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Abstract

Nanoscientists have long conjectured that adjacent nanoparticles aggregate with
one another in certain preferential directions during a chemical synthesis of nanopar-
ticles, which is referred to the oriented attachment. For the study of the oriented
attachment, the microscopy and nanoscience communities have used dynamic elec-
tron microscopy for direct observations of nanoparticle aggregation and have been
so far relying on manual and qualitative analysis of the observations. We propose a
statistical approach for studying the oriented attachment quantitatively with multi-
ple aggregation examples in imagery observations. We abstract an aggregation by an
event of two primary geometric objects merging into a secondary geometric object.
We use a point set representation to describe the geometric features of the primary ob-
jects and the secondary object, and formulated the alignment of two point sets to one
point set to estimate the orientation angles of the primary objects in the secondary
object. The estimated angles are used as data to estimate the probability distribu-
tion of the orientation angles and test important scientific hypotheses statistically.
The general approach was applied for our motivating example, which demonstrated
that nanoparticles of certain geometries have indeed preferential orientations in their
aggregates.

Keywords: Point-set-based shape representation, Shape alignment, Orientation of shapes,
Statistical analysis of circular data

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/162999349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

A particle aggregation is a merging of two smaller particles into one larger particle, which

is one of the main driving forces that grow atoms or molecular clusters into nanoparticles

during a chemical synthesis of nanoparticles. With a better understanding of a particle ag-

gregation, synthesizing nanoparticles of desired sizes and shapes should be possible (Welch

et al. 2016, Zhang et al. 2012, Li et al. 2012).

As seen in Figure 1, a particle aggregation is essentially a two-step process, a collision

of two primary particles followed by their restructuring to a larger secondary particle.

Some collisions effectively lead to a subsequent restructuring (or coalescence), while other

collisions are ineffective. The degree of effectiveness depends on how primary nanoparticles

are spatially oriented in a collision. When primary particles are oriented ineffectively,

they become separate again or rotate to a preferred orientation, as in the phenomenon

known as the oriented attachment (Li et al. 2012). A fundamental scientific problem to

solve is to study the oriented attachment, which can be achieved by directly observing

and analyzing a number of nanoparticle aggregation cases. This paper addresses how to

study the microscopic observations of nanoparticle aggregations to statistically analyze the

preferential orientations of primary nanoparticles.

A major contribution of this paper is to provide a mathematical foundation for statis-

tically studying the oriented attachment. The microscopy and nanoscience communities

have been relying on manual analysis of a very few examples of nanoparticle aggregation for

the study of the oriented attachment. Our proposed method will provide a systematic way

of statistically analyzing a large population of aggregation examples to find a statistically

Collision Restructuring 

Figure 1: Particle aggregation
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reliable estimate of the preferential orientations of nanoparticles within their aggregations.

We acknowledge that there are some existing works on the statistical analysis of aggregates

in concrete and asphalt engineering (Mora & Kwan 2000, Wang 1999), but those works

primarily focused on studying how aggregates are sized and shaped, instead of studying

how aggregating components are oriented. We believe that our work is the first of its kind

in statistically studying the oriented attachment.

In addition to the contribution in applications and modeling, this paper contains two

methodological contributions. In statistical shape analysis, a problem of aligning one shape

to another shape has been well studied to possibly find the relative orientation of one

to another (Schmidler 2007, Green & Mardia 2006). However, the existing theory and

methods do not work for analyzing the orientations of two aggregating components within

their aggregate, which involves aligning two shapes to one shape that is assumed to be

a union of the two shapes. This paper presents in Section 3.2 a solution for this two-

to-one alignment problem. On the other hand, in directional statistics, angular data and

their distribution have long been studied (Fisher 1995), but studies on the probability

distribution of angular data with some symmetries are lacking. For our motivating example,

the angular distribution of a particle orientation is essentially four-fold symmetric due to

geometrical symmetries of nanoparticles. Section 4 presents a new probability distribution

to model such symmetries and the related statistical analysis.

The remainder of this paper is organized as follows. Section 2 describes microscopy data

that motivated this study. Section 3 presents how we mathematically model an aggregate

and the orientations of aggregating components. Section 4 describes several statistical

inference problems on the orientations, including a probability density estimation problem

and some statistical hypothesis testing problems, which were applied in Section 5 to test

several scientific hypotheses posed to explain the oriented attachment. Section 6 provides

our conclusions.

2 DATASET

We used dynamic scanning transmission electron microscopy to synthesize and directly

observe growth of silver nanoparticles (Woehl et al. 2012), taking a sequence of electron
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Figure 2: Dynamic microscopy data of particle aggregation

microscope images of about two hundred silver nanoparticles and their aggregations. We

applied an object-tracking algorithm (Park et al. 2015) with the microscope images to track

their aggregations, which identified 184 different aggregation cases. Figure 2 displays an

example of the captured aggregation events.

For each aggregation event, we take two items of information: the first is the image

of two primary nanoparticles taken immediately before the aggregation, e.g., the image

at t = 2 in Figure 2, and the second is the image of the secondary nanoparticle taken

immediately after the final aggregation, e.g. the image at t = 4. After the final aggregation,

the orientations of the two primary nanoparticles do not change due to strong physical

forces as shown in Figure 2. Therefore, the aggregate image can be taken any time after

the final aggregation, but our choice is the time immediate after the aggregation because

the aggregate might later undergo a significant restructuring. The time resolution of the

imaging process is faster than a normal aggregation speed, so the ‘immediate before the

aggregation’ and the ‘immediate after the aggregation’ are well defined from the observed

image sequences.

Each of the before images and the after images is two-dimensional, depicting the pro-

jection of the three dimensional geometries of nanoparticles on a two-dimensional space.

Since the nanoparticles imaged are constrained to a very thin layer of a sample chamber,

we assume that geometrical information along the z-direction is relatively insignificant. A

set of the image pairs for the 184 aggregation events will be analyzed for studying how

primary nanoparticles are oriented in their aggregates.
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Figure 3: n-covering representation of particle aggregate

3 MODELING AGGREGATION

We abstract an aggregation as a merge of two geometric objects. We first describe how we

model geometric objects. Let X denote a set of all image pixel coordinates in an H ×W

digital image,

X := {(h,w) : h = 0, 1, 2, ..., H, w = 0, 1, 2, ...,W}.

A geometric object imaged on X is represented by a simply connected subset of X that

represents a set of all image pixel coordinates locating inside the geometric object. The

set-based representation has been popularly used for shape analysis (Mémoli & Sapiro

2005, Mémoli 2007), which seems more useful for our motivating problem than other pop-

ular shape representation models such as the representation by landmark points (Kendall

1984, Dryden & Mardia 1998) and the representation by a closed curve (Younes 1998, Sri-

vastava et al. 2011). The landmark-based approach has a major technical issue regarding

how to manually choose the landmarks of many geometrical bodies, which are also subject

to human bias. More importantly, an aggregation of two geometric objects is better rep-

resented by the set-based representation. An aggregation of two objects can be naturally

represented by the union of two subsets representing the two objects.

Geometric objects move and rotate before they aggregate. The movement and rotation
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operations in X are represented by a Euclidean rigid body transformation. Let E(X) denote

a collection of all Euclidean rigid body transformations defined on X. An element φ in X

is an Euclidean rigid body transformation that basically shifts x ∈ X by c ∈ X in the

negative direction and rotates the shifting result about the origin by θ ∈ [0, 2π],

φ(x) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 (x− c). (1)

For a set X ⊂ X, we use a notation φ(X) to denote the image of X transformed by φ,

φ(X) = {φ(x);x ∈ X,φ ∈ E(X)}.

When X represents a geometric object, φ(X) represents the image of the geometric object

transformed by the movement and rotation operations defined by φ. The operations do

not deform the geometric object but just change its poses, i.e., locations and orientations,

which is why φ is called a rigid body transformation.

Let X ⊂ X and Y ⊂ X denote two simply connected subsets of X that represent two

primary objects, and let Z ⊂ X denote a simply connected subset of X that represents

the aggregate of the two primary objects. The two primary objects may move and rotate

before they collide and aggregate. Let φX ∈ E(X) and φY ∈ E(X) denote the Euclidean

rigid body transformations that represent the movements and rotations of X and Y before

they aggregate. As shown in Figure 3, before the aggregate Z is fully restructured to a

different shape, Z is approximately an overlapping union of φX(X) and φY (Y ),

Z = φX(X) ∪ φY (Y ), where φX ∈ E(X), φY ∈ E(X).

In practice, X is a digital image, so the equality does not exactly hold due to digitization

errors. The aggregate Z can be partitioned into three pieces, Z1 = φX(X)\φY (Y ), Z2 =

φY (Y )\φX(X) and Z3 = φX(X) ∩ φY (Y ), where \ is a set difference operator. We call

the center of mass of Z3 as an aggregation center, which we denote by cX,Y . As we

illustrated in Figure 4, we define the orientation of X in Z as the orientation of cX,Y in the

standard coordinate system of φX(X). The standard coordinate system for X is defined

as a map TX : X → R2 that assigns a point x ∈ X to a unique coordinate number TX(x),

which induces the standard coordinate system for φX(X) that maps a point y ∈ φX(X) to
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TX ◦ φ−1X (y). Therefore, the orientation of X in Z is

vX =
TX ◦ φ−1X (cX,Y )

||TX ◦ φ−1X (cX,Y )||
, or θX = angle(vX),

where angle(vX) is the angular part of the polar coordinate of vX . Similarly, the orientation

of Y in Z is defined by

vY =
TY ◦ φ−1Y (cX,Y )

||TY ◦ φ−1Y (cX,Y )||
, or θY = angle(vY ).

Our primary interest is to study the oriented attachment, i.e., investigating what angles of

θX and θY are more frequently observed from multiple aggregation examples.

𝒄𝑋,𝑌
𝜃𝑋

𝜃𝑌

x-axis of the standard coordinate system 

for 𝜙𝑌(𝑌)
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Figure 4: Practical meaning of the definition of θX and θY .

The TX and TY are independent of φX , φY and cX,Y , i.e., the choice of the former

does not affect the latter, and vice versa. Section 3.1 describes how to define and estimate

TX and TY , and Section 3.2 describe how to estimate φX ∈ E(X), φY ∈ E(X) and cX,Y .

Estimating φX ∈ E(X) implies estimating its parameters cX and θX . Likewise, estimating

TX and TY implies estimating the unknown parameters of TX and TY . The parametric

forms of TX and TY will be later defined in Section 3.1. The proposed approaches are

validated using simulation datasets in Section 3.3.

7



3.1 Estimation of TX

The standard coordinate system of X must be consistently defined with those of other

geometric objects geometrically similar to X, so their orientations can be defined consis-

tently. To accomplish this, we define a reference shape for a collection of geometric objects

geometrically similar to X and define TX as the Euclidean rigid body transformation that

best aligns X to the reference shape. The transformation outcome is invariant to a Eu-

clidean rigid body transformation of X, i.e., TX(X) = Tφ(X)(φ(X)) for φ ∈ E(X), unless

the reference shape is redefined, so it provides consistent coordinate numbers for those

having similar geometries but different poses. In this section, we describe how we define a

reference shape and estimate TX ∈ E(X) given a reference shape.

We first work on how to estimate TX when a reference shape is given. Let X and

X0 denote the simply connected subsets of X that represent a geometric object and its

reference shape respectively. Suppose that X and X0 consist of m and m0 point coordinates

as follows,

X = {x1,x2, . . . ,xm} and

X0 = {x(0)
1 ,x

(0)
2 , . . . ,x(0)

m0
},

where xi ∈ X denotes the ith element of X, and x
(0)
j ∈ X indicates the jth element of X0.

We want to find TX ∈ E(X) that best aligns X to X0,

TX(X) ≈ X0,

where the closeness of the two sets is measured by a set distance. A popular set distance

is the p norm distance (Mémoli 2007), which basically averages the distances between each

pair of the elements in the two sets that correspond to each other. Let µij define the

following measure of correspondence in between the elements of the two sets, TX(X) and

X0,

µij = 1 if TX(xi) corresponds to x
(0)
j and 0 otherwise. (2)

When µij’s are known, the set distance is defined by

dist(TX(X), X0;µ) =

(∑
i,j

µij

∣∣∣∣∣∣φ(xi)− x(0)
j

∣∣∣∣∣∣p)1/p

,
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where µ denotes a m ×m0 matrix with the (i, j)th element µij. The TX that best aligns

X to X0 can be achieved by minimizing the distance,

T ∗X(µ) = arg min
TX∈E(X)

dist(TX(X), X0;µ).

The expressions for the translation vector c∗TX and rotation angle θ∗TX of T ∗X(µ) can be

found at Rangarajan et al. (1997),

c∗TX =

∑m
i=1

∑m0

j=1 µij(xi − x
(0)
j )∑m

i=1

∑m0

j=1 µij
and

θ∗TX = arctan

(∑m
i=1

∑m0

j=1 µij(x
(0)
j × xi)∑m

i=1

∑m0

j=1 µij(x
(0)
j · xi)

)
,

(3)

where (a1, a2)× (b1, b2) = a1b2 − a2b1 and (a1, a2) · (b1, b2) = a1b1 + a2b2.

However, µ is unknown. We propose to use the TX-invariance property of the Euclidean

distance matrix of X to estimate µ so that the estimated µ can be plugged into equation

(3) to estimate TX . Let us first define the Euclidean distance matrix of X as

D(X) =


0 dX(x1,x2) dX(x1,x3) . . . dX(x1,xm)

dX(x2,x1) 0 dX(x2,x3) . . . dX(x2,xm)

dX(x3,x1) dX(x3,x2)
...

...
...

...
...

...
...

...

 ,

where dX(xi,xj) = ||xi − xj||2. The distance matrix is invariant under a Euclidean rigid

body transformation,

D(X) = D(TX(X)) for TX ∈ E(X).

In addition, the matrixD(X) contains sufficient information that describes the geometrical

features of X, because X is uniquely determined fromD(X) up to rotations, reflections and

translations by applying the multidimensional scaling to D(X) (Lele 1993, Theorem 1).

These two properties allow us to define a TX-invariant distance between the two geometries,

TX(X) and X0. Note that X and its reference shape X0 presumably has similar geometries,

so the Euclidean distance matrices of TX(X) and X0 should be comparable, i.e.,

dX(TX(xi), TX(xk)) ≈ dX(x
(0)
j ,x

(0)
l ) for every µij = 1, µkl = 1.
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Collectively, the equalities are represented by

D(TX(X)) ≈ µD(X0)µ
T .

Due to the TX-invariance of an Euclidean distance matrix, it also implies

D(X) ≈ µD(X0)µ
T .

Let dD(X,X0;µ) = ||D(X)− µD(X0)µ
T ||F . We will find µ that minimizes the distance,

dD(X,X0) = min
µ∈MX,X0

dD(X,X0;µ), (4)

where MX,X0 := {(µij) ∈ {0, 1}m×m0 :
∑m

i=1 µij ≥ 1,
∑m0

j=1 µij ≥ 1} defines the range of µ;

it was defined to make sure that one element in TX(X) is mapped to at least one element in

X0 and vice versa. The algorithm to solve the optimization problem in (4) can be found in

the online supplementary material. Once µ is estimated, the estimate can be plugged into

equation (3) to estimate the two parameters of TX . It is noteworthy that there is another

way to estimate µ, which finds simultaneously µ and TX by solving

min
µ∈MX,X0

min
TX∈E(X)

dist(TX(X), X0;µ). (5)

The optimization has been popularly used for shape matching or two point-set matching

(Mémoli 2007). The similar formulation was also proposed in statistical shape analysis

(Rangarajan et al. 1997). The optimization is very complicated, because it requires an

alternating optimization for TX and µ (Rangarajan et al. 1997, Green & Mardia 2006).

The alternating procedure often finds local optimality.

Note that D(X) and D(X0) contain all geometric features of X and X0 and are also

invariant to the Euclidean transformations of X and X0, so the measure of similarity

between the two Euclidean distance matrices (i.e. dD(X,X0)) can be used as a measure

of geometric similarity of X and X0. Now we use dD(X,X0) to group geometric objects

by geometric similarities and define a reference shape for each similarity group. Suppose

that we have 2N primary geometric objects from N different aggregation observations. We

first cluster the 2N objects into K shape categories. In this paper, we use the k-means

clustering with distance dD, where K was chosen using the information criterion, AIC
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(Akaike 1992). Suppose that Nk geometric objects are grouped to the kth shape category,

and X
(k)
n ⊂ X denote the nth geometric object from the shape category. We choose a

cluster representative of the shape category and define it as a reference shape for the

shape category. The cluster representative is chosen among {X(k)
n ;n = 1, ..., Nk} so that it

minimizes the average distance to the other cluster members. If the cluster representative

is Xk
r , r should satisfy

r = arg minn=1,...,Nk

Nk∑
n′=1

dD(X
(k)
n′ , X

(k)
n ).

We normalize out the location and orientation of the cluster representative by applying the

classical multidimensional scaling to X
(k)
r . The multidimensional scaling first applies the

double centering on D(X
(k)
r ), subsequently takes the eigen-decomposition on the doubly

centered matrix, and finally computes the matrix composed of the eigenvectors scaled by

the square roots of the corresponding eigenvalues (Lele 1993). Since the rank of D(X
(k)
r )

is two, the output matrix of the multidimensional scaling has two columns, and each row

vector of the output matrix represents a point coordinate in R2. Let X̃
(k)
r denote a set of

the row vectors in the matrix. It is easy to verifyD(X
(k)
r ) = D(X̃

(k)
r ) so dD(X

(k)
r , X̃

(k)
r ) = 0.

Therefore X̃
(k)
r represents the exactly same geometry as X

(k)
r . The major axis of X̃

(k)
r is

always along the x-axis in that the first coordinates of the elements in X̃
(k)
r were generated

from the first eigenvector in the multidimensional scaling. Therefore, X̃
(k)
r can be seen as

a version of X
(k)
r with its orientation normalized. We define X̃

(k)
r as a reference shape for

the kth shape category. We will present our simulation study in Section 3.3 for validating

the approaches proposed in this section.

3.2 Alignment of primary objects to an aggregate

Let X ⊂ X and Y ⊂ X denote two primary objects, and let Z ⊂ X denote the aggregate

of the two primary objects. Suppose that X, Y and Z consist of mX , mY , and mZ point

coordinates respectively,

X = {xi ∈ X; i = 1, . . . ,mX}

Y = {yj ∈ X; j = 1, . . . ,mY }

Z = {zk ∈ X; k = 1, . . . ,mZ}.
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Since Z = φX(X) ∪ φY (Y ), some points in Z correspond to the map of X by φX , and the

other points correspond to the map of Y by φY . Let µX = (µXik) denote the point-to-point

correspondences from X to Z, and let µY = (µYjk) denote the point-to-point correspondence

from Y to Z. Please note that the (µX ,µY ) ranges for

MX,Y ;Z = {(µX ,µY ) :

mZ∑
k=1

µXik ≥ 1 ∀i = 1, ..,mX ,

mZ∑
k=1

µYjk ≥ 1 ∀j = 1, ...,mY ,

mX∑
i=1

µXik +

mY∑
j=1

µYjk ≥ 1 ∀k = 1, ...,mZ},

where the first two inequalities imply that each element in X and Y corresponds to at least

one element in Z and the last inequality implies that each element in Z corresponds to an

element in either X or Y . When (µX ,µY ) are known, the two rigid body transformations

φX ∈ E(2) and φY ∈ E(2) can be estimated by solving

min
φX ,φY ∈E(2)

mX∑
i=1

mZ∑
k=1

µXi,k ||φX(xi)− zk||2 +

mY∑
j=1

mY∑
k=1

µYjk
∣∣∣∣φY (yj)− zk

∣∣∣∣2 .
The optimal solution can be obtained by using the first order necessary condition: φ∗X =

R(θ∗X)(x− c∗X) and φ∗Y = R(θ∗Y )(x− c∗Y ) with

c∗X =

∑mX

i=1

∑mZ

k=1 µ
X
ik(xi − zk)∑mX

i=1

∑mZ

k=1 µ
X
ik

, θ∗X = arctan

(∑mX

i=1

∑mZ

k=1 µ
X
ik(zk × xi)∑mX

i=1

∑mZ

k=1 µ
X
ik(zk · xi)

)
c∗Y =

∑mY

j=1

∑mZ

k=1 µ
Y
jk(yi − zk)∑mY

j=1

∑mZ

k=1 µ
Y
jk

, θ∗Y = arctan

(∑mY

j=1

∑mZ

k=1 µ
Y
jk(zk × yj)∑mY

j=1

∑mZ

k=1 µ
Y
jk(zk · yj)

)
.

(6)

Since (µX ,µY ) are unknown, similar to what we did in the previous section, we use the

Euclidean distance matrices of X, Y and Z to estimate (µX ,µY ),

min
(µX ,µY )∈MX,Y ;Z

dD(X,Z;µX) + dD(Y, Z;µY ). (7)

The algorithm to solve the optimization problem can be found in the online supplementary

material. The optimal solution provides the point-to-point correspondence (µX ,µY ). By

plugging (µX ,µY ) in the expression (6), the φX and φY can be estimated.
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In addition, the aggregation center of Z can be estimated with (µX ,µY ) by first finding

the subset of Z that corresponds to both X and Y ,

CX,Y = {zk ∈ Z : µXik = 1 and µYjk = 1},

and then estimating the mass center of CX,Y ,

cX,Y =

∑
zk∈CX,Y

zk

|CX,Y |
, (8)

where | · | is the number of elements in a set. This result combine with the estimation of

the φX and φY to evaluate φ−1X (cX,Y ) and φ−1Y (cX,Y ).

3.3 Simulation study

We performed a simulation study to numerically validate the proposal approaches described

in the previous subsections. We simulated multiple aggregation datasets, where simulation

inputs were shape factors of primary objects, the variations of the shape factors, and the

levels of observation noises. We restricted the shapes of primary objects to ellipses, for

which the shape factors are characterized by the major axis lengths and the minor axis

lengths. We followed the following generative procedure to simulate a set of 50 aggregation

cases,

Inputs: νa,X : the logarithm of the mean of the X’s major axis length,

νa,Y : the logarithm of the mean of the Y ’s major axis length,

νb,X : the logarithm of the mean of the X’s minor axis length,

νb,Y : the logarithm of the mean of the Y ’s minor axis length,

σ2: shape variations, and σ2
e : noise variance.

Step 1. Simulate X: Sample log(aX) ∼ N (νa,X , σ
2) and log(bX) ∼ N (νb,X , σ

2). Gen-

erate a noisy image of an ellipse, X̃ =
{

(x1, x2) ∈ X;
x21
a2X

+
x22
b2X
≤ 1 + ε(|x2

x1
|)
}

, where

ε(|x2
x1
|) ∼ N (0, σ2

e) is a random process depending on |x2
x1
|. Let TX denote a random

Euclidean rigid body transformation with a translation vector cTX ∼ Uniform([0, H]×

[0,W ]) and a rotation angle θTX ∼ Uniform([0, π/2]). The noisy image X̃ is trans-

formed to T−1X (X̃), which serves X.
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Step 2. Simulate Y : Sample log(aY ) ∼ N (νa,Y , σ
2) and log(bY ) ∼ N (νb,Y , σ

2). Gen-

erate a noisy image of an ellipse, Ỹ =
{

(x1, x2) ∈ X;
x21
a2Y

+
x22
b2Y
≤ 1 + ε(|x2

x1
|)
}

, where

ε(|x2
x1
|) ∼ N (0, σ2

e) is a random process depending on |x2
x1
|. Let TY denote a random

Euclidean rigid body transformation with a translation vector cTY ∼ Uniform([0, H]×

[0,W ]) and a rotation angle θTY ∼ Uniform([0, π/2]). The noisy image Ỹ is trans-

formed to T−1Y (Ỹ ), which serves Y .

Step 3. Simulate Z: Sample cX ∼ Uniform(X) and cY ∼ Uniform(Y ). Let φX denote

the Euclidean rigid body transformation with a translation vector cX and a rotation

angle θX = π-angle(cX + cTX ), and let φY denote the Euclidean rigid body transfor-

mation with a translation vector cY and a rotation angle θY =-angle(cY + cTY ). Let

Z = φX(X)
⋃
φY (Y ).

Step 4. Repeat Steps 1 through 3 for 50 times.

We fixed νb,X = log(5) while νa,X was varied to exp(νa,X) = rX exp(νb,X), where rX repre-

sents the ratio of the mean major axis length and the mean minor axis length. Similarly,

we fixed νb,Y = log(5) and chose νa,Y as νa,Y = log(rY ) + νb,Y . We fixed σ2 = 0.032, which

makes exp(νb,X) or exp(νb,Y ) approximately range for [4.5, 5.5]. We also fixed σ2
e = 0.12,

which makes 1+ε(|x2
x1
|) approximately range for [0.97, 1.03]. We tried six different combina-

tions of rX ∈ {1.1, 1.4, 2.2} and rY ∈ {1.1, 1.4, 2.2} to simulate simulation cases involving

different shape factors. For each combination, we have 50 aggregation cases, which serve a

simulation dataset.

We applied Sections 3.1 and 3.2 to the six simulated datasets to estimate TX , TY , φX

and φY . Note that the TX is parameterized by two parameters cTX and θTX , TY by cTY and

θTY , φX by cX and θX , and φY by cY and θY . The estimated parameters are denoted by c∗TX ,

θ∗TX , c∗TY , θ∗TY , c∗X , θ∗X , c∗Y and θ∗Y . For each of the six simulated datasets, we evaluated the

differences of the estimated parameter values and the corresponding simulation inputs over

50 simulation cases. For the translation vectors, we used the L2 norms of the differences.

For the rotation angles, we took the angular difference, 1− cos(θ− θ∗), after some angular

normalization steps to compensate for geometric symmetries of ellipses; we will discuss this

particular issues in Section 4. Table 1 summarizes the outcomes. For higher rX (or rY ),
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(rX , rY ) c∗TX θ∗TX c∗TY θ∗TY c∗X θ∗X c∗Y θ∗Y

(2.2, 2.2) 0.1221 0.0006 0.1330 0.0009 0.1756 0.0001 0.1754 0.0001

(2.2, 1.4) 0.1195 0.0011 0.1250 0.0050 1.4679 0.0151 1.2203 0.0288

(2.2, 1.1) 0.1329 0.0007 0.1208 0.0578 1.6153 0.0243 1.3037 0.0366

(1.4, 1.4) 0.1277 0.0067 0.1258 0.0056 0.2466 0.0084 0.3417 0.0007

(1.4, 1.1) 0.1196 0.0532 0.1296 0.0584 0.9755 0.0293 0.8263 0.0395

(1.1, 1.1) 0.1144 0.0393 0.1212 0.0586 0.3743 0.0096 0.4564 0.0120

Table 1: Accuracy of parameter estimation for TX , TY , φX and φY . The numbers in the

table are averaged over 50 cases.

the estimation accuracy for TX (or TY ) increases. Note that with a higher rX implies a

clearer directionality of a primary object. The simulation outcomes explains that a clearer

directionality of primary objects would help to align them and estimate TX accurately.

When rX is below 1.4, the estimation accuracy degrades significantly. We do not suggest

to apply the proposed approach for analyzing the aggregations of geometries with rX less

than 1.4. On the other hand, the estimation accuracy of φX or φY did not depend much

on rX or rY .

In addition, we performed replicated experiments to see how the estimation accuracy

varies over different random samples. We repeated the generative procedure (Steps 1 to 4)

with fixed rX = 1.4 and rY = 1.1 for 50 times to draw 50 simulation datasets, each of which

contains 50 aggregation cases. For each dataset, we applied our proposed algorithm and

evaluated the estimation accuracy. We computed the standard deviation of the accuracy

over 50 datasets, which were 0.0123 for c∗T,X , 0.0002 for θ∗T,X , 0.0093 for c∗T,Y , 0.0015 for

θ∗T,Y , 0.3425 for c∗X , 0.0117 for θ∗X , 0.3399 for c∗Y , and 0.0118 for θ∗Y . The variations were

very small.

4 STATISTICAL ANALYSIS OF AGGREGATION

The major scientific questions that we want to answer were (1) whether there are preferen-

tial orientations of primary objects when they aggregate, and (2) if so, what the orientations

are. In this section, we present a statistical analysis to answer those questions.
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Suppose that we have N aggregation observations,

{(Xn, Yn, Zn);n = 1, ....N},

where Xn and Yn are the simply connected subsets of X that represents two primary

geometric objects for the nth observation, and Zn is the simply connected subset of X

that represents the corresponding aggregate. As described in Section 3.1, the 2N primary

objects are grouped into K shape categories based on their geometric similarities, and for

each shape category, we identified a reference shape and had all primary objects in the

category aligned to the reference shape to define the standard coordinate systems for the

primary objects.

Some shape categories may have geometrical symmetries around their major axes and

minor axes, e.g., a rod and an ellipse. The major axis of a geometric object Xn is defined

by the first principal loading vector of the coordinates in Xn, and the minor axis is the unit

vector perpendicular to the major axis. Note that with the alignment described in Section

3.1, the major axis of a primary object is along the x-axis, and the minor axis is along the

y-axis. For the primary objects belonging to a shape category symmetric around the major

and minor axis, the following orientation angles of the primary objects are indistinguishable

due to the geometrical symmetry,

θ ≡ −θ ≡ π − θ ≡ −π + θ for θ ∈ [0, π/2]. (9)

Therefore, for a symmetric shape category, we normalize orientation θ to

θ̃ =

|θ| if |θ| ≤ π/2,

π − |θ| otherwise,
(10)

which is basically one of the θ’s equivalent forms in the first quadrant [0, π/2].

We work with the observations of θ for a non-symmetric category or the observations

of θ̃ for a symmetric shape category for necessary statistical inferences. The probability

distribution of θ for a non-symmetric case can be modeled as a von Mises distribution,

which is popularly used to describe a unimodal probability density of angular data (Mardia

et al. 2012). The statistical inferences on the distribution model have been well studied in
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circular statistics (Fisher 1995); therefore, we will not reiterate them in this paper. This

section focuses on statistical analysis of θ̃ for symmetric cases.

For a symmetric shape category, the equivalence (9) holds in θ, and the probability

density function of θ should have the following symmetries,

f(θ) = f(−θ) = f(−π + θ) = f(π − θ). (11)

Therefore, if f has a mode at µ ∈ [0, π/2], it also has the modes at −µ, −π+ µ and π− µ.

A von-Mises distribution is popularly used to describe a unimodal probability density of

angular data (Mardia et al. 2012). We takes a mixture of the four von Mises distributions

with equal weights to represent the four modes caused by the four-way symmetry,

f(θ;µ, κ) =
1

8πI0(κ)
exp{κ cos(θ − µ)}+

1

8πI0(κ)
exp{κ cos(θ + π − µ)}

+
1

8πI0(κ)
exp{κ cos(θ + µ)}+

1

8πI0(κ)
exp{κ cos(θ − π + µ)}

=
1

8πI0(κ)
exp{κ cos(θ − µ)}+

1

8πI0(κ)
exp{−κ cos(θ − µ)}

+
1

8πI0(κ)
exp{κ cos(θ + µ)}+

1

8πI0(κ)
exp{−κ cos(θ + µ)}

=
1

4πI0(κ)
cosh(κ cos(θ − µ)) +

1

4πI0(κ)
cosh(κ cos(θ + µ))

=
1

2πI0(κ)
cosh(κ cos(µ) cos(θ)) cosh(κ sin(µ) sin(θ)),

where cosh(·) is a hyperbolic cosine function, and µ ∈ [0, π/2]. One can easily check that

the density function satisfies the symmetry (11) as desired. Note that the normalization

(10) applies for mirroring θ onto the first quadrant [0, π/2], and f has the same density for

all quadrants. Therefore, the density function of the normalized angle θ̃ is simply the four

times of f ,

g(θ̃;µ, κ) =
2

πI0(κ)
cosh(κ cos(µ) cos(θ̃)) cosh(κ sin(µ) sin(θ̃)), (12)

where µ, θ̃ ∈ [0, 2π]. One can show
∫ π/2
0

g(θ̃;µ, κ) = 1, so it is a valid probability density

function. The two parameters µ and κ can be estimated by the maximum likelihood esti-

mation described in Section 4.1, and the goodness-of-fit test for the estimated parameters

can be performed by the method described in Section 4.2. Sections 4.3 and 4.4 describes

the statistical hypotheses testing problems to test the two scientific hypotheses that we

mentioned in the beginning of this section.
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4.1 Maximum Likelihood Estimation

We present a numerical procedure for the maximum likelihood estimates of µ and κ for

g(θ̃;µ, κ) given a random sample {θ̃1, . . . , θ̃N} from the density. The log likelihood function

is

LN(µ, κ) =
N∑
n=1

log(cosh(κ cos(µ) cos(θ̃n))) + log(cosh(κ sin(µ) sin(θ̃n)))−N log(I0(κ)).

The first order necessary condition, ∂LN

∂µ
= 0 and ∂LN

∂κ
= 0, does not give a closed form

expression for µ and κ. The two parameters µ and κ can be numerically optimized by the

Newton-Raphson algorithm using the first order derivatives and the second order derivatives

of the log likelihood function. The expressions for the first and second order derivatives

can be found in the online supplementary material, and the initial solution for µ can be

specified to the sample angular mean µ0, and the initial solution κ0 can be found using the

unbiased estimator of I1(κ)
I0(κ)

,

µ0 = arctan
( s̄
c̄

)
and

I1(κ0)

I0(κ0)
=

N

N − 1
c̄2 + s̄2 − 1

N − 1
,

where s̄ = 1
N

∑N
n=1 sin(θ̃n) and c̄ = 1

N

∑N
n=1 cos(θ̃n).

The maximum likelihood estimation procedure was tested for three simulation cases.

We first drew a random sample of size 1000 from g(θ̃;µ, κ) with µ and κ specified in

Table 2 and used the random sample to estimate µ and κ as described in this section. The

estimates µ̂ and κ̂ were compared to the values of µ and κ used as simulation inputs, and the

differences were evaluated. The differences were averaged over 100 replicated experiments,

which provided the biases of the estimates, and the variance of the estimates were averaged

over the replicated runs. Table 2 summarizes the outcomes.

4.2 Goodness-of-Fit Test

We use the Kolmogorov-Smirnov test (Arnold & Emerson 2011) to test the goodness-of-fit

of g(θ̃; µ̂, κ̂) to a random sample {θ̃1, . . . , θ̃N}. Let G(θ̃) denote the cumulative distribution

function for g(θ̃; µ̂, κ̂) and Gn(θ̃) denote the empirical cumulative distribution function,

Gn(θ̃) =
1

N

N∑
n=1

I[−∞,θ̃](θ̃n).
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Simulation Inputs
µ = π/6, κ = 10 µ = π/4, κ = 10 µ = π/6, κ = 5

µ̂ κ̂ µ̂ κ̂ µ̂ κ̂

Bias 0.00240 0.46050 0.00012 0.0192 0.0107 0.4912

Variance 0.00008 0.28300 0.00009 0.2353 0.00023 0.1653

Table 2: Biases and variances of the maximum likelihood estimates µ̂ and κ̂. Each value

in the table is the average value over 100 replicated runs.

The test statistic is

TN =
√
n sup

θ̃

|G(θ̃)−Gn(θ̃)|.

If the test statistic is below a critical value tα,N , the fit of G to Gn is good. The critical

value can be achieved by the Monte Carlo simulation,

Step 1. Take a random sample of size N from g(θ̃; µ̂, κ̂), and get the empirical cumulative

distribution function Gn for the random sample.

Step 2. Compute TN .

Step 3. Repeat Step 1 and Step 2 many times and get 1− α quantile of the resulting TN

values, which becomes tα,N .

4.3 Testing the Uniformity of Distribution

The first hypothesis to test is whether there is a preferential orientation of a primary object

in its aggregate. The hypothesis can be tested using the following statistical hypothesis

test on g(θ̃;µ, κ),

H0:g(θ̃;µ, κ) is uniform.

H1:g(θ̃;µ, κ) is not uniform.

Note that as κ decreases, the density function g(θ̃;µ, κ) becomes closer to an angular

uniform distribution and becomes perfectly uniform with κ = 0 and nearly uniform with

κ ≤ 0.5. We formulate the uniformity testing as testing on κ

H0:κ ≤ 0.5

H1:κ > 0.5.
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We use the likelihood ratio test to test the hypothesis. The likelihood ratio test statistic

for testing H0 versus H1,

Rκ = max
κ>0.5

LN(µ, κ)−max
κ≤0.5

LN(µ, κ).

The two maximization problems in Rκ can be evaluated by maximizing the likelihood

function with linear constraints on κ. The critical value of the test statistic can be easily

determined using the Monte Carlo simulation similar to the one described in Section 4.2.

4.4 Testing the Mean Orientation

The second hypothesis to test is whether the mean orientation of a primary object in its

aggregate is µ0. This test can be formulated as testing on the mean parameter µ,

H0:µ = µ0

H1:µ 6= µ0.

It can be tested using the likelihood ratio test with the difference of two log likelihoods as

a test statistic,

Rµ = max
µ,κ

LN(µ, κ)− max
µ=µ0,κ

LN(µ, κ).

The two maximization problems in Rµ can be evaluated by maximizing the likelihood

function with linear constraints on µ. The critical value of the test statistic can be easily

determined using the Monte Carlo simulation similar to the one described in Section 4.2.

5 APPLICATION TO NANOPARTICLE AGGRE-

GATION

The motivating example described in Section 2 provided 184 aggregation observations for

nanoparticles, i.e., N = 184. Section 3.1 was applied to group the 2N primary objects

into K shape categories by their geometric similarities; K = 3 was chosen by the AIC.

For each shape category, we identified a reference shape and had the primary objects in

the category aligned to the reference shape. Figure 5 illustrates the images of the primary

particles after the alignment. Notably, the major axes of the primary particles were aligned
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to the horizontal line (i.e. x-axis), which indicates that the alignment task worked well.

Apparently those three shape categories are distinct in terms of an aspect ratio, which is

defined as the ratio of the major axis length and the minor axis length of a shape. The

mean aspect ratios are 1.99 for the first category, 1.40 for the second, and 1.22 for the last

category. Based on the typical appearances of nanoparticles, we named shape category 1

as ’Rod’ (k = 1, 82 objects), shape category 2 as ’Ellipse’ (k = 2, 146 objects), and shape

category 3 as ’NearSphere’ (k = 3, 140 objects).

TheN aggregation observations can be classified into six groups, depending on the shape

categories of the primary objects involved in the aggregations, Rod-Rod (12 cases), Rod-

Ellipse (26 cases), Rod-NearSphere (32 cases), Ellipse-Ellipse (33 cases), Ellipse-NearSphere

(54 cases), and NearSphere-NearSphere (27 cases). We achieved the orientation angles of

primary nanoparticles normalized to [0, π/2] as described in Section 4,

{(θ̃(n)X , θ̃
(n)
Y );n = 1, ....N},

where (θ̃
(n)
X , θ̃

(n)
Y ) are the orientation angles of two primary particles for the nth observation.

We first looked at the angular correlation coefficients of θ̃
(n)
X and θ̃

(n)
Y for each aggrega-

tion group. Let Nk1,k2 denote the collection of observation indices n’s that correspond to

aggregations of shape categories k1 and k2. Following Fisher & Lee (1983), the angular

correlation coefficient ρk1,k2 is defined as,

ρk1,k2 =

∑
i,j∈Nk1,k2

sin(θ̃
(i)
X − θ̃

(j)
X ) sin(θ̃

(i)
Y − θ̃

(j)
Y )√∑

i,j∈Nk1,k2
sin2(θ̃

(i)
X − θ̃

(j)
X )
√∑

i,j∈Nk1,k2
sin2(θ̃

(i)
Y − θ̃

(j)
Y )

.

The corresponding coefficient of determination, ρ2k1,k2, is 0.1859 for Rod-Rod, 0.0273 for

Rod-Ellipse, 0.0937 for Rod-NearSphere, 0.1195 for Ellipse-Ellipse, 0.0008 for Ellipse-

NearSphere, 0.2252 for NearSphere-NearSphere. When k1 = k2, the coefficients were

computed in between min{θ̃(n)X , θ̃
(n)
Y } and max{θ̃(n)X , θ̃

(n)
Y }. Typically, ρ2k1,k2 less than 0.3 is

regarded nearly uncorrelated, so θ̃
(n)
X and θ̃

(n)
Y are nearly linearly independent for the six

aggregation groups.

Given the nearly independence of θ̃
(n)
X and θ̃

(n)
Y and a limited number of observations

per group, we approximately model the joint distribution of the two angles with a product

of the marginal distributions of the two angles. Let pk1|k2(θ̃) denote the marginal density
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(a) Shape Category 1: Rod

(b) Shape Category 2: Ellipse

(c) Shape Category 3: NearSphere

Figure 5: Alignment outcomes for three shape categories
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function of θ̃ of shape category k1 when it aggregates with shape category k2, which is

assume to be

pk1|k2(θ̃) = g(θ̃;µk1,k2, κk1,k2).

The maximum likelihood estimation procedure described in Section 4.1 was applied for

k1 = 1, 2 and k2 = 1, 2, 3. We have not analyzed k1 = 3 cases (Near-Sphere cases) because

the cases are subject to significant estimation errors as we showed from the simulation study

in Section 3.3. Let µ̂k1,k2 and κ̂k1,k2 denote the estimated µk1,k2 and κk1,k2. Figure 6 shows

the pk1|k2(θ̃) with µ̂k1,k2 and κ̂k1,k2. Section 4.2 was applied for the goodness-of-fit testing of
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Figure 6: Estimated probability density functions (PDFs)

the estimated density functions. For all cases, the estimated CDFs were very comparable to

the corresponding empirical CDFs, and the goodness-of-fit test also showed no significant

difference between them with 95% significance level. Figure 7 shows the cumulative density
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functions (G) of the estimated PDFs, with comparisons to the empirical CDFs (Gn).
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Figure 7: Goodness-of-Fit Test; G denote the estimated CDF, and Gn denotes the empirical

CDF.

We also tested a scientific hypothesis related to whether there is a preferential orienta-

tion of shape category k1 when it aggregates with shape category k2. We applied Section

4.3 to test

H0:pk1|k2(θ) is uniform.

H1:pk1|k2(θ) is not uniform.

With 95% significance level, the null hypothesis was rejected for (k1, k2) = (1, 1), (1, 2),

(1, 3) (2, 1), (2, 2) and (2, 3). The results indicate strong evidences that rod-like and ellipse-

like nanoparticles have preferential orientations when they aggregate with rod-like, ellipse-

like or near-sphere like nanoparticles.
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We performed a steered molecular dynamics (SMD) simulation of a rod-to-rod particle

aggregation (Welch et al. 2016), which allowed us to compute the energy barriers against

aggregation for different orientations of rods. According to the simulation, when the major

axes of two aggregating rods were not oriented toward the aggregation center, the com-

pression of solvent monolayers at rod surfaces significantly increased when the rods became

close to each other. The increase of the solvation force placed a large energy barrier against

the aggregation of the two rods. The energy barrier was minimized when both of the rods’

major axes were oriented toward the aggregation center. This implies the preferential ori-

entation of a rod particle in its aggregate is zero. Note that the direction of the major

axis is zero. To test how our experimental observations are consistent with the simulation

result, we formulated a hypothesis testing problem, which basically examines whether the

mean orientation µ1,1 for a Rod-Rod aggregation is zero,

H0:µ1,1 = 0

H1:µ1,1 6= 0.

We applied Section 4.4 to test the hypothesis. With 95% significant level, the null hypothe-

sis cannot be rejected. In other words, with high significance, the experimental observations

are consistent with the output of the SMD simulation.

6 CONCLUSION

We have presented a statistical model for studying the oriented attachment of nanoparticles

with dynamic microscopy data, i.e., studying the preferential orientations of two primary

nanoparticles participating in the particle aggregation. We geometrically defined a particle

aggregation by two primary geometries merging into a secondary geometry. Each primary

geometry in dynamic microscopy data was represented by a simply connected subset in a

two-dimensional Euclidean space with a certain choice of its standard coordinate system,

and the secondary geometry was represented by a union of the two primary geometries

having certain orientations. We proposed a shape alignment approach to define the orien-

tations of the primary geometries within the secondary geometry, and presented a numerical

algorithm for solving the approach. We believe that the work for mathematically formu-
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lating and analyzing particle aggregations has not been previously performed. We also

presented a statistical model to describe the probability distribution of the orientations of

primary geometries in their aggregates and formulated several statistical hypothesis testing

problems.

We applied our proposed method to our motivating example of nanoparticle aggrega-

tions. The results demonstrated that two primary particles were aligned along certain

preferential orientations during their aggregation and the orientations were consistent with

what we achieved from a molecular dynamics simulation. By far, the microscopy and

nanoscience community has been manually cherry-picking and analyzing individual cases

of nanoparticle aggregation. To the best of our knowledge, our study is the first attempt to

statistically analyze multiple cases of nanoparticle aggregations from a single nanoparticle

synthesis process.

SUPPLEMENTARY MATERIAL

Implementation details: a pdf file containing some implementation details of the pro-

posed method, including Section A. the optimization algorithm to solve problems (4)

and (7), and Section B. the first and second order derivatives of the log likelihood

function in Section 4.1.
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