2,172 research outputs found

    The measurement of mechanical power flow into a simple panel

    Get PDF
    Measurement of mechanical power flow into vibrating pane

    Assembling the puzzle of superconducting elements: A Review

    Full text link
    Superconductivity in the simple elements is of both technological relevance and fundamental scientific interest in the investigation of superconductivity phenomena. Recent advances in the instrumentation of physics under pressure have enabled the observation of superconductivity in many elements not previously known to superconduct, and at steadily increasing temperatures. This article offers a review of the state of the art in the superconductivity of elements, highlighting underlying correlations and general trends.Comment: Review, 10 pages, 11 figures, 97 references; to appear in Superc. Sci. Techno

    Tunable Electron Multibunch Production in Plasma Wakefield Accelerators

    Get PDF
    Synchronized, independently tunable and focused Ό\muJ-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the position of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers

    Partially quenched chiral perturbation theory and numerical simulations

    Get PDF
    The dependence of the pseudoscalar meson mass and decay constant is compared to one-loop Partially Quenched Chiral Perturbation Theory (PQChPT) in a numerical simulation with two light dynamical quarks. The characteristic behaviour with chiral logarithms is observed. The values of the fitted PQChPT-parameters are in a range close to the expectation in continuum in spite of the fact that the lattice spacing is still large, namely a=0.28 fm.Comment: 11 pages, 3 figures; discussion of the results in section 3 extende

    Theranostics in Boron neutron capture therapy

    Get PDF
    Boron neutron capture therapy (BNCT) has the potential to specifically destroy tumor cells without damaging the tissues infiltrated by the tumor. BNCT is a binary treatment method based on the combination of two agents that have no effect when applied individually:10B and thermal neutrons. Exclusively, the combination of both produces an effect, whose extent depends on the amount of10B in the tumor but also on the organs at risk. It is not yet possible to determine the10B concentration in a specific tissue using non-invasive methods. At present, it is only possible to measure the10B concentration in blood and to estimate the boron concentration in tissues based on the assumption that there is a fixed uptake of10B from the blood into tissues. On this imprecise assumption, BNCT can hardly be developed further. A therapeutic approach, combining the boron carrier for therapeutic purposes with an imaging tool, might allow us to determine the10B concentration in a specific tissue using a non-invasive method. This review provides an overview of the current clinical protocols and preclinical experiments and results on how innovative drug development for boron delivery systems can also incorporate concurrent imaging. The last section focuses on the importance of proteomics for further optimization of BNCT, a highly precise and personalized therapeutic approach

    Low-energy couplings of QCD from topological zero-mode wave functions

    Get PDF
    By matching 1/m^2 divergences in finite-volume two-point correlation functions of the scalar or pseudoscalar densities with those obtained in chiral perturbation theory, we derive a relation between the Dirac operator zero-mode eigenfunctions at fixed non-trivial topology and the low-energy constants of QCD. We investigate the feasibility of using this relation to extract the pion decay constant, by computing the zero-mode correlation functions on the lattice in the quenched approximation and comparing them with the corresponding expressions in quenched chiral perturbation theory.Comment: 31 pages. v2: references and a small clarification added; published versio

    Hf–Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: implications for Lu–Hf dating of spinel peridotite lithospheric mantle

    Get PDF
    Clinopyroxenes in some fresh anhydrous spinel peridotite mantle xenoliths from the northern Massif Central (France) and Lower Silesia (Poland), analysed for a range of incompatible trace elements by laser ablation inductively coupled plasma mass spectrometry, show unusually strong negative anomalies in Hf and Zr relative to adjacent elements Sm and Nd, on primitive mantle-normalised diagrams. Similar Zr–Hf anomalies have only rarely been reported from clinopyroxene in spinel peridotite mantle xenoliths worldwide, and most are not as strong as the examples reported here. Low Hf contents give rise to a wide range of Lu/Hf ratios, which over geological time would result in highly radiogenic ΔHf values, decoupling them from ΔNd ratios. The high 176Lu/177Hf could in theory produce an isochronous relationship with 176Hf/177Hf over time; an errorchron is shown by clinopyroxene from mantle xenoliths from the northern Massif Central. However, in a review of the literature, we show that most mantle spinel peridotites do not show such high Lu/Hf ratios in their constituent clinopyroxenes, because they lack the distinctive Zr–Hf anomaly, and this limits the usefulness of the application of the Lu–Hf system of dating to garnet-free mantle rocks. Nevertheless, some mantle xenoliths from Poland or the Czech Republic may be amenable to Hf-isotope dating in the future

    Heavy Baryon Specroscopy from the Lattice

    Get PDF
    The results of an exploratory lattice study of heavy baryon spectroscopy are presented. We have computed the full spectrum of the eight baryons containing a single heavy quark, on a 243×4824^3\times 48 lattice at ÎČ=6.2\beta=6.2, using an O(a)O(a)-improved fermion action. We discuss the lattice baryon operators and give a method for isolating the contributions of the spin doublets (ÎŁ,Σ∗)(\Sigma,\Sigma^*), (Ξâ€Č,Ξ∗)(\Xi',\Xi^*) and (Ω,Ω∗)(\Omega,\Omega^*) to the correlation function of the relevant operator. We compare our results with the available experimental data and find good agreement in both the charm and the beauty sectors, despite the long extrapolation in the heavy quark mass needed in the latter case. We also predict the masses of several undiscovered baryons. We compute the \Lambda-\mbox{pseudoscalar meson} and Σ−Λ\Sigma-\Lambda mass splittings. Our results, which have errors in the range 10−30% 10-30\%, are in good agreement with the experimental numbers. For the Σ∗−Σ\Sigma^*-\Sigma mass splitting, we find results considerably smaller than the experimental values for both the charm and the beauty baryons, although in the latter case the experimental results are still preliminary. This is also the case for the lattice results for the hyperfine splitting for the heavy mesons.Comment: 31 pages LaTex, with postscript figures include

    Total Observed Organic Carbon (TOOC): A synthesis of North American observations

    Get PDF
    Measurements of organic carbon compounds in both the gas and particle phases measured upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC) over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 ÎŒgC m^−3 from the cleanest site (Trinidad Head) to the most polluted (Mexico City). Organic aerosol makes up 3–17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketene and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source to sink
    • 

    corecore