818 research outputs found

    The role of the alloy structure in the magnetic behavior of granular systems

    Get PDF
    The effect of grain size, easy magnetization axis and anisotropy constant distributions in the irreversible magnetic behavior of granular alloys is considered. A simulated granular alloy is used to provide a realistic grain structure for the Monte Carlo simulation of the ZFC-FC curves. The effect of annealing and external field is also studied. The simulation curves are in good agreement with the FC and ZFC magnetization curves measured on melt spun Cu-Co ribbons.Comment: 13 pages, 10 figures, submitted to PR

    Ambiguous figures and the content of experience

    Get PDF
    Representationalism is the position that the phenomenal character of an experience is either identical with, or supervenes on, the content of that experience. Many representationalists hold that the relevant content of experience is nonconceptual. I propose a counterexample to this form of representationalism that arises from the phenomenon of Gestalt switching, which occurs when viewing ambiguous figures. First, I argue that one does not need to appeal to the conceptual content of experience or to judgements to account for Gestalt switching. I then argue that experiences of certain ambiguous figures are problematic because they have different phenomenal characters but that no difference in the nonconceptual content of these experiences can be identified. I consider three solutions to this problem that have been proposed by both philosophers and psychologists and conclude that none can account for all the ambiguous figures that pose the problem. I conclude that the onus is on representationalists to specify the relevant difference in content or to abandon their position

    Microscopic Calculation of the Constitutive Relations

    Full text link
    Homogenization theory is used to calculate the macroscopic dielectric constant from the quantum microscopic dielectric function in a periodic medium. The method can be used to calculate any macroscopic constitutive relation, but it is illustrated here for the case of electrodynamics of matter. The so-called cell problem of homogenization theory is solved and an explicit expression is given for the macroscopic dielectric constant in a form akin to the Clausius-Mossotti or Lorentz-Lorenz relation. The validity of this expression is checked by showing that the macroscopic dielectric constant is causal and has the expected symmetry properties, and that the average of the microscopic energy density is the macroscopic one. Finally, the general expression is applied to Bloch eigenstates. Finally, the corresponding many-body problem is briefly discussed.Comment: 14 pages, 2 figure

    Calculated optical properties of Si, Ge, and GaAs under hydrostatic pressure

    Full text link
    The macroscopic dielectric function in the random-phase-approximation without local field effect has been implemented using the local density approximation with an all electron, full-potential linear muffin-tin orbital basis-set. This method is used to investigate the optical properties of the semiconductors Si, Ge, and GaAs under hydrostatic pressure. The pressure dependence of the effective dielectric function is compared to the experimental data of Go\~ni and coworkers, and an excellent agreement is found when the so called ``scissors-operator'' shift (SOS) is used to account for the correct band gap at Γ\Gamma. The effect of the 3d3d semi-core states in the interband transitions hardly changes the static dielectric function, ϵ\epsilon_\infty; however, their contribution to the intensity of absorption for higher photon energies is substantial. The spin-orbit coupling has a significant effect on ϵ\epsilon_\infty of Ge and GaAs, but not of Si. The E1E_1 peak in the dynamical dielectric function is strongly underestimated for Si, but only slightly for Ge and GaAs, suggesting that excitonic effects might be important only for Si.Comment: 29 RevTex pages and 12 figs; in press in Physical Review

    HL-1 cells express an inwardly rectifying K+ current activated via muscarinic receptors comparable to that in mouse atrial myocytes

    Get PDF
    An inwardly rectifying K^+ current is present in atrial cardiac myocytes that is activated by acetylcholine (I_{KACh}). Physiologically, activation of the current in the SA node is important in slowing the heart rate with increased parasympathetic tone. It is a paradigm for the direct regulation of signaling effectors by the Gβγ G-protein subunit. Many questions have been addressed in heterologous expression systems with less focus on the behaviour in native myocytes partly because of the technical difficulties in undertaking comparable studies in native cells. In this study, we characterise a potassium current in the atrial-derived cell line HL-1. Using an electrophysiological approach, we compare the characteristics of the potassium current with those in native atrial cells and in a HEK cell line expressing the cloned Kir3.1/3.4 channel. The potassium current recorded in HL-1 is inwardly rectifying and activated by the muscarinic agonist carbachol. Carbachol-activated currents were inhibited by pertussis toxin and tertiapin-Q. The basal current was time-dependently increased when GTP was substituted in the patch-clamp pipette by the non-hydrolysable analogue GTPγS. We compared the kinetics of current modulation in HL-1 with those of freshly isolated atrial mouse cardiomyocytes. The current activation and deactivation kinetics in HL-1 cells are comparable to those measured in atrial cardiomyocytes. Using immunofluorescence, we found GIRK4 at the membrane in HL-1 cells. Real-time RT-PCR confirms the presence of mRNA for the main G-protein subunits, as well as for M2 muscarinic and A1 adenosine receptors. The data suggest HL-1 cells are a good model to study IKAch

    Exact Kohn-Sham exchange kernel for insulators and its long-wavelength behavior

    Full text link
    We present an exact expression for the frequency-dependent Kohn-Sham exact-exchange (EXX) kernel for periodic insulators, which can be employed for the calculation of electronic response properties within time-dependent (TD) density-functional theory. It is shown that the EXX kernel has a long-wavelength divergence behavior of the exact full exchange-correlation kernel and thus rectifies one serious shortcoming of the adiabatic local-density approximation and generalized-gradient approximations kernels. A comparison between the TDEXX and the GW-approximation-Bethe-Salpeter-equation approach is also made.Comment: two column format 6 pages + 1 figure, to be publisehd in Physical Review

    Electronic states and optical properties of GaAs/AlAs and GaAs/vacuum superlattices by the linear combination of bulk bands method

    Full text link
    The linear combination of bulk bands method recently introduced by Wang, Franceschetti and Zunger [Phys. Rev. Lett.78, 2819 (1997)] is applied to a calculation of energy bands and optical constants of (GaAs)n_n/(AlAs)n_n and (GaAs)n_n/(vacuum)n_n (001) superlattices with n ranging from 4 to 20. Empirical pseudopotentials are used for the calculation of the bulk energy bands. Quantum-confined induced shifts of critical point energies are calculated and are found to be larger for the GaAs/vacuum system. The E1E_1 peak in the absorption spectra has a blue shift and splits into two peaks for decreasing superlattice period; the E2E_2 transition instead is found to be split for large-period GaAs/AlAs superlattices. The band contribution to linear birefringence of GaAs/AlAs superlattices is calculated and compared with recent experimental results of Sirenko et al. [Phys. Rev. B 60, 8253 (1999)]. The frequency-dependent part reproduces the observed increase with decreasing superlattice period, while the calculated zero-frequency birefringence does not account for the experimental results and points to the importance of local-field effects.Comment: 10 pages, 11 .eps figures, 1 tabl

    Saints and lovers: myths of the avant-garde in Michel Georges-Michel's Les Montparnos

    Get PDF
    This article examines Michel Georges-Michel’s 1924 novel Les Montparnos as a study of the myths circulating around the Montparnasse avant-garde of the 1920s, and their function in relation to art. Key amongst these myths is the idea of art as a religion, according to which avant-garde artists are conceived as secular saints and martyrs. While this notion of artist as saint is strongly present in early-twentieth-century biographies of Van Gogh, Georges-Michel explicitly relates his fictionalized version of Modigliani’s life not to such recent models but rather to the Renaissance masters, and especially to Raphael, a link which is explained in terms of the post-war ‘retour à l’ordre’ in French artistic culture. The novel’s references to Raphael as archetypal painter-lover are also related to its construction of a myth of the artist as virile and sexually prolific, and to its identification of creative and sexual impulses
    corecore