788 research outputs found
Complex Edge-State Phase Transitions in 1D Topological Laser Arrays
We report the first observation of lasing in topological edge states in a 1D
Su-Schrieffer-Heeger active array of resonators. We show that in the presence
of chiral-time () symmetry, this non-Hermitian topological
structure can experience complex phase transitions that alter the emission
spectra as well as the ensued mode competition between edge and bulk states.
The onset of these phase transitions is found to occur at the boundaries
associated with the complex geometric phase- a generalized version of the Berry
phase in Hermitian settings. Our experiments and theoretical analysis
demonstrate that the topology of the system plays a key role in determining its
operation when it lases: topologically controlled lasing
Biomechanical Simulation of Electrode Migration for Deep Brain Stimulation
International audienceDeep Brain Stimulation is a modern surgical technique for treating patients who suffer from affective or motion disorders such as Parkinson's disease. The efficiency of the procedure relies heavily on the accuracy of the placement of a micro-electrode which sends electrical pulses to a specific part of the brain that controls motion and affective symptoms. However, targeting this small anatomical structure is rendered difficult due to a series of brain shifts that take place during and after the procedure. This paper introduces a biomechanical simulation of the intra and postoperative stages of the procedure in order to determine lead deformation and electrode migration due to brain shift. To achieve this goal, we propose a global approach, which accounts for brain deformation but also for the numerous interactions that take place during the procedure (contacts between the brain and the inner part of the skull and falx cerebri, effect of the cerebro-spinal fluid, and biomechanical interactions between the brain and the electrodes and cannula used during the procedure). Preliminary results show a good correlation between our simulations and various results reported in the literature
Prevalence and predictors of video game addiction: a study based on a national representative sample of gamers
Video gaming has become a popular leisure activity in many parts of the world, and an increasing number of empirical studies examine the small minority that appears to develop problems as a result of excessive gaming. This study investigated prevalence rates and predictors of video game addiction in a sample of gamers, randomly selected from the National Population Registry of Norway (N =3389). Results showed there were 1.4 % addicted gamers, 7.3 % problem gamers, 3.9 % engaged gamers, and 87.4 % normal gamers. Gender (being male) and age group (being young) were positively associated with addicted-, problem-, and engaged gamers. Place of birth (Africa, Asia, South- and Middle America) were positively associated with addicted- and problem gamers. Video game addiction was negatively associated with conscientiousness and positively associated with neuroticism. Poor psychosomatic health was positively associated with problem- and engaged gaming. These factors provide insight into the field of video game addiction, and may help to provide guidance as to how individuals that are at risk of becoming addicted gamers can be identified
The Energy Spectrum of TeV Gamma-Rays from the Crab Nebula as measured by the HEGRA system of imaging air Cherenkov telescopes
The Crab Nebula has been observed by the HEGRA (High-Energy Gamma-Ray
Astronomy) stereoscopic system of imaging air Cherenkov telescopes (IACTs) for
a total of about 200 hrs during two observational campaigns: from September
1997 to March 1998 and from August 1998 to April 1999. The recent detailed
studies of system performance give an energy threshold and an energy resolution
for gamma-rays of 500 GeV and ~ 18%, respectively. The Crab energy spectrum was
measured with the HEGRA IACT system in a very broad energy range up to 20 TeV,
using observations at zenith angles up to 65 degrees. The Crab data can be
fitted in the energy range from 1 to 20 TeV by a simple power-law, which yields
dJg/dE = (2.79+/-0.02 +/- 0.5) 10^{-7} E^{-2.59 +/- 0.03 +/- 0.05}, ph m^{-2}
s^{-1} TeV^{-1} The Crab Nebula energy spectrum, as measured with the HEGRA
IACT system, agrees within 15% in the absolute scale and within 0.1 units in
the power law index with the latest measurements by the Whipple, CANGAROO and
CAT groups, consistent within the statistical and systematic errors quoted by
the experiments. The pure power-law spectrum of TeV gamma-rays from the Crab
Nebula constrains the physics parameters of the nebula environment as well as
the models of photon emission.Comment: to appear in ApJ, 29 pages, 6 figure
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
Rejection of the hypothesis that Markarian 501 TeV photons are pure Bose-Einstein condensates
The energy spectrum of the Blazar type galaxy Markarian 501 (Mrk 501) as
measured by the High-Energy-Gamma-Ray Astronomy (HEGRA) air Cerenkov telescopes
extends beyond 16 TeV and constitutes the most energetic photons observed from
an extragalactic object. A fraction of the emitted spectrum is possibly
absorbed in interactions with low energy photons of the diffuse extragalactic
infrared radiation, which in turn offers the unique possibility to measure the
diffuse infrared radiation density by TeV spectroscopy. The upper limit on the
density of the extragalactic infrared radiation derived from the TeV
observations imposes constraints on models of galaxy formation and stellar
evolution. One of the recently published ideas to overcome severe absorption of
TeV photons is based upon the assumption that sources like Mrk 501 could
produce Bose-Einstein condensates of coherent photons. The condensates would
have a higher survival probability during the transport in the diffuse
radiation field and could mimic TeV air shower events. The powerful
stereoscopic technique of the HEGRA air Cerenkov telescopes allows to test this
hypothesis by reconstructing the penetration depths of TeV air shower events:
Air showers initiated by Bose-Einstein condensates are expected to reach the
maximum of the shower development in the atmosphere earlier than single photon
events. By comparing the energy-dependent penetration depths of TeV photons
from Mrk 501 with those from the TeV standard-candle Crab Nebula and simulated
air shower events, we can reject the hypothesis that TeV photons from Mrk 501
are pure Bose-Einstein condensates.Comment: 9 pages, 2 figures, published by ApJ Letters, revised version
(simulation results added
The unidentified TeV source (TeVJ2032+4130) and surrounding field: Final HEGRA IACT-System results
The unidentified TeV source in Cygnus is now confirmed by follow-up
observations from 2002 with the HEGRA stereoscopic system of Cherenkov
Telescopes. Using all data (1999 to 2002) we confirm this new source as steady
in flux over the four years of data taking, extended with radius 6.2 arcmin
(+-1.2 arcmin (stat) +-0.9 arcmin (sys)) and exhibiting a hard spectrum with
photon index -1.9. It is located in the direction of the dense OB stellar
association, Cygnus OB2. Its integral flux above energies E>1 TeV amounts to
\~5% of the Crab assuming a Gaussian profile for the intrinsic source
morphology. There is no obvious counterpart at radio, optical nor X-ray
energies, leaving TeVJ2032+4130 presently unidentified. Observational
parameters of this source are updated here and some astrophysical discussion is
provided. Also included are upper limits for a number of other interesting
sources in the FoV, including the famous microquasar Cygnus X-3.Comment: 7 pages, 3 figures. Accepted for publication in Astronomy &
Astrophysic
Evidence for TeV gamma ray emission from Cassiopeia A
232 hours of data were accumulated from 1997 to 1999, using the HEGRA
Stereoscopic Cherenkov Telescope System to observe the supernova remnant
Cassiopeia A. TeV gamma ray emission was detected at the 5 sigma level, and a
flux of (5.8 +- 1.2(stat) +- 1.2(syst)) 10^(-9) ph m^(-2) s^(-1) above 1 TeV
was derived. The spectral distribution is consistent with a power law with a
differential spectral index of -2.5 +- 0.4(stat) +- 0.1(syst) between 1 and 10
TeV. As this is the first report of the detection of a TeV gamma ray source on
the "centi-Crab" scale, we present the analysis in some detail. Implications
for the acceleration of cosmic rays depend on the details of the source
modeling. We discuss some important aspects in this paper.Comment: 9 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
The TeV Energy Spectrum of Mkn 501 Measured with the Stereoscopic Telescope System of HEGRA during 1998 and 1999
During 1997, the BL Lac object Mkn 501 went into an extraordinary state of
high X-ray and TeV gamma-ray activity, lasting more than 6 months. In this
paper we report on the TeV emission characteristics of the source in the
subsequent years of 1998 and 1999 as measured with the Stereoscopic Cherenkov
Telescope System of HEGRA (La Palma, Canary Islands). Our observations reveal a
1998-1999 mean emission level at 1 TeV of 1/3 of the flux of the Crab Nebula, a
factor of 10 lower than during the year of 1997. A dataset of 122 observations
hours with the HEGRA telescope system makes it possible to assess for the first
time the Mkn 501 TeV energy spectrum for a mean flux level substantially below
that of the Crab Nebula with reasonable statistical accuracy. Excluding the
data of a strong flare, we find evidence that the 1998--1999 low-flux spectrum
is substantially softer (by 0.44+-0.1(stat) in spectral index) than the 1997
time averaged spectrum. The 500 GeV to 10 TeV energy spectrum can well be
described by a power law model with exponential cutoff: dN/dE ~ E^(-alpha)
exp(-E/E0) with alpha=2.31+-0.22(stat), and E0=5.1 (-2.3+7.8)(stat) TeV. Within
statistical accuracy, also a pure power law model gives an acceptable fit to
the data: dN/dE ~ E^(-Gamma) with Gamma=2.76+-0.08(stat). After presenting the
1998-1999 TeV characteristics of the source we discuss the implications of the
results.Comment: Accepted for publication in The Astrophysical Journal, Part 1, on
August 4th, 200
- …
