28 research outputs found

    Pitfalls in the characterization of circulating and tissue-resident human γδ T cells

    Get PDF
    Dissection of the role and function of human γδ T cells and their heterogeneous subsets in cancer, inflammation, and auto-immune diseases is a growing and dynamic research field of increasing interest to the scientific community. Therefore, harmonization and standardization of techniques for the characterization of peripheral and tissue-resident γδ T cells is crucial to facilitate comparability between published and emerging research. The application of commercially available reagents to classify γδ T cells, in particular the combination of multiple Abs, is not always trouble-free, posing major demands on researchers entering this field. Occasionally, even entire γδ T cell subsets may remain undetected when certain Abs are combined in flow cytometric analysis with multicolor Ab panels, or might be lost during cell isolation procedures. Here, based on the recent literature and our own experience, we provide an overview of methods commonly employed for the phenotypic and functional characterization of human γδ T cells including advanced polychromatic flow cytometry, mass cytometry, immunohistochemistry, and magnetic cell isolation. We highlight potential pitfalls and discuss how to circumvent these obstacles

    Application of circulating cell-free tumor DNA profiles for therapeutic monitoring and outcome prediction in genetically heterogeneous metastatic melanoma

    Get PDF
    PURPOSE Circulating cell-free tumor DNA (ctDNA) reflects the heterogeneousspectrum of tumor-specific mutations, especially in systemic disease. We validated plasma-based assays that allow the dynamic quantitative detection of ctDNA as a prognostic biomarker for tumor load and prediction of therapy response in melanoma. MATERIALS and METHODS We analyzed plasma-derived ctDNA from a large training cohort (n = 96) of patients with advanced-stage melanoma, with assays for the BRAFV600E and NRASQ61 driver mutations as well as TERTC250T and TERTC228T promoter mutations. An independent patient cohort (n = 35) was used to validate the utility of ctDNA monitoring under mitogen-activated protein kinase–targeted or immune checkpoint therapies. RESULTS Elevated plasma ctDNA level at baseline was an independent prognostic factor of disease progression when compared with serum S100 and lactate dehydrogenase levels in multivariable analyses (hazard ratio [HR], 7.43; 95% CI, 1.01 to 55.19; P = .05). The change in ctDNA levels during therapy correlated with treatment response, where increasing ctDNA was predictive for shorter progression-free survival (eg, for BRAFV600EctDNA, HR, 3.70; 95% CI, 1.86 to 7.34; P < .001). Increasing ctDNA levels predicted disease progression significantly earlier than did routine radiologic scans (P < .05), with a mean lead time of 3.5 months. NRAS-mutant ctDNA was detected in a significant proportion of patients with BRAF-mutant tumors under therapy, but unexpectedly also at baseline. In vitro sensitivity studies suggested that this represents higher-than-expected intratumoral heterogeneity. The detection of NRASQ61 ctDNA in baseline samples of patients with BRAFV600E mutation who were treated with mitogen-activated protein kinase inhibitors significantly correlated with shorter progression-free survival (HR, 3.18; 95% CI, 1.31 to 7.68; P = .03) and shorter overall survival (HR, 4.08; 95% CI, 1.57 to 10.58; P = .01). CONCLUSION Our results show the potential role of ctDNA measurement as a sensitive monitoring and prediction tool for the early assessment of disease progression and therapeutic response in patients with metastaticmelanoma

    Peripheral blood T-cell signatures from high-resolution immune phenotyping of γδ and αβ T-cells in younger and older subjects in the Berlin Aging Study II

    Get PDF
    Background Aging and latent infection with Cytomegalovirus (CMV) are thought to be major factors driving the immune system towards immunosenescence, primarily characterized by reduced amounts of naïve T-cells and increased memory T-cells, potentially associated with higher morbidity and mortality. The composition of both major compartments, γδ as well as αβ T-cells, is altered by age and CMV, but detailed knowledge of changes to the γδ subset is currently limited. Results Here, we have surveyed a population of 73 younger (23–35 years) and 144 older (62–85 years) individuals drawn from the Berlin Aging Study II, investigating the distribution of detailed differentiation phenotypes of both γδ and αβ T-cells. Correlation of frequencies and absolute counts of the identified phenotypes with age and the presence of CMV revealed a lower abundance of Vδ2-positive and a higher amount of Vδ1-positive cells. We found higher frequencies of late-differentiated and lower frequencies of early-differentiated cells in the Vδ1+ and Vδ1-Vδ2-, but not in the Vδ2+ populations in elderly CMV-seropositive individuals confirming the association of these Vδ2-negative cells with CMV-immunosurveillance. We identified the highest Vδ1:Vδ2 ratios in the CMV-seropositive elderly. The observed increased CD4:CD8 ratios in the elderly were significantly lower in CMV-seropositive individuals, who also possessed a lower naïve and a larger late-differentiated compartment of CD8+ αβ T-cells, reflecting the consensus in the literature. Conclusions Our findings illustrate in detail the strong influence of CMV on the abundance and differentiation pattern of γδ T-cells as well as αβ T-cells in older and younger people. Mechanisms responsible for the phenotypic alterations in the γδ T-cell compartment, associated both with the presence of CMV and with age require further clarification

    Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment

    Get PDF
    Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development. Experimental cancer immunology and therap

    PLoS Pathog

    Get PDF
    Cytomegalovirus (CMV) is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αβ and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αβ T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε-/- mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27- γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag-/-γc-/- mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αβ T cell compromised patients

    Frequencies of peripheral immune cells in older adults following seasonal influenza vaccination with an adjuvanted vaccine

    No full text
    As age increases, immune responses and consequently protection following vaccination to seasonal influenza is commonly believed to decrease. Possible drivers of this immune dysfunction include immunosenescence, repeated exposure to the same seasonal influenza antigens, and prior infection with cytomegalovirus (CMV). Here, to determine immune parameters distinguishing vaccine humoral responders (R) from non-responders (NR) following vaccination, we surveyed broad peripheral blood “cellular immune correlates” of older adults vaccinated with Fluad® (an adjuvanted subunit influenza vaccine containing strains H1N1, H3N2 and B). Phenotyping included αβ-T-cells, γδ-T-cells, B-cells and myeloid cells. The frequencies of most of these lymphocyte phenotypes were found to be similar in R and NR, although perhaps counterintuitively, one of the few differences seen between the two groups was higher frequencies of regulatory T-cells in R. These differences were more prominent for responses to the vaccine strains H1N1 and H3N2 than to the B strain, and in CMV-seropositive than CMV-seronegative elderly. Further, frequencies of early-differentiated CD4+ T-cells tended to be higher and frequencies of memory CD4+ T-cells tended to be lower in R than NR. There were also differences in B-cells, with higher frequencies in R compared to NR. To the best of our knowledge, these results are the first to report such differences in elderly people responding or failing to respond to adjuvanted seasonal influenza vaccination. © 2017 Elsevier Lt
    corecore