13 research outputs found

    Near Infrared Investigation of Polypropylene-Clay Nanocomposites for Further Quality Control Purposes-Opportunities and Limitations

    Get PDF
    YesPolymer nanocomposites are usually characterized using various methods, such as small angle X-ray diffraction (XRD) or transmission electron microscopy, to gain insights into the morphology of the material. The disadvantages of these common characterization methods are that they are expensive and time consuming in terms of sample preparation and testing. In this work, near infrared spectroscopy (NIR) spectroscopy is used to characterize nanocomposites produced using a unique twin-screw mini-mixer, which is able to replicate, at ~25 g scale, the same mixing quality as in larger scale twin screw extruders. We correlated the results of X-ray diffraction, transmission electron microscopy, G′ and G″ from rotational rheology, Young’s modulus, and tensile strength with those of NIR spectroscopy. Our work has demonstrated that NIR-technology is suitable for quantitative characterization of such properties. Furthermore, the results are very promising regarding the fact that the NIR probe can be installed in a nanocomposite-processing twin screw extruder to measure inline and in real time, and could be used to help optimize the compounding process for increased quality, consistency, and enhanced product propertie

    Near IR spectroscopy for the characterization of dispersion in polymer-clay nanocomposites

    Get PDF
    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Since their potential has become widely recognized, one of the major research lines on polymer-clay nanocomposites has focused on the preparation of well-dispersed systems. Currently, there is an understanding that a high degree of dispersion, particularly exfoliation, of the nanoclay is required to improve the overall performance. Twin screw extrusion not only allows for control of the main variables (shear, stress and time), but also, due to the typical modular construction, offers a high degree of freedom in creating the adequate screw design and enables knowledgeable alteration of the barrel. These features offer a solid basis for the development and implementation of apt in-line/on-line monitoring techniques, able to follow up the evolution of dispersion of polymer-clay nanocomposites during processing. This chapter includs the validation, implementation, and application of a methodology based on inline near-infrared (NIR) spectroscopy for the characterization of the dispersion along the extruder axis. Overall, the results obtained confirm that NIR is a valid tool for the on-line characterization of these materials, offering the possibility of assessing in real time the clay dispersion, enabling proper corrective and/or optimization actions over the material characteristics in a timely manner.(undefined

    Near Infrared Investigation of Polypropylene–Clay Nanocomposites for Further Quality Control Purposes—Opportunities and Limitations

    No full text
    Polymer nanocomposites are usually characterized using various methods, such as small angle X-ray diffraction (XRD) or transmission electron microscopy, to gain insights into the morphology of the material. The disadvantages of these common characterization methods are that they are expensive and time consuming in terms of sample preparation and testing. In this work, near infrared spectroscopy (NIR) spectroscopy is used to characterize nanocomposites produced using a unique twin-screw mini-mixer, which is able to replicate, at ~25 g scale, the same mixing quality as in larger scale twin screw extruders. We correlated the results of X-ray diffraction, transmission electron microscopy, G′ and G″ from rotational rheology, Young’s modulus, and tensile strength with those of NIR spectroscopy. Our work has demonstrated that NIR-technology is suitable for quantitative characterization of such properties. Furthermore, the results are very promising regarding the fact that the NIR probe can be installed in a nanocomposite-processing twin screw extruder to measure inline and in real time, and could be used to help optimize the compounding process for increased quality, consistency, and enhanced product properties

    In-line near-infrared spectroscopy : a tool to monitor the preparation of polymer-clay nanocomposites in extruders

    No full text
    Article first published online: 11 JUN 2012In-line diffuse reflectance and on-line transmission near-infrared spectroscopy (NIR) measurements are performed at the same location of the barrel of a twin screw extruder during the preparation of a polypropylene/clay nanocomposite. Their performance is evaluated by means of a 7-parameter chemometric model using off-line rheological and structural (FTIR) data obtained from samples prepared under different screw speed, compatibilizer content and clay loading, as well as a process-related thermomechanical index. Despite the higher variability of the diffuse reflectance signal, the two models present analogous high quality indices. The aptness of the reflectance measurements is thus validated, which has direct practical advantages, as this probe can be fixed in any typical melt pressure transducer port. The probe is then used for the real-time in-line monitoring of the production of the same nanocomposite but now using different throughputs, and the chemometric-based predictions are compared with experimental off-line characterization data. The nonlinear effect of throughput is correctly anticipated
    corecore