV) at 200 eV before to 900 eV 

after each respective adsorption edge using a 13 channel Ge detector. The raw data was 

processed using the Athena program and modeled with FEFF6 theory78 using the Artemis 

program from the IFEFFIT XAFS analysis software.40 Standard foils of Pd and Au were 

first modeled to obtain S0
2 values of 0.835 and 0.868 for Pd and Au, respectively.  

Subsequent modeling of nanoparticles was performed exclusively using metal-metal 

contributions, with the exception of monometallic Pd nanoparticles, which required Pd-Cl 

contributions for satisfactory modeling.  Bimetallic nanoparticles models were performed 

by simultaneously fitting both Au L3-edge and Pd K-edge data using Pd fcc, “Au-doped” 

Pd fcc, “Pd doped” Au fcc, and Au fcc theoretical paths.  

HE-XRD patterns we obtained at the 11-ID-C beamline of the Advanced Photon 

Source, Argonne National Laboratory using 115 keV irradiation. Lyophilized 

nanoparticle samples were loaded into 1.0 mm diameter Kapton capillaries and diffracted 

X-ray intensities were collected by a large area detector. HE-XRD patterns were 

background scattering corrected, converted into F(Q), and Fourier transformed into PDFs 

using the program RAD.79 

RMC Modeling. To obtain nanostructure configurations, atomic PDF data was modeled 

with reverse Monte Carlo (RMC) simulations using RMC++,80 wherein the coordination 

numbers (CNs) obtained from EXAFS modeling were used to guide the RMC 

simulations of the atomic PDF data. Spherical truncates of ideal crystals served as 

starting configurations for RMC simulations which reflected the average nanoparticle 

size obtained from TEM sizing analysis. Spherical models serve as good approximations 

to the elongated morphologies observed from TEM.26, 81, 82  Each starting configuration 

consisted of a random distribution of Pd and Au atoms. For materials with a Pd 

composition >50%, a Pd lattice was used as starting structure, while a Au lattice was used 



24 
 

for all other samples.  Constraints in the RMC simulations included minimum metal-

metal bond length distances and CNs generated from EXAFS modeling.  To ensure CN 

constraints were met and to remove any possible local configuration biasing from the 

starting configurations, 10% of the RMC moves allowed for two atoms to swap positions.  

Analysis of the bimetallic nanoparticle surface structure was done by calculating atomic 

PDFs of the surface atoms (~ 0.5 nm from the surface) of the RMC-generated 

configurations using the program I.S.A.A.C.S.83 

Replica Exchange with Solute Tempering (REST) Molecular Dynamics Simulations.  

REST-MD simulations of each of the three peptide sequences (Pd4, AuBP1 and H1, see 

Table 1) adsorbed at either the aqueous Au(111) interface or the aqueous Pd(111) 

interface were performed. Three-dimensional periodic boundary conditions were used 

throughout. Each system comprised a single peptide chain, a metallic slab (presenting 

either the Au(111) or Pd(111) facet) constructed as a p(20×24) supercell, with a slab 

thickness of five atomic layers.  During the simulations the metal atoms were free to 

move.  A total of 6605 water molecules were added to the inter-slab space perpendicular 

to the slab surface, and the length of the simulation cell was adjusted along this direction 

to ensure that liquid water in the center of the inter-slab space exhibited the bulk water 

density corresponding to room temperature and 1 atm of pressure. An appropriate number 

of Cl- counter-ions were added to the solvent to ensure overall charge neutrality of the 

simulation cell. All REST-MD simulations were performed using the GROMACS v5.0 

software package.84  

The CHARM22* force-field (FF)85, 86 was used to described the peptides, with 

water molecules modeled using the modified version of TIP3P87, 88 compatible for the 

CHARMM FFs. A modified version25 of the CHARMM-METAL FF52 was used to 

describe the inter-atomic interactions involving the Au atoms. In general, in molecular 

simulation a compromise must be made between the level of detail at which the 

interatomic interactions are described and the time-scales and length-scales that can be 

feasibly captured in that simulation. As mentioned earlier, the intrinsically-disordered 

character of these peptides presents a significant challenge in terms of satisfying a high 

degree of conformational sampling using molecular simulations. The time-scales and 

length-scales required for this thorough sampling of this interfacial conformational 
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ensemble renders a quantum mechanical approach impractical. To this end, we have 

modeled the interatomic interactions using well-established force fields.25 The 

simulations were performed in the canonical (NVT) ensemble using 16 replicas, spanning 

an “effective temperature” window of 300-500 K. Additional information on the 

simulations details, the contact residue analysis and cluster analysis is provided in 

Section S3 “Simulation Details”, in the Supporting Information.            

Electrocatalysis.  All peptide-capped nanoparticle samples were evaluated for 

electrocatalytic methanol oxidation under alkaline conditions using cyclic voltammetry 

(CV).   A three-electrode configuration consisting of a Hg/HgO reference electrode, 

graphite counter electrode, and nanoparticles deposited on glassy carbon electrodes was 

used for all CV experiments.  A total of 4.0 µL of nanoparticle inks were dropcast onto 

glassy carbon for each experiment.  Nanoparticle inks were prepared by first sonicating 

~1 mg of acid-cleaned Vulcan XC-72 carbon (Cabot Corporation) in 350 µL of isopropyl 

alcohol, followed by the addition of 600 µL of as synthesized nanoparticles and 50 µL of 

a quaternary ammonium-based random copolymer (at 5 mg/mL in methanol) as an 

ionomer.  See the Supporting Information for the synthesis and characterization details of 

the ionomer.89, 90  CV experiments were ran from -0.7 V to 0.3 V vs. Hg/HgO starting at 

open-circuit voltage of the half cell.  Nanoparticles were first cycled in 1 M NaOH to 

obtain a constant background CV, followed by the addition of 1 M methanol for 

electrocatalytic oxidation experiments.  CV results were normalized to the mass of Pd in 

the nanoparticles given its reported superior alcohol oxidation properties as compared to 

Au.91, 92 For comparison purposes Pd/C (Sigma) was investigated using identical 

preparation.    

 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website 

at DOI: 10.1021/acsnano.XXXXXXX, which includes synthesis details of the ionomer 

used in this study, REST-MD simulation details and corresponding results, HR-TEM 

images of all nanoparticles used in this study, raw data from all synchrotron radiation 

experimentation, cross sections of RMC-generation bimetallic nanoparticles, and 

electrocatalytic data from peptide-capped monometallic nanoparticles. 
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Figure 1. STEM imaging and elemental mapping of AuBP1-capped 1:3 Pd:Au 
nanoparticles: a) Representative low magnification HAADF-STEM image used for 
particle size determination; b) particle size distribution; c) false colored atomic resolution 
image of a single nanoparticle (Scale bar is 1 nm); d) HAADF-STEM image of several 
nanoparticles used for subsequent EDS mapping; e) Au STEM-EDS map; f) Pd STEM-
EDS map (Scale bar is 2 nm). 
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Figure 2.  Pd-EXAFS for a) AuBP1, b) H1, and c) Pd4 capped bimetallic and 
monometallic nanoparticles; Au-EXAFS for d) AuBP1, e) H1, and f) Pd4 capped 
bimetallic and monometallic nanoparticles and; resulting CNs from EXAFS modeling at 
both the Pd K-edge and Au L3-edge simultaneously.  
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Figure 3.  Atomic PDFs (black lines) and corresponding RMC fits (red lines) for peptide-
capped bimetallic PdAu nanoparticles at a) 3:1 PdAu; b) 1:1 Pd:Au; c) 1:3 Pd:Au.  PDFs 
offset for clarity. 
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Figure 4. Model bimetallic nanoparticle configurations generated from RMC simulations 
of atomic PDFs for a) AuBP1 3:1 Pd:Au; b) H1 3:1 Pd:Au; c) Pd4 3:1 Pd:Au; d) AuBP1 
1:1 Pd:Au; e) H1 1:1 Pd:Au; f) Pd4 1:1 Pd:Au; g) AuBP1 1:3 Pd:Au; h) H1 1:3 Pd:Au; 
and i) Pd4 1:3 Pd:Au. 
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Figure 5: Degree of reside-surface contact for each of the three peptides at the aqueous 
Au(111) and Pd(111) interfaces determined from the REST-MD simulations. 
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Figure 6: Background subtracted CVs of peptide-caped PdAu bimetallic nanoparticles in 
1.0 M NaOH, 1.0 methanol at 20 mV/s for a) 3:1 PdAu; b) 1:1 Pd:Au; and c) 1:3 Pd:Au. 
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Table 1.  Bimetallic bond lengths obtained from EXAFS modeling of both the Pd K-edge 
and Au L3-edge.  Note for monometallic Pd, Pd-Cl contributions were used and are also 
reported. 
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Table 2.  Bimetallic CNs obtained from EXAFS modeling of both the Pd K-edge and Au 
L3-edge.  Note for monometallic Pd, Pd-Cl contributions were used and are also reported. 
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Peptide	   Sequence	   Surface	   No.	  of	  

anchor	  
residues	  

Sconf	   %	  Surface	  Pd	  from	  RMC	  
simulations	  
3:1	  
Pd:Au	  

1:1	  
Pd:Au	  

1:3	  
Pd:Au	  

AuBP1	   WAGAKRLVLRRE	   Au(111)	   7	   2.18	   89.0%	   66.4%	   36.3%	  
	   	   Pd(111)	   8	   2.17	  
Pd4	   TSNAVHPTLRHL	   Au(111)	   2	   2.87	   92.2%	   73.8%	   42.0%	  
	   	   Pd(111)	   2	   2.80	  
H1	   WAGAKRHPTLRHL	   Au(111)	   6	   2.35	   100.0%	   67.4%	   36.3%	  
	   	   Pd(111)	   5	   2.31	  
 
Table 3. The number of anchor residues and conformational entropic contributions, Sconf, 
of the peptides adsorbed at the aqueous Au(111) and Pd(111) interfaces, determined from 
the REST-MD simulations.  For comparison, the percentage of surface Pd atoms derived 
from RMC simulations of atomic PDF and EXAFS modeling results are also provided.  
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