140 research outputs found

    Squeezing via feedback

    Get PDF
    We present the quantum theory of optical cavity feedback mediated by homodyne detection, with an arbitrary time delay. We apply this theory to a system with nonclassical dynamics, a sub-Poissonian pumped laser. By using the feedback to phase lock the laser it is possible to produce output light which exhibits perfect quadrature squeezing on resonance, rather than just sub-Poissonian intensity statistics. However, we also show that feedback mediated by homodyne detection (or any other extracavity measurement) cannot produce nonclassical light unless the cavity dynamics can do so without feedback. Furthermore, in systems which already exhibit squeezing, such feedback can only degrade the squeezing in the output. With feedback mediated by an intracavity measurement, these theorems do not apply. We show that an (admittedly unrealistic) intracavity quantum nondemolition quadrature measurement allows arbitrary squeezing to be produced by controlling the amplitude of a coherent driving field

    Removal of a single photon by adaptive absorption

    Get PDF
    We present a method to remove, using only linear optics, exactly one photon from a field-mode. This is achieved by putting the system in contact with an absorbing environment which is under continuous monitoring. A feedback mechanism then decouples the system from the environment as soon as the first photon is absorbed. We propose a possible scheme to implement this process and provide the theoretical tools to describe it

    Non Uniform Black Strings and Critical Dimensions in AdSdAdS_d

    Full text link
    We study the equations of black strings in spacetimes of arbitrary dimensions with a negative cosmological constant and construct numerically non uniform black strings solutions. Our results suggest the existence of a localised black hole in asymptotically locally AdSAdS spacetime. We also present evidences for a dependence of the critical dimension on the horizon radius.The critical dimension represents the dimension where the order of the phase transition between uniform and non uniform black string changes. Finally, we argue that both, the regular asymptotically locally AdSAdS solution and AdSAdS black string solutions with a very small horizon radius, present a negative tension. This turns out to be an unexpected feature of the solutions.Comment: 13 pages, 5 figure

    Three-Charge Black Holes on a Circle

    Get PDF
    We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the constant entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes.Comment: 58 pages, 10 figures; v2: Corrected typos, version appearing in JHE

    New Phases of Near-Extremal Branes on a Circle

    Full text link
    We study the phases of near-extremal branes on a circle, by which we mean near-extremal branes of string theory and M-theory with a circle in their transverse space. We find a map that takes any static and neutral Kaluza-Klein black hole, i.e. any static and neutral black hole on Minkowski-space times a circle M^d x S^1, and map it to a corresponding solution for a near-extremal brane on a circle. The map is derived using first a combined boost and U-duality transformation on the Kaluza-Klein black hole, transforming it to a solution for a non-extremal brane on a circle. The resulting solution for a near-extremal brane on a circle is then obtained by taking a certain near-extremal limit. As a consequence of the map, we can transform the neutral non-uniform black string branch into a new non-uniform phase of near-extremal branes on a circle. Furthermore, we use recently obtained analytical results on small black holes in Minkowski-space times a circle to get new information about the localized phase of near-extremal branes on a circle. This gives in turn predictions for the thermal behavior of the non-gravitational theories dual to these near-extremal branes. In particular, we give predictions for the thermodynamics of supersymmetric Yang-Mills theories on a circle, and we find a new stable phase of (2,0) Little String Theory in the canonical ensemble for temperatures above its Hagedorn temperature.Comment: 72 pages, 5 figures. v2: Typos fixed, refs. added. v3: Sec. 3.2 fixe

    An entangled two photon source using biexciton emission of an asymmetric quantum dot in a cavity

    Get PDF
    A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative decay of an electrically-pumped biexciton in a quantum dot. Symmetric dots produce polarisation entanglement, but experimentally-realised asymmetric dots produce photons entangled in both polarisation and frequency. In this work, we investigate the possibility of erasing the `which-path' information contained in the frequencies of the photons produced by asymmetric quantum dots to recover polarisation-entangled photons. We consider a biexciton with non-degenerate intermediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the non-degenerate exciton transition frequencies. An open quantum system approach is used to compute the polarisation entanglement of the two-photon state after it escapes from the cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to the degree of Bell-inequality violation, deriving a threshold at which Bell-inequality violations will be observed. Our results show that an ideal cavity will produce maximally polarisation-entangled photon pairs, and even a non-ideal cavity will produce partially entangled photon pairs capable of violating a Bell-inequality.Comment: 16 pages, 10 figures, submitted to PR

    Decoherence control in microwave cavities

    Full text link
    We present a scheme able to protect the quantum states of a cavity mode against the decohering effects of photon loss. The scheme preserves quantum states with a definite parity, and improves previous proposals for decoherence control in cavities. It is implemented by sending single atoms, one by one, through the cavity. The atomic state gets first correlated to the photon number parity. The wrong parity results in an atom in the upper state. The atom in this state is then used to inject a photon in the mode via adiabatic transfer, correcting the field parity. By solving numerically the exact master equation of the system, we show that the protection of simple quantum states could be experimentally demonstrated using presently available experimental apparatus.Comment: 13 pages, RevTeX, 8 figure

    Radion and Holographic Brane Gravity

    Get PDF
    The low energy effective theory for the Randall-Sundrum two brane system is investigated with an emphasis on the role of the non-linear radion in the brane world. The equations of motion in the bulk is solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for the gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function omega(Psi) = 3 Psi / 2(1-Psi) on the positive tension brane and omega(Phi) = -3 Phi / 2(1+Phi) on the negative tension brane, where Psi and Phi are non-linear realizations of the radion on the positive and negative tension branes, respectively. In contrast to the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter, namely, the matters on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Psi and Phi couples with the sum of the traces of the energy momentum tensor on both branes. In the course of the derivation, it has been revealed that the radion plays an essential role to convert the non-local Einstein gravity with the generalized dark radiation to the local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that the quasi-scalar-tensor gravity works as holograms at the low energy in the sense that the bulk geometry can be reconstructed from the solution of the quasi-scalar-tensor gravity.Comment: Revtex4, 18 pages, revised version, conclusions unchanged, references adde
    corecore