
ar
X

iv
:c

on
d-

m
at

/0
21

16
89

 v
1 

  2
9 

N
ov

 2
00

2
An entangled two photon source using biexciton emission of an asymmetric quantum

dot in a cavity

T.M. Stace,1 G.J. Milburn,2, 3 and C.H.W. Barnes1

1Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK∗

2DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, UK
3Centre for Quantum Computer Technology, University of Queensland, St Lucia, QLD 4072, Australia

(Dated: November 29, 2002)

A semiconductor based scheme has been proposed for generating entangled photon pairs from the
radiative decay of an electrically-pumped biexciton in a quantum dot. Symmetric dots produce po-
larisation entanglement, but experimentally-realised asymmetric dots produce photons entangled in
both polarisation and frequency. In this work, we investigate the possibility of erasing the ‘which-
path’ information contained in the frequencies of the photons produced by asymmetric quantum
dots to recover polarisation-entangled photons. We consider a biexciton with non-degenerate inter-
mediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the
non-degenerate exciton transition frequencies. An open quantum system approach is used to com-
pute the polarisation entanglement of the two-photon state after it escapes from the cavity, measured
by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to
the degree of Bell-inequality violation, deriving a threshold at which Bell-inequality violations will
be observed. Our results show that an ideal cavity will produce maximally polarisation-entangled
photon pairs, and even a non-ideal cavity will produce partially entangled photon pairs capable of
violating a Bell-inequality.

PACS numbers: 78.67.Hc 12.20.Ds 03.65.Yz, 42.50.Ct 42.50.Lc,

I. INTRODUCTION

Recent proposals for quantum communication [1, 2]
and quantum information protocols [3] provide a signifi-
cant incentive to develop practical single photon sources
and entangled two photon sources. The first requirement
for such sources is that the emission times of the photons
be periodic with a precisely defined clocked frequency.
Exciton recombination in electrically or optically excited
quantum dots is a candidate system for such sources.
In this paper we will discuss an entangled two photon
source based on recent experiments in self assembled in-
terface quantum dots [4, 5]. A proposal for producing
entangled photon-pairs on demand based on biexciton
emission from a quantum dot was recently presented by
Benson et al. [6].

A pair of excitons confined in a quantum dot form a
bound state known as a biexciton. The decay of the biex-
citon proceeds by consecutive single electron hole recom-
bination processes. This is estabished experimentally by
the temporal correlation of the biexciton emission and
the exciton emission; time resolved photoluminescence
measurements show the exciton photon to be emitted
after the biexciton photon [5]. A similar time resolved
study of the polarisation of the emitted photons shows
that there are two decay paths, and it has been shown
that they are coherent with one another [7]. While the
biexciton photon and the exciton photon emitted in each
decay path have the same linear polarisation, the polar-
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istion in different decay paths are orthogonal. If these
decay paths were indistinguishable then this would be a
good candidate for an entangled two photon source. Un-
fortunately small asymmetries in the physical geomery of
the dots makes the two paths distinguishable, since the
asymmetry of the dot breaks the degeneracy of an inter-
mediate exciton level enabling the two paths to be dis-
tinguished by frequency. The effect of asymmetry on the
spectrum of excitons in dots was observed experimentally
in dots formed by monolayer fluctuations in a GaAs 2D
quantum well [8] and has been addressed theoretically [9].
It has also been observed experimentally in CdSe/ZnSe
dots [10] and in self assembled GaAs/InGaAs dots [11].
In Fig. 1(a) we indicate the possible decay paths from a
single biexciton level through two non degenerate exci-
ton levels to the ground state of the dot. The first decay
path corresponds to the emission of a biexciton photon
with linear polarisation in the x-direction at frequency
ω1, followed by the emission of the exciton photon, with
the same polarisation, at frequency ω2. In the second
decay path the biexciton emits a y-polarised photon at
frequency ω3 followed by the exciton emission, also with
y-polarisation, at frequency ω4.

The state of the emitted photon pairs may then be
written as

|ψ1〉 = (|x, ω1; x, ω2〉 + |y, ω3; y, ω4〉)/
√

2, (1)

where the notation indicates the mode (polarisation
and frequency) occupied by each photon of the pair,
|photon 1; photon 2〉, with the order reflecting the order
of emission. It has been established experimentally that
the weights of the kets are equal [11]. In contrast, we
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wish to produce a state of the form

|ψ2〉 = |x, ωA; x, ωB〉 + |y, ωA; y, ωB〉/
√

2, (2)

and we call such a state polarisation entangled, since the
entanglement is only in the polarisation degree of free-
dom. This is in contrast to the state given by Eq. (1)
which is entangled in both polarisation and frequency.
The important difference between states |ψ1〉 and |ψ2〉
is that the second ket in |ψ2〉 may be rotated into the
first ket using linear optical elements such as half-wave
plates (HWP) and polarising beam splitters (PBS), and
vice-versa, whereas this is not possible for the two kets
written in state |ψ1〉. Thus, for instance, Bell-inequality
measurements and two-photon interference experiments
may be performed with realtive ease using |ψ1〉 but not
|ψ2〉, and this translates to a technological setting in, for
instance, quantum key distribution.

The problem of producing frequency-and-polarisation
entangled states akin to |ψ1〉 has been considered for
photon pairs produced by spontaneous parametric down-
conversion in a nonlinear crystal [12]. In this case pho-
tons are also entangled both in polarisation and fre-
quency, though the frequency entanglement is more com-
plicated. The frequencies for the two emitted photons are
constrained by energy conservation, so that their sum
must equal the frequency of the absorbed pump pho-
ton. Since this single constraint does notdetermine the
frequencies of the two emitted photons uniquely, each
photon of the pair may be emitted over a wide range
of frequencies determined by the spectrum of the pump
pulse and the phase matching requirement (which is an
expression of momentum conservation). Thus the photon
pair is entangled in its frequency degree of freedom.

A resolution to this problem, presented and experi-
mentally implemented in [12], is to pass the signal and
idler beams back through the crystal, but with the po-
larisations rotated through π/2, with the result that the
two ways in which the photons can be emitted with cor-
related polarisation are not distinguished by frequency.
This scheme in [12] does not directly translate to the
case of biexcitonic emission, but we nevertheless wish to
remove the spectral dependence from the entanglement
in state |ψ1〉, so the aim of this paper is to present and
analyse a proposal to accomplish this for the biexciton
entangled photon source.

In this paper we demonstrate that the frequency may
be disentangled from the polarisation by placing the dot
in an external cavity with suitably chosen cavity-exciton
coupling strengths and cavity mode frequencies. We will

show that the external cavity can erase the “which-path”
information contained in the frequency components of
state |ψ1〉. The external cavity is used to control both
the spectral and spatial mode structure of the emitted
photons to enable the entanglement to be demonstrated
in an interferometer. A similar idea using waveguides for
SPDC has been proposed by Banaszek et al [13]. We note
that the original proposal for the two-photon source [6]
includes the external cavity, but its presence is only to in-
crease the outcoupling efficiency, and only brief mention
is made of its effect upon the spectral emission properties
of the emitted photons.

The next part of this paper begins by defining a Hamil-
tonian for a four level system interacting with optical
cavity modes. A master equation is developed in the
third section to deal with photons leaking from the cav-
ity and into some measurement apparatus, as well as to
account for decoherence events such as photon loss. In
the fourth section, we discuss some operational defini-
tions to quantify the entanglement of the photons pro-
duced, such as two-photon visibility and Bell-inequality
violations, with the aid of which we judge the efficacy of
the cavity in restoring the polarisation entanglement. We
then provide some results in the fifth and sixth sections
showing that an ideal cavity does establish maximally
entangled photon pairs, and numerical results showing
how sensitive the resulting state is to imperfections in
the system parameters. We then provide some heuristic
analytic results in the discussion which explain the nu-
merical results, as well as comment on implications for
experiments, and finally conclude the paper.

II. SYSTEM HAMILTONIAN

Figure 1(a) shows the energy levels and available dipole
transitions for the biexciton-cavity system. The biexci-
ton state is given by |XX〉, |Xx〉 and |Xy〉 are the inter-
mediate excitonic states in the x and y polarisation decay
paths respectively and |G〉 is the dot ground state. The
cavity is assumed to support pairs of degenerate x- and y-
polarised modes at frequencies ωA and ωB. In our model,
we do not include coupling between for instance the cav-
ity mode |ωA, x〉 and the transition |G〉 ↔ |Xx〉 which is
valid assuming the detuning between them is much larger
than the cavity-exciton coupling strength, which is the
case for this system. The system Hamiltonian, Hsys, un-
der the rotating wave and dipole approximations [14, 15]
is then

Hsys = ω0|XX〉〈XX| + ω2|Xx〉〈Xx| + ω4|Xy〉〈Xy| + ωA(n̂x,ωA
+ n̂y,ωA

) + ωB(n̂x,ωB
+ n̂y,ωB

)

+
i

2
(q1|Xx〉〈XX|a†x,ωA

+ q2|G〉〈Xx|a†x,ωB
+ q3|Xy〉〈XX|a†y,ωA

+ q4|G〉〈Xy|a†x,ωA
− H.c.), (3)
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(a) (b)

FIG. 1: (a) Energy level diagram and available transitions for the quantum dot and cavity system. (b) Spectrum of exciton
transitions (dotted line) and cavity modes (solid line) indicating the relevant frequencies for the interaction Hamiltonian.

where aj and n̂j = a†jaj are respectively the photon anni-
hilation operator and photon number operator for mode
j, and for convenience we take ~ = 1. We transform to
an interaction picture defined by H0 = ω0

2 N̂ , where

N̂ = 2|XX〉〈XX| + |Xx〉〈Xx| + |Xy〉〈Xy|
+ n̂x,ωA

+ n̂y,ωA
+ n̂x,ωB

+ n̂y,ωB
(4)

is the number of excitations in the system. The inter-
action Hamiltonian, H = eiH0tHsyse

−iH0t −H0, is given
by

H = − ξ|Xx〉〈Xx| − (ξ + ∆)|Xy〉〈Xy| + (ξ + δA)(n̂x,ωA
+ n̂y,ωA

) − (ξ + δB)(n̂x,ωB
+ n̂y,ωB

)

+
i

2
(q1|Xx〉〈XX|a†x,ωA

+ q2|G〉〈Xx|a†x,ωB
+ q3|Xy〉〈XX|a†y,ωA

+ q4|G〉〈Xy|a†x,ωA
− H.c.), (5)

where 2ξ = ω1−ω2 is the biexciton shift, ∆ = ω3 −ω1 =
ω2 − ω4 is the doublet splitting due to dot asymmetry,
δA = ωA−ω1 is the detuning between cavity mode A and
transition frequency ω1 and δB = ω2 − ωB is the detun-
ing between transition frequency ω2 and cavity mode B.
These frequencies are shown schematically in Fig. 1(b)..

We now define a “balanced cavity” to be one for which
the two cavity modes fall directly in between each of the
doublets (δA = δB = ∆/2) and the exciton-cavity cou-
pling constants are matched (q1 = q3 and q2 = q4). An
“unbalanced cavity” is one for which δA,B 6= ∆/2, and
“unbalanced coupling” means that q1 6= q3 or q2 6= q4).
We will show later that a balanced cavity accomplishes
the required “which-path” erasure.

The dynamics of states under the action of the time
evolution operator, e−iHt, generated by the Hamiltonian
H is closed in the 12-dimensional space spanned by the
basis B, which is shown in Fig. 2.

Finally, we assume that the initial state of the system
is biexcitonic, |ψ(0)〉 = |XX〉|00〉|00〉.

III. DERIVATION OF MASTER EQUATION

The theory of open quantum systems has been well
studied (see e.g. [16, 17]), and we adopt this formalism
to analyse the exciton-cavity system interacting with the
external continuum modes and measurement devices out-
side the cavity.

Wiseman [16] gives an expression for the master equa-
tion for the conditional density matrix, ρc, for a single
measurement channel using imperfect detectors, while
Gardiner and Zoller [17] give a similar expression for
many channels with perfect detection on each channel.
Generalizing these results to an n channel conditional
master equation with arbitrary efficiency detectors on
each channel results in the conditional master equation
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FIG. 2: The basis B for the evolution of the system along with transitions generated by the Hamiltonian H and cavity leakage.
Coupling strengths between states are indicated. The top line of states spans the subspace of two excitations (i.e. exciton
number plus photon number), the middle line spans the subspace of one excitation, and the single state on the last line spans
the subspace of zero excitations.

dρc = −i [H, ρc] dt+

n
∑

j=1

{(

ηj Tr {Jjρc} ρc + (1 − ηj)Jjρc −
1

2
(c†jcjρc + ρcc

†
jcj)

)

dt+

( Jjρc

Tr {Jjρc}
− ρc

)

dNj

}

, (6)

whereH is the interaction Hamiltonian for the system, cj
is the system operator through which the system couples

to channel j, Jjρc ≡ cjρcc
†
j is the jump operator for

channel j, ηj is the detection efficiency of jump processes
on channel j, and dNj is the jump increment. For the
case where ηj = 1 for all j, this equation reproduces
the result in Gardiner and Zoller [17, §11.3.8.d], and for
n = 1 it reproduces the result of Wiseman [16, §4.1.2].

For the biexciton decay, there are several baths with
which the exciton-cavity system is coupled. Firstly, the
cavity modes decay at a rate κ in order to couple the
photons generated in the emission process to the outside
world. This decay mode is coupled to the four cavity
modes, where the system coupling operators are c1 =√
κax,ωA

, c2 =
√
κay,ωA

, c3 =
√
κax,ωB

and c4 =
√
κay,ωB

.
To quantify the effect of the cavity in erasing the fre-
quency information, in what will follow, these channels
are assumed to be perfectly detected, η1 = · · · = η4 = 1.

Secondly, there may be spontaneous emission into pho-
ton modes apart from those of the cavity. This decay
channel couples via similar system operators, but with
different decay rates, so that c5 =

√
Γs|Xx〉〈XX|, c6 =√

Γs|Xy〉〈XX|, c7 =
√

Γs|G〉〈Xx| and c8 =
√

Γs|G〉〈Xy|.
These channels are considered to be inaccessible to an
observer, so we set the detection efficiency to zero, η4 =
· · · = η8 = 0. For later sections, we will refer to these
channels as “leakage channels”.

Finally, we will add a phenomenological dephasing
acting on the two exciton states |Xx〉 and |Xy〉. This
is to simulate the effect of some unspecified bath (e.g.
phonons) that is able to distinguish the intermediate ex-
citonic state during the decay process. The system op-
erators to which this bath couples are assumed to be
c9 =

√
Γd|Xx〉〈Xx|, c10 =

√
Γd|Xy〉〈Xy|. Again, these

channels are inaccessible to observer, so the detection ef-
ficiency is zero, η9 = η10 = 0.

Since ηj = 0 for channels 5 through 10, from [16] we
have E[dNj(t)] = ηj Tr {Jjρc(t)} dt = 0 for j = 5 . . . 10,

and since dNj(t) is non-negative, dNj(t) = 0 for j =
5 . . . 10. In accordance with the assumptions regarding
channel efficiencies made above, the conditional master
equation between photon detections (i.e. dNj = 0, j =
1 . . . 4), becomes

ρ̇c = − i [H, ρc] +

4
∑

j=1

Tr {Jjρc} ρc

+

10
∑

j=5

Jjρc −
10
∑

j=1

1

2
(c†jcjρc + ρcc

†
jcj). (7)

The second term in this equation is non-linear in ρc, re-
flecting the fact that the evolution is conditional on the
system not emitting a photon. For computational pur-
poses, we convert Eq. (7) into an equivalent linear equa-
tion for an unnormalized density matrix ρ̃ by defining
ρc(t) = f(t)ρ̃(t), where f(t) is a scalar function to be
determined. Substituting this into Eq. (7) gives

f ˙̃ρ+ ḟ ρ̃ = − if [H, ρ̃] + f2
4

∑

j=1

Tr {Jj ρ̃} ρ̃

+ f

10
∑

j=5

Jj ρ̃− f

10
∑

j=1

1

2
(c†jcj ρ̃+ ρ̃c†jcj). (8)

Collecting terms that are proportional to f and requiring
that others vanish gives the linear, unnormalized semi-
conditional (i.e. conditioned on only a subset, j = 1 . . . 4,
of the channels) master equation

˙̃ρ = −i [H, ρ̃] +

10
∑

j=5

Jj ρ̃−
10
∑

j=1

1

2
(c†jcj ρ̃+ ρ̃c†jcj), (9)

along with the constraint equation for f

ḟ ρ̃ = f2
4

∑

j=1

Tr {Jj ρ̃} ρ̃. (10)
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FIG. 3: Schematic of a polarisation sensitive interferometer.
A polarising beam splitter (PBS) splits the beam into x- and
y-polarised paths and a relative phase φ is added to one path.
The paths are recombined, and the polarisations are rotated
by π/4 using a half-wave plate (HWP), then detected with
polarisation-sensitive single-photon detectors

This can be integrated to give f =

−(
∫ t
dt

∑4
j=1 Tr {Jj ρ̃})−1. Taking the trace of Eq. (9)

gives Tr
{

˙̃ρ
}

= −
∑4

j=1 Tr {Jj ρ̃}, and so we see that

f = Tr {ρ̃}−1, which is just the normalization condition
for ρc, i.e. ρc = ρ̃/Tr {ρ̃} as required.

IV. QUANTIFYING TWO-PHOTON

ENTANGLEMENT

We now develop a measure of the performance of the
cavity in erasing “which-path” information. A polarisa-
tion entangled photon pair is an archetypal example of
a two-qubit system. Such bipartite systems have been
studied extensively [1], and in particular, the entangle-
ment of such pure bipartite system is well quantified by
the von Neumann entropy of one subsystem.

In the system we are concerned with, there is some sub-
tlety however, since although the system-plus-continuum
evolves to a two photon state, this is only determined
once a measurement has been performed, observing both
photons. Before the measurement, the system evolves in
a much larger Hilbert space, so it is not entirely triv-
ial to adapt measures like entropy to the case of interest
here, not least because under certain circumstances the
photon-pair is described by a mixed state. Instead we use
an operational measure – the visibility. This arises natu-
rally by considering the result of two-photon coincidence
counting at the output of a polarisation sensitive interfer-
ometer, depicted in Fig. 3, through which the photon-pair
is directed.

It is straightforward to show that a pure, entangled
state of the form |xx〉 + |yy〉 passing through such an in-
terferometer with a φ phase-shift (per photon) on one
arm will exhibit interference fringes in the two-photon
coincidence counts between the detectors, with the co-
incidence count rate proportional to 1 − cos(2φ). The
factor of 2 in the argument of the cosine is a direct man-
ifestation of the two particle nature of the state, and this
has been observed experimentally [18].

Conversely, neither a completely mixed state such as
|xx〉〈xx| + |yy〉〈yy| nor a pure, non-entangled state like
|xx〉 will display interference fringes as φ is varied. It is

intuitively clear from these two examples that the visi-
bility of the interference fringes is an operational mea-
sure of both the purity and entanglement of the input
two-photon state, and is dependent on the off-diagonal
elements of the density matrix, which are zero for non-
entangled or completely mixed states.

Interferometric methods for estimating entanglement
have been discussed by Ekert and Horodecki [19]. They
argue that d2−1 separate types of interferometric exper-
iment are required to estimate the entanglement of a pair
of particles, d being the dimension of the Hilbert space
for each particle. For the case of interest to us d = 2,
so we expect three parameters will be sufficient to place
bounds on the entanglement of the photon pair. In fact,
we assume that anti-correlated states such as |xy〉 are
never produced, which is a roughly consistent with ex-
perimental observations showing that inter-exciton tran-
sitions are rare, [11], and so the number of experiments
required is reduced to one. That is, we only need to
measure a single visibility fringe in order to quantify the
two-photon entanglement.

A. Interferometry

Quantitatively, we relate the output continuum field
annihilation operators of the half wave plate, b′x,ω, b

′
y,ω,

to the interferometer input field operators, bx,ω, by,ω, ac-
cording to

[

b′x,ω
b′y,ω

]

=
1√
2

[

eiφ 1
−1 e−iφ

]

·
[

bx,ω
by,ω

]

. (11)

We adopt the notation that a prime on an operator in-
dicates that it is transformed consistently with Eq. (11),
for example n̂′

x,ω = (b′x,ω)†b′x,ω.

The expectation of a two-photon coincidence measure-
ment by detectors 1 and 2 will in general be given by the
normally ordered (denoted by :. . . :) two-time correla-
tion function 〈: n̂′

i,ωB
(tB)n̂′

j,ωA
(tA) :〉c, where i, j ∈ {x, y}

[16, 17, 20]. The subscript c denotes the fact that the
expectation is conditioned on the system having emitted
zero photons in the interval [0,min{tA, tB}), and the or-
dering of the operators in the correlation function will
depend on the ordering of tA and tB.

We may relate the cavity field output operators for the
continuum mode l to the cavity input operators and the
internal cavity operator according to bout(l, t)−bin(l, t) =√
κal(t). We will also assume that the cavity input is the

vacuum so 〈b†in(l, t)bin(l, t
′)〉 = 0 [17]. Thus normally or-

dered expectations of continuum modes may be replaced
by normal-and-time ordered expectations of internal cav-
ity modes, multiplied by a suitable power of

√
κ. More

detailed discussion of this point is given in Gardiner &
Zoller [17].

For example, the conditional expectation of detect-
ing consecutive photons at detector 1 will be given by
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〈: n̂′
x,ωB

(tB)n̂′
x,ωA

(tA) :〉c, and if tB > tA, then

〈: n̂′
x,ωB

(tB)n̂′
x,ωA

(tA) :〉c
= Tr

{

J ′
x,ωB

(tB)T (tB, tA){J ′
x,ωA

(tA)ρc(tA)}
}

, (12)

= κ2 Tr
{

(a′x,ωB
)†a′x,ωB

T (tB, tA){a′x,ωA
ρc(tA)(a′x,ωA

)†}
}

,

where T (tB , tA) is the time evolution operator, which
evolves the system from time tA to time tB, and for open
systems it is non-unitary [17]. Very similar expressions
may be derived for the case where tB < tA.

B. Visibility

Since the transformed operators in Eq. (12) depend
on φ according to Eq. (11), we see that the quantity
〈: n̂′

x,ωB
(tB)n̂′

x,ωA
(t) :〉 must also depend on φ. Many of

the cross terms vanish, leaving the result

〈: n̂′
x,ωB

(tB)n̂′
x,ωA

(tA) :〉 = κ2(x + y + e2iφz + e−2iφz∗),
(13)

where

x ≡ 〈: a†x,ωB
ax,ωB

a†x,ωA
ax,ωA

:〉 = Tr
{

a†x,ωB
ax,ωB

T {ax,ωA
ρca

†
x,ωA

}
}

∈ [0, 1]

y ≡ 〈: a†y,ωB
ay,ωB

a†y,ωA
ay,ωA

:〉 = Tr
{

a†y,ωB
ay,ωB

T {ay,ωA
ρca

†
y,ωA

}
}

∈ [0, 1]

z ≡ 〈: a†y,ωB
ax,ωB

a†y,ωA
ax,ωA

:〉 = Tr
{

a†y,ωB
ax,ωB

T {ax,ωA
ρca

†
y,ωA

}
}

∈ C, (14)

which all depend on tA and tB though this notation has
been dropped for brevity. We can define the visibility, V ,
from this expression to be the amplitude of the interfer-
ence fringes divided by the mean (averaged over φ) and
it is

V(tA, tB) =
2|z|
x+ y

. (15)

Conceptually, V is the visibility of fringes generated
by post-selecting photon pairs that arrive within the
two-time window (tA, tA + dt) × (tB, tB + dt) as φ
varies. We note that we may compute the visibil-
ity directly from ρ̃ by making the definition x̃ ≡
Tr

{

a†x,ωB
ax,ωB

T {ax,ωA
ρ̃a†x,ωA

}
}

, with similar definitions
for ỹ and z̃, so that an equivalent expression for the vis-
ibility is

V(tA, tB) =
2|z̃|
x̃+ ỹ

. (16)

C. Probability density

We may also compute the joint probability density, P ,
for detecting a photon pair within the two-time window

(tA, tA + dt) × (tB, tB + dt), as given in [17, §11.3.7 (d)],

P(tA, tB) =





∑

i,j

〈: n̂′
i,ωB

(tB)n̂′
j,ωA

(tA) :〉c





×



1 −
∫ tA

0

dτ
∑

j

J ′
jT (τ, 0)ρ(0)



 ,

=
∑

i,j

〈: n̂′
i,ωB

(tB)n̂′
j,ωA

(tA) :〉c Tr {ρ̃(tA)} ,

= κ2
∑

i,j

Tr
{

J ′
i,ωB

(tB)T (tB , tA){J ′
j,ωA

(tA)ρ̃(tA)}
}

,

= κ2(x̃+ ỹ) (17)

where we have again assumed tA < tB, although simi-
lar expressions may easily be derived for tA > tB . The
first factor in in the first equality is just the conditional
probability density for either detector to register at times
tA and tB given no emission beforehand, and the second
factor is the probability of emitting zero photons in the
interval [0, tA). The second equality follows from Eq. (10)
and later. The third equality follows from Eq. (12) and
recalling the fact that ρc(t) = ρ̃(t)/Tr {ρ̃(t)}. Finally,
Eq. (17) shows that the probability density does not de-
pend on φ – detecting a photon pair after the interferom-
eter occurs with the same probability density as detecting
a photon pair before the interferometer, as expected.

We also define the quantity

P =

∫ ∞

0

∫ ∞

0

P(tA, tB)dtAdtB . (18)

In the presence of spontaneous emission into non-cavity
photon modes, P < 1, indicating that not all biexciton
decay events will be detected by the photodetectors fol-
lowing the interferometer. We therefore interpret P as
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the reduction factor of the two-photon detection rate, as
compared with the biexciton pumping rate.

D. Mean visibility

We now define the mean visibility, which is a figure of
merit for the degree of entanglement between the photon
pair,

V̄ =
1

P

∫ ∞

0

∫ ∞

0

V(tA, tB)P(tA, tB)dtAdtB ,

=
2κ2

P

∫ ∞

0

∫ ∞

0

|z̃(tA, tB)|dtAdtB, (19)

where we have divided by P so as to only count those
decay events that are detected through the interferom-
eter. If the visibility is unity (i.e. perfect erasure of
“which-path” information), then V̄ = 1, since the proba-
bility density is normalised by P . On the other hand, if
V is less than unity, then V̄ will be also, so performing a
two-photon interference experiment with all photon pairs
produced will result in fringes of visibility V̄ < 1.

We see from Eqs. (15), (17) and (19) that the quanti-
ties we are interested in may all be determined directly
from ρ̃, which makes calculations we perform in following
sections simpler.

E. Phase accumulation

Whilst the visibility is a very important measure of
the success of the scheme, since the initial state of the
system, |Xx〉|00〉|00〉, is not an energy eigenstate, during
the emission process, phase will accumulate at different
rates on the xx- and yy-decay paths. The phase differ-
ence accumulated between each decay path depends on
the emission times of the two photons and is given by
ϕ ≡ arg{z(tA, tB)} = arg{z̃(tA, tB)}, corresponding to
emission of a state of the form |xx〉+eiϕ(tA,tB)|yy〉. Since,
for a given apparatus, ϕ depends only on the emission
times tA and tB, this may be calibrated or computed,
and hence accounted for, before an interference experi-
ment (or whatever else is intended for the output photon
pair) is done. If this phase is ignored, then the mean
visibility will be lower than V̄ since the description of the
phase-averaged state will be mixed.

F. Relation to Bell-inequality violations

Instead of passing the photon pair through an inter-
ferometer, we could imagine using an ensemble of such
states to measure Bell-inequality violations. In particu-
lar, we consider violations of a Clauser–Horne–Shimony–
Holt (CHSH) inequality, where each photon is measured
in one of two non-orthogonal bases specified by the angles
θA and θ′A for the photon at of frequency ωA and θB and

FIG. 4: Schematic setup for performing a CHSH Bell-
inequality measurement. Photons of frequency ωA and ωB are
split with a dichroic mirror (DCM) then travel along paths A
and B respectively, and are measured by rotated polarisation-
sensitive detectors.

θ′B for the photon at of frequency ωB [21], as depicted in
Fig. 4.

In terms of mode operators, the CHSH inequality re-
quires the knowledge of correlation functions of the form

E(θA, θB) =
〈: (d†+d+ − d†−d−)(c†+c+ − c†−c−) :〉
〈: (d†+d+ + d†−d−)(c†+c+ + c†−c−) :〉

, (20)

where photon mode annihilation operators c and d are
defined as

c+ = sin(θA)ay,ωA
+ cos(θA)ax,ωA

,

c− = cos(θA)ay,ωA
− sin(θA)ax,ωA

,

d+ = sin(θB)ay,ωB
+ cos(θB)ax,ωB

,

d− = cos(θB)ay,ωB
− sin(θB)ax,ωB

.

We have not explicitly included times in these expres-
sions, but we note that operators ai,ωA

act at time tA
and ai,ωB

at tB. It is straightforward to show that

c†+c+ + c†−c− = a†y,ωA
ay,ωA

+ a†x,ωA
ax,ωA

,

c†+c+ − c†−c− = cos(2θA)(a†y,ωA
ay,ωA

+ a†x,ωA
ax,ωA

)

+ sin(2θA)(a†y,ωA
ax,ωA

+ a†x,ωA
ay,ωA

),

with similar results for d±. As mentioned earlier,
many cross-terms in the numerator and denominator of
Eq. (20) cancel for the physical situation we consider, e.g.
〈: a†x,ωA

ax,ωA
a†y,ωB

ay,ωB
:〉 = 0, so we can write it as

E(θA, θB)

= cos(2θA) cos(2θB) +
z + z∗

x+ y
sin(2θA) sin(2θB),

= cos(2θA) cos(2θB) + V cos(ϕ) sin(2θA) sin(2θB),(21)

where x, y and z are defined in Eq. (14).
We now define the quantity

B ≡ E(θA, θB)−E(θA, θ
′
B)+E(θ′A, θ

′
B)+E(θ′A, θB), (22)

which, for classically correlated states satisfies B ≤ 2 [21].
This inequality is violated by certain entangled states
such as Bell states, which are emitted from the biexciton
system. We note that B depends on tA and tB, since V
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FIG. 5: The quantity B versus V. The lower curve is B for
ϑ = π/8. The upper curve is the maximum value of B for the
corresponding value of V, allowing ϑ to change with V.

and ϕ does, but we leave out the explicit notation. From
Eqs. (21) and (22) we derive a linear relationship between
B and V given by

B = cos(2θA) (cos(2θB) − cos(2θ′B))

+ cos(2θ′A) (cos(2θB) + cos(2θ′B))

+ V cos(ϕ)
{

sin(2θA) (sin(2θB) − sin(2θ′B))

+ sin(2θ′A) (sin(2θB) + sin(2θ′B))
}

(23)

We consider a special choice of angles that maximally
violate the CHSH inequality, θA = 0, θB = ϑ, θ′A = 2ϑ
and θ′B = 3ϑ, and using Eq. (21) in the expression for B
we find that

B = cos(2ϑ) (3 − 2 cos(4ϑ) + cos(8ϑ))

+ 8cos(2ϑ)
3
sin(2ϑ)

2V cos(ϕ). (24)

For V = 1, this gives B = 3 cos(2ϑ) − cos(6ϑ), which has

a maximum at ϑ = π/8 of 2
√

2 > 2, violating the CHSH

inequality. At ϑ = π/8 Eq. (24) reduces to

B =
√

2(1 + V cos(ϕ)) (25)

which is plotted in Fig. 5 (lower curve). We also show the
maximum value of B for each value of V (upper curve),
allowing ϑ to vary. The upper curve crosses B = 2
at V cos(ϕ) ≈ 0.316, whilst the lower curve crosses at

V cos(ϕ) =
√

2 − 1 ≈ 0.414.

From these results we see that V and B are very closely
related quantities. Since B may be computed from V for
arbitrary angles, we will base our computations on V ,
from which a reasonable estimate for the maximum value
B may be evaluated using Eq. (25). Finally, we define the
quantity B̄ as

B̄ =
1

P

∫ ∞

0

∫ ∞

0

B(tA, tB)P(tA, tB)dtAdtB, (26)

where we have again divided by P in order to count only
those photon pairs that are detected in the experiment.

G. Phase-averaged Bell-inequality violation

Comparing B̄ with Eq. (24) or Eq. (25), we see that
we need to compute the quantity

1

P

∫ ∞

0

∫ ∞

0

PV cos(ϕ)dtAdtB .

We generalise this to account for the possibility of adding
a fixed relative phase φ to one decay path (e.g by adding
a phase plate on the y-polarised photon path, as in the
interferometer stage of Fig. 3), so that cos(ϕ) → cos(ϕ+
φ). We maximise the above integral over φ to arrive at
the phase-averaged visibility

Q =
1

P

√

(∫ ∞

0

∫ ∞

0

PV cos(ϕ)dtAdtB

)2

+

(∫ ∞

0

∫ ∞

0

PV sin(ϕ)dtAdtB

)2

. (27)

The phase-averaged visibility, Q, gives the visibility
of the fringes in a two-photon interference experiment
where no attempt is made to resolve the phase accumu-
lation. In regard to a CHSH-inequality violation exper-
iment without sufficiently fast time-resolved detection,
violations may still be seen if Q > 0.316, since the func-
tional relationship between Q and B̄ is the same as that
between B and Vcos(ϕ), as shown in Fig. 5.

V. ANALYTICAL RESULT FOR BALANCED

CAVITY

We now show that for a balanced cavity (i.e. δA =
δB = ∆/2, q1 = q3 and q2 = q4), in the absence of spon-
taneous emission and dephasing,Γd = Γs = 0, the model
predicts that the visibility is unity for all (tA, tB). Since
we assume Γd = Γs = 0, we may write the unnormalised
density matrix as ρ̃(t) = |ψ̃(t)〉〈ψ̃(t)| and then Eq. (9)
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may be written as a Schrödinger equation

d

dt
|ψ̃(t)〉 = −iH|ψ̃(t)〉 (28)

for the state vector, |ψ̃(t)〉, with a non-Hermitian effective
Hamiltonian given by

H = H − iκ/2(n̂x,ωA
+ n̂y,ωA

+ n̂x,ωB
+ n̂y,ωB

). (29)

We write the solution to Eq. (28) as |ψ̃(t)〉 = e−iHt|ψ̃(0)〉.
The smooth evolution is of course punctuated by quan-
tum jumps, corresponding to photon detections following
the interferometer.

Reformulating the equations of motion in terms of
quantum trajectories [17] has several advantages, and
most obviously it reduces the number of unknown quan-
tities, since we can now solve for the state vector rather
than the density matrix. It is straightforward to show
that the effective Hamiltonian, H, only couples states
within the same excitation-number subspace. Coupling
between the zero, one and two excitation subspaces (de-
noted S0,S1 and S2 respectively) occurs only during the
jumps, and the excitation number irreversibly decreases
by one at each jump as photons leave the cavity. Thus,
for the smooth evolution between jumps, we may con-
sider the evolution restricted to states within each Sj

independently, and for each Sj we consider the effective
Hamiltonian, Hj , restricted to that subspace and acting

on the state vector |ψ̃(t)〉j .
Using the quantum trajectories formalism, we find

x̃ = 〈ψ̃x(tA, tB)|ψ̃x(tA, tB)〉 (30a)

ỹ = 〈ψ̃y(tA, tB)|ψ̃y(tA, tB)〉 (30b)

z̃ = 〈ψ̃y(tA, tB)|ψ̃x(tA, tB)〉, (30c)

where, assuming tA < tB = tA + τ we have defined

|ψ̃i(tA, tB)〉 = ai,ωB
e−iH1τai,ωA

|ψ̃(tA)〉
= ai,ωB

e−iH1τai,ωA
e−iH2tA |ψ̃(0)〉. (31)

A very similar expression exists for tA > tB, and the
following reasoning applies equally to both cases. The
state vector |ψ̃i(tA, tB)〉 ∈ S0, since the initial condition
|ψ(0)〉 = |XX〉|00〉|00〉 ∈ S2 and the effect of the two an-
nihilation operators in Eq. (31) is to reduce the excitation
number by two.

The one dimensional subspace S0 is spanned by the
system ground state |G〉|00〉|00〉, so a state |ψ̃(t)〉 ∈ S0 is

mapped smoothly to a scalar, ψ̃(t), by the trivial map-

ping ψ̃(t) ≡ (〈G|〈00|〈00|)|ψ̃(t)〉. We may therefore write

x̃, ỹ and z̃ in terms of the scalar quantities ψ̃x(tA, tB) and

ψ̃y(tA, tB): x̃ = ψ̃∗
x ψ̃x, ỹ = ψ̃∗

y ψ̃y and z̃ = ψ̃∗
y ψ̃x, where we

have dropped the time dependent notation for clarity.
In what follows, we establish that for a balanced cavity,

ψ̃x and ψ̃y are related by a unitary factor. This means
that they have the same amplitude, from which it fol-
lows that the visibility is unity for a balanced cavity.

We do this by considering the transformation of the ef-
fective Hamiltonian and state vector under exchange of
the polarisation, |Xx〉 ↔ |Xy〉 and |01〉 ↔ |10〉. This
transformation, denoted hereafter by #, is just a permu-
tation on the basis elements, leaving the two elements
|XX〉|00〉|00〉 and |G〉|00〉|00〉 invariant. A matrix repre-
sentation of # shows that is both orthogonal and sym-
metric.

Consider evolution in S2. Swapping x and y polarisa-

tions maps H2 → H#
2 = −H∗

2 and |ψ̃(t)〉2 → |ψ̃(t)〉#2 .
As a result the time evolution operator (e−iH2t)# =

e−iH
#
2 t = eiH2t when acting on states in S2. We note

in passing that for an unbalanced cavity/coupling H#
2 6=

−H∗
2, which is why it is critical that the cavity be bal-

anced this argument to be valid.
A similar result applies to evolution in S1, except that

the effective Hamiltonian H1 does not transform under
polarisation swapping quite as simply. Instead, it may

be shown that H1 − Hd → H#
1 − H#

d = −(H∗
1 − Hd),

where Hd is a Hermitian matrix acting on elements of S1

and satisfies [H1, Hd] = 0. Thus H#
1 = −H∗

1 +Hd +H#
d

and (e−iH1t)# = e−iH
#
1 t = eiH∗

1te−i(Hd+H
#

d
)t. The fac-

tor Ud(t) = e−i(Hd+H
#

d
)t is unitary, since Hd is Her-

mitian. In particular, Ud(t) acts on states of the form

ai,ωA
e−iHtA |ψ̃(0)〉 ∈ S1 in a simple way: it multiples the

state by a time dependent unitary scalar, eiθt.
Having established the effect of # on the time evolution

operator acting on S1 and S2 we see that for example

|ψ̃x(tA, tB)〉# = (ax,ωB
e−iHτax,ωA

e−iHtA |ψ̃(0)〉)#,
= ay,ωB

e−iH#τay,ωA
e−iH#tA |ψ̃(0)〉,

= eiθτay,ωB
eiH∗τay,ωA

eiH∗tA |ψ̃(0)〉,
= eiθτ (ay,ωB

e−iHτay,ωA
e−iHtA |ψ̃(0)〉)∗,

= eiθτ |ψ̃y(tA, tB)〉∗. (32)

This second line follows since |ψ̃(0)〉# =

|XX〉|00〉|00〉# = |XX〉|00〉|00〉 = |ψ̃(0)〉 and
ax, ω

# = ay, ω and the third line follows by consid-
ering the arguments in the preceding two paragraphs.

On the other hand, since |ψ̃x(tA, tB)〉 ∈ S0 it is evi-

dent that |ψ̃x(tA, tB)〉# = |ψ̃x(tA, tB)〉 as |G〉|00〉|00〉 is
invariant under #. Together with Eq. (32), this implies

|ψ̃x(tA, tB)〉 = eiθτ |ψ̃y(tA, tB)〉∗, and we conclude that

ψ̃x = eiθτ ψ̃∗
y . It follows that x̃ = ψ̃∗

x ψ̃x = ψ̃∗
y ψ̃y = ỹ, and

also |z̃| = |ψ̃∗
y ψ̃x| = |e−iθτ ψ̃2

x | = x̃. Using these two re-
sults and Eq. (16) we see immediately that for a balanced
cavity V = 1, proving that the visibility is unity for all
times.

VI. NUMERICAL RESULTS

In this section, we present the results of computations
for V̄ for unbalanced systems, and results for Q which
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(a)

(b)

(c)

FIG. 6: In each row, from left to right, κ = 0.5, 1, 2, 4 and Γd = Γs = 0 in all figures. (a) Time dependent probability
distribution, P(tA, tB), for a balanced system. (b) Visibility, V(tA, tB), for an unbalanced system, where q1,2,3 = 1 and
q4 = 1.1. (c) Relative phase, ϕ(tA, tB), for a balanced system. Superimposed on each panel is a contour plot of P .

characterizes the extent to which Bell-inequality viola-
tions may be observed. For the problem parameters, we
take experimentally relevant values typical for GaAs self-
assembled dots ∆ = 50 µeV [22], ξ = 0.5 meV, q = 50
µeV [23, 30], κ > 100µeV, though values of κ much lower
than this may be possible with novel hemsipherical cavi-
ties [30]. Throughout this section we rescale all energies
so that qi = 1, ∆ = 1, ξ = 10. Time is also rescaled
accordingly, so one time unit corresponds to 83 ps.

Figure 6(a) shows plots of the probability distribution
of emission times for a balanced cavity with no leak-
age channels. Numerically computed visibility is unity
to within numerical accuracy and V̄ = 1 to within
10−4, when integrating out to tA = tB = 200. Notice
Rabi oscillations in emission time for strong coupling
(κ < qi = 1) and exponential decay for weak coupling
(κ > q). For strong coupling there is a significant prob-
ability of emitting photons in either order, but in weak
coupling the order tB > tA is strongly favoured, indicated
by the sharp edge along tA = tB.

We also note that in the weak coupling regime, P has
a tendency to broaden with increasing κ, which is some-
what counter-intuitive, since larger κ corresponds to a
more leaky cavity, and one would expect the photon-
component of the internal state to leak away more
rapidly. However, this phenomenon may also be seen
in the much simpler case of a single two-level atom inter-
acting with coupling rate q with a single optical mode of
a leaky cavity. In that case it is straightforward to show
that there is in eigenvalue of the effective Hamiltonian
for the open system given by q2κ−1/2 + O(κ−2), which
corresponds to a long time constant for large κ. When
κ ≈ q there is a kind of impedance matching, and the
temporal extent of P is smallest.

As established previously, the visibility is unity for a
balanced system. For an unbalanced system the visibility
drops below unity, as shown in Fig. 6(b) where q4 = 1.1
(with q1,2,3 = 1), for different values of κ. The probabil-
ity density P for this case looks very similar to 6(a) so
is not shown here. We note that the visibility depends
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(a) (b)

(c) (d)

FIG. 7: Dependence of (a) V̄ and (b) Q on q4 for various κ. Dependence of (c) V̄ and (d) Q on δA and δB . V̄ and Q are not
sensitive to the sign of δA or δB so other quadrants look similar and are not displayed. The grey plane at Q = 0.316 demarks
the threshold above which Bell-inequality violations may be observed.

only on tB when tA > tB, i.e. it is frozen at the value it
reaches at tB. Notice that the probability, P , of emitting
a photon pair is small at the the same times that V has
large excursions from unity, which means V̄ is not affected
as much as one might expect given the large fluctuations
in V . The difference between strong and weak coupling is
striking, again with oscillations being replaced by decay.

The relative phase, ϕ, is shown in Fig. 6(c) for a bal-
anced system. Also superimposed on each panel is a con-
tour plot of the emission probability density, P . In the
strong coupling regime, during Rabi oscillation peaks, the
phase accumulates relatively slowly, with rapid phase ro-
tations in between. In the weak coupling regime, the
phase accumulates at a fairly constant rate, which is
roughly proportional to ∆. The diagonal stripes indicates
that in weakly coupled cavities the phase accumulation
depends only on the time interval between photon emis-
sion, tB − tA, in contrast to the much more complicated
dependence of the phase in the strong coupling regime,

which shows phase singularities.

Figure 7(a) shows the variation of V̄ versus q4 for var-
ious κ. For q4 = 0 one decay path is turned off so we
expect completely non-entangled photon pairs, and this
is evident in Fig. 7(a) as V̄ = 0 when q4 = 0. We also
expect that V̄ = 1 when q4 = 1, since then the couplings
are again balanced, and this also is evident in Fig. 7(a).
The variation with q2 is identical to that displayed here,
whilst the variation of V̄ with q1 and q3 is qualitatively
very similar, so is not shown here.

As discussed earlier, Q is a significant quantity which
determines whether the photon pair can produce Bell-
inequality violations in the absence of time-resolved de-
tection, so that phase is ignored. In particular, as shown
in Fig. 5 if Q > 0.316 then the photon pair can produce
Bell-inequality violations, even in the case that ϕ is ig-
nored. Figure 7(b) shows Q for the same values of q4
and κ as in Fig. 7(a), where the grey plane demarks the
threshold, Q = 0.316, to see Bell-inequality violation, as
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FIG. 8: Q versus ∆ for κ. Varying ∆ changes the rate
of phase accumulation between the photon detection events.
Grey plane as in Fig. 7.

it will in all following plots of Q. Whilst Q is everywhere
less than unity, there are parameter values where Bell-
inequality violation may still be observed without using
time-resolved detection.

If the cavity geometry is such that δA 6= ∆/2 or δB 6=
∆/2, then the cavity is unbalanced. This has the effect of
reducing V̄ below unity, as shown in Fig. 7(c). Results are
only displayed for δA,B > ∆/2, but the other quadrants
are similar. Figure 7(d) shows Q for the same parameter
values, again with the plane denoting the threshold for
Bell-inequality violation.

The phase accumulates in between the photon detec-
tion events roughly at a rate proportional to ∆, the split-
ting due to dot asymmetry, and this directly affects Q,
since for smaller ∆ we expect the phase to be more nearly
constant over the photon emission lifetime. This may be
seen in Fig. 8, where for small ∆, Q approaches unity,
although Bell-inequality violation may still be seen for a
wide range of κ and ∆.

The two different leakage channels that we consider
in this paper are spontaneous emission into non-cavity
modes, which occurs at a rate Γs, and dephasing which
happens at a rate Γd.

The spontaneous emission does not affect the visibility
of those photon pairs that arrive at the detector, but it
does change the rate of detection, since some photons are
lost. The reduction in photon detection rate, given by P ,
is shown in Fig. 9(a). The roll-off in P is roughly pro-
portional to Γ−1

s . Surprisingly, the spontaneous emission
enhances Q, which may be seen in Fig. 9(b), although
we note that the source is then no longer deterministic.
Experimental work indicates that high β-factors, up to
β = 0.9, are possible [24] and recently β = 0.83 has been
observed [25], which is the fraction of photons emitted
into the cavity mode, corresponding to the fraction of
photons emitted into the desired cavity modes. Inter-
preting P as the β-factor, from Fig. 9(a) we surmise that
for P ≈ 0.9, the experimentally relevant range of the

spontaneous emission rate is Γs � 0.1 = 5 µeV, which is
a regime in which spontaneous emission is negligible.

Figures 9(c) and 9(d) shows the effect of the phe-
nomenological dephasing term, Γd, for different values
of κ. V̄ and Q decay roughly as Γ−1

d . In all panels of
Fig. 9, there is a peak along κ ≈ q which is due to the
fact that P is temporally narrowest when this condition
is met, and hence there is less time for leakage to take
place. For very cold temperatures, around 1 K or lower,
pure dephasing rates have been observed to be around
1µeV [26], corresponding to Γd = 0.02, which is negli-
gible. For higher temperatures, the pure dephasing has
been observed to increase at roughly 0.5 – 1.6 µeV/K
[26, 27]. From Fig. 9(d), the pure dephasing becomes
important near Γd . 1 corresponding to a temperature
between 30 and 100 K for the experimentally relevant
range given above.

VII. DISCUSSION

In the previous section we found that the numerical
results for a balanced system concur with the analytic
result derived in Section V where we established that
the visibility is unity in this case. We also noted that
V̄ is degraded by any effect which may cause the cav-
ity or couplings to be unbalanced. Imperfections in the
cavity geometry will result in an unbalanced cavity so
δA,B 6= ∆/2, and it was shown above that this reduces
V̄. Similarly unbalanced coupling constants also results
in decreased visibility.

Both of these effects may be understood heuristically
using a much simpler model which captures the gross
features seen in Figs. 6(b) and 7(c). Firstly, we note that
a two-photon state given by αx|xx〉+ αy|yy〉 will produce
two-photon interference fringes with visibility

V =
2|αxαy|

|αx|2 + |αy|2
. (33)

Secondly, we make two ad hoc simplifications of the level
structure of the quantum-dot shown in Fig. 1(a). These
simplifications are (i) to ignore the crystal ground state,
|G〉, and the corresponding transitions thereto, and (ii)
to treat the remaining three level system, composed of
|XX〉, |Xx〉 and |Xy〉 as a pair of independent two-level
systems (TLS), {|g〉1, |e〉1} and {|g〉2, |e〉2}, each of which
interact with one of a pair of degenerate cavity modes
distinguished by polarisation. With these two assump-
tions, the energy level structure becomes that pictured
in Fig. 10(a).

The physical motivation for these seemingly arbitrary
assumptions is firstly that once the biexciton decay pro-
ceeds along the x- or y-polarised paths of Fig. 1(a), the re-
sulting two-photon amplitudes, αx,y are determined, even
though the dynamics of the emission are not complete.
Thus the two-photon amplitudes are largely determined
by the initial single-photon decay process, justifying (i).
Secondly, whilst the sum of probabilities to take the x-
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(a) (b)

(c) (d)

FIG. 9: (a) P and (b) Q versus spontaneous emission Γs, for different values of κ. (c) V̄ and (d) Q versus dephasing rate Γd

for various κ. Grey plane as in Fig. 7.

or y-polarisation decay paths is unity, apart from this
constraint the rate equations for the two decay processes
are otherwise uncoupled, so the system similar to a pair
of uncoupled TLS’, one for each decay path, justifying
(ii). Ultimately, this highly simplified model will be ver-
ified by its qualitative agreement with the more realistic
model discussed throughout this paper, and its value is
in the intuition it lends about the origin of the effects
seen in the numerical calculations.

A TLS interacting with a cavity mode is well under-
stood in terms of the Jaynes-Cummings (JC) model [14].
For TLS’ initially in the state |e〉i (i = 1, 2 is the TLS la-
bel) with energy spacings νi, oscillator frequency ωi and
detuning δi = νi −ωi, with TLS-cavity coupling rate Ωi,
(see Fig. 10(a)), the time-averaged photon population is

given by pi = Ω2
i /(2R

2
i ), where Ri =

√

δ2i + Ω2
i , and we

conclude that the average amplitude of photon occupa-
tion satisfies

|αx,y| =
Ω1,2√
2R1,2

. (34)

We now compare the predictions of this simple model
with the more complete one for an unbalanced cavity,
wherein the cavity mode is not tuned to the mean of the
transition frequencies, ω 6= (ν1 + ν2)/2. If the TLS’ are
detuned by an amount δ1,2 = δ ∓D/2 respectively from
the degenerate cavity modes, (see Fig. 10(a)), each with
the same cavity-coupling strength Ω1,2 = Ω, the visibility
is then given by

V =
2R1R2

R2
1 +R2

2

, (35)

where we have taken |αx,y| from Eq. (34). This expres-
sion is plotted in Fig. 10(b) as a function of δ (using
Ω = 0.61, D = 1) along with V̄ (using q1,2,3,4 = 1, κ =
0.4,∆ = 1, δA = ∆/2, ξ = 10,Γd,s = 0). Clearly the
forms of the two traces are in qualitative agreement
demonstrating the heuristic validity of the simple model.
The value Ω = 0.61 is selected to fit Eq. (35) to the
numerically computed V̄, but it is of the same order as
qi = 1.
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We also compare the predictions of the simple model
for unbalanced coupling to the realistic model, and so we
take Ω1 6= Ω2, but suppose the detunings between the
two-level systems and their respective harmonic oscilla-
tors are equal, δ1 = −δ2 = δ. It is straightforward to
show that

V =
2R1Ω1R2Ω2

(R1Ω1)2 + (R2Ω2)2
, (36)

which is plotted in Fig. 10(c) (using Ω1 = 0.42, δ = 1.69-
both fitted parameters), along with V̄ (other parameter
values as in Fig. 10(b)).

The simple, heuristic model of two uncoupled two-level
systems predicts a visibility, V , that is qualitatively in
agreement with V̄ calculated using the complete model
discussed in earlier sections. Thus we can understand the
most significant effect of variation of qi and δi on V̄ is to
change the relative amplitudes to take each of the two
decay paths illustrated in Fig. 1(a). Since the photon
pair is only maximally entangled when the amplitudes
of the |xx〉 and |yy〉 components are equal in magnitude

(i.e. for the state (|xx〉+e−iφ|yy〉)/
√

2), parameter varia-
tions that result in unequal decay path amplitudes result
in sub-maximally entangled photon pairs. Such parame-
ter variations correspond directly to the situation of an
unbalanced system.

The analysis above gives us some further insight into
the decay process. The maximum amplitude of the pho-
ton excitation is Ω2/R2 and so the leakage rate of photons
from the cavity will be suppressed by this factor. That
is, we expect that the rate of decay of excitation from
the cavity will be roughly κΩ2/(Ω2 + δ2). Therefore, as
the detuning δ increases, the photon emission rate slows
roughly as ∼ 1/δ2 for δ > Ω. This will mean that for
detunings significantly larger than the coupling strength,
leakage effects will become significant – the lifetime of
the excitation in the cavity will become comparable to
the decay rate for dephasing or spontaneous emission.

It is also worth noting that when δ ∼ 2ξ (i.e. the
exciton-cavity detuning is near the biexciton shift) the
model developed in section II breaks down, since signif-
icant cross coupling between exciton states and cavity
modes will set in.

Spontaneous emission decreases the detection proba-
bility, which could be corrected with post-selection, since
only events in which two-photons are registered count
towards the measurement, and as mentioned previously,
experimental work has shown that this is negligible for
experimentally relevant systems [24]. Dephasing of in-
termediate states decreases the visibility exponentially in
time. Temperatures of a few Kelvin provide sufficiently
low dephasing rates that it is negligible, but the exci-
tonic dephasing becomes important at temperatures of
several tens of Kelvin, [26, 27]. In principle, these effects
may be distinguished using sufficiently fast time-resolved
spectroscopy, since spontaneous emission will result in
fewer photons reaching the detector, whereas dephasing
would result in a time dependent visibility that degrades

exponentially with time.

So far we have not addressed the issue of how to ex-
perimentally construct a cavity with the required spec-
trum, shown in Fig. 1(a), and a detailed proposal for
its implementation is beyond the scope of this paper.
The enhanced exciton emission into the cavity mode is
known as the Purcell effect and requires small cavity vol-
umes, so that the exciton-cavity mode coupling strength
is large and the density of available photon modes is small
[24, 28]. Thus small cavities are necessary, and high Pur-
cell factors have been demonstrated experimentally in
single-wavelength sized cavities [24, 29].

In contrast to the need for small cavities is the rela-
tively small biexciton shift, 2ξ, which is around 1 meV. In
order for a single Fabry-Perót resonator to accommodate
modes spaced by 1 meV (i.e. the free spectral range,
FSR), the cavity length would need to be of the order
of 100µm or more. This is too long for several reasons,
because the Purcell factor decreases with cavity length,
and also because growth of such a large heterostructure
would be prohibitively difficult. As a result the cavity
to which we have been referring throughout this paper
would need be based on a more complicated geometry
than merely a pair of distributed Bragg reflectors (DBR)
forming a linear resonator.

We stress that a more complex geometry is not just a
requirement of this proposal, but that it would be neces-
sary for a system even with symmetric quantum dots. If
the cavity did not have separate modes near the exciton
and biexciton doublet frequencies then only one tran-
sition could couple strongly to the cavity, and the other
transition would be sufficiently off resonance (δ > q) that
the Purcell effect for that frequency would be suppressed,
i.e. either the biexciton-exciton or exciton-ground tran-
sitions may be well coupled to the cavity, but not both.

It may be possible to engineer a small cavity with a pair
of closely spaced modes using photonic crystals. If, dur-
ing the growth of each DBR stack one layer was permit-
ted to grow to be larger than λ/4, then the cavity would
look more like two coupled cavities, which may have the
desired split modes. Certainly, geometric effects in mi-
cropillars have been shown to produce a pair of modes
spaced by ∼ 5 meV [29], though this was due to lift-
ing polarisation degeneracy with elliptical cross-section
cavities, which is undesirable for our scheme.

Experiments using confocal hemispherical cavities,
consisting of a planar Bragg reflector at the focal plane
of a hemispherical reflector, of length 50 to 1000 µm are
currently underway for quantum information processing
purposes [30]. In this configuration the cavity mode waist
diameter is of comparable size to the optical wavelength
and coincident with a quantum dot so that the exciton-
cavity mode coupling strength is reasonably large. This
arrangement may provide the two requirements of the
present paper: both strong coupling between the dot ex-
citations and the cavity mode (up to several tens of µeV)
and small FSR so that each doublet is on resonance with
a nearby mode. It is quite plausible that by tuning the
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(a) (b) (c)

FIG. 10: (a) Energy levels for independent two-level system. (b) Equation (35) (solid) versus δ and also V̄ (dotted) versus δB .
(c) Equation (36) (solid) versus δ and also V̄ (dotted) versus δB . Parameters as usual except κ = 0.4.

cavity length to vary the FSR and applying an external
DC electric field to induce a Stark shift in the doublet
frequencies, one may bring both doublets close to cavity
modes simultaneously, as depicted in Fig. 1(b), thereby
realising the requirements of this proposal.

VIII. SUMMARY

We have shown analytically that using a cavity with
a particular mode structure facilitates the production of
polarisation entangled photon pairs from an asymmetric
quantum dot, which otherwise produces photon pairs en-
tangled in both polarisation and frequency. We demon-
strated this by computing the visibility of two-photon in-
terference fringes produced using photons generated from
such a cavity-quantum dot structure, and related this to
their potential to demonstrate Bell-inequality violations.

We have quantified the effect of various errors in the
cavity mode structure, showing that the visibility is
not degraded badly by mistuned cavities or unbalanced
dipole coupling strengths, and for experimentally ac-
cessible regimes is above the threshold at which Bell-
inequality violations may be detected.

Of major significance to this scheme is the phase

accumulated between single photon emission events.
By defining the phase-averaged visibility we were able
to compute the effect of ignoring this phase on Bell-
inequality and two-photon visibility measurements. Such
phase-ignorance arises when the available time-resolution
of the photon detection apparatus is longer than the
asymmetry splitting, ∆.

We showed that ignoring the phase reduces the ef-
fective entanglement, but there are still experimentally
accessible regions of parameter space that exhibit Bell-
inequality violation, even when the phase is ignored, and
the two-photon states are thus potentially useful sources
of entanglement.
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[23] A. Imamoḡlu, D. D. Awschalom, G. Burkard, D. P. Di-

Vincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev.
Lett. 83, 4204 (1999).

[24] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand,
E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett. 81,
1110 (1998).

[25] M. Pelton, C. Santori, J. V. cković, B. Zhang, G. S.
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