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Control of an atom laser using feedback
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A generalized method of using feedback to control multimode behavior in Bose-Einstein condensates is
introduced. We show that for any available control, there is an associated moment of the atomic density and a
feedback scheme that will remove energy from the system while there are oscillations in that moment. We
demonstrate these schemes by considering a condensate trapped in a harmonic potential that can be modulated
in strength and position. The formalism of our feedback scheme also allows the inclusion of certain types of
nonlinear controls. If the nonlinear interaction between the atoms can be controlled via a Feshbach resonance,
we show that the feedback process can operate with a much higher efficiency.
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[. INTRODUCTION ence have been measured, and it has been demonstrated that
rf outcoupling preserves the coherence of the condensate
In recent years, we have seen the first examples of thgd,10]. The beam divergence has been measijitdd and
atom laser, a device similar to the optical laser, providing @here has been one real time measurement of the flux of an
coherent, Bose-condensed output bddm5|. The develop- atom laser beanmil2]. The four wave mixing experiments
ment of the atom laser past the demonstration stage, particperformed by the NIST group were the first experiments to
larly the development of the pumped atom laser, is an imporexploit the inherent nonlinearity of atoms in a controlled
tant goal in atom optics. In many applications, it is the highfashion and, furthermore, demonstrated that the Raman out-
spectral flux and coherence provided by a pumped laser thabupling process also preserved the coherence displayed by
is critical. Pumping, however, is difficult to implement with the condensatgl3]. There have been two early experiments
atoms and can lead to classical noise that far exceeds theporting squeezing in atom laser beahig,15. Despite
suppression of quantum noise, or line narrowing, that wouldhese pioneering experiments, there is a significant amount of
be expected from a pumped system. This paper presentsdevelopment needed if the atom laser is to become a gener-
method of suppressing the classical noise on a pumped atoaily applicable and useful tool in quantum atom optics.
laser beam by feedback to the condensate, with the aim of High spectral flux in optical lasers is generated through a
achieving quantum noise limited operation. competition between a depletable pumping mechanism that
As with light, the matter waves from an atom laser can beoperates at the same time as the damping. The linewidth of a
coherently reflected, focused, beam split, and polarf/d pumped laser is much narrower than the linewidth of the
These are the basic operations performed in all optics expereavity determined by the cavity lifetime. In a pumped laser,
ments and through these operations every linear, nonlineathere is Bose enhancement of the scattering rate into the
and quantum optics experiment has its analogue when pelasing mode resulting in line narrowind6-19. The line
formed with atoms. Although bosonic atoms and photonsiarrowing, or suppression of quantum noise associated with
both exhibit Bose-stimulated scattering that is fundamentapumping an atom laser, is a very desirable but as yet unreal-
to laser operatiofi7,8], there are significant and interesting ized property. Quantum field theory is required to calculate
differences. The free space dispersion relation for atomghe quantum noise limited linewidth of an atom laser with
leads to spatial broadening of pulses in vacuum. Atoms ininteractions. Wiseman and Thomsen have studied the quan-
teract with each other and display nonlinear effects in theaum noise on an atom laser beam outcoupled from a single
absence of another medium. Atoms display far more commode condensate and have included feedback in their model.
plex polarization states, move slowly, and can be readily proAtomic collisions turn number fluctuations into phase fluc-
duced with wavelengths much shorter than are availabléuations significantly increasing the linewidth. A continuous
from an optical laser. These are ideal properties in manYND feedback scheme can be used to cancel this linewidth
precision measurement and quantum information applicabroadening 20]. It would be difficult to treat both quantum
tions. and classical noise in the same model, as the full quantum
The present state of the art in atom lasers is an unpumpefikld theory is only tractable in the limit of a few modes,
Bose-Einstein condensatBEC) that serves as a source for a whereas the classical noise is intrinsically a multimode ef-
propagating matter wave beam. Atoms are outcoupled fronfect. There is no guarantee that a real atom laser would op-
the condensate via an rf, or a Raman transition that coheerate at the quantum noise limit, and it is likely that we must
ently flips a trapped spin state to an untrapped state. Themresign pumping schemes very carefully and use feedback to
have been several experimental investigations of the propeapproach the quantum noise limit. It is this goal that moti-
ties of atom laser beams. Both temporal and spatial cohefkates the present work.
The classical noise on a pumped atom laser can be studied
with multimode semiclassical Gross-PitaevdkiP) models
*Electronic address: Simon.Haine@anu.edu.au [21]. In a recent paper, it was shown that an atom laser
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pumped by a nonmode-selective pumping scheme was un- E (¢)=('T’+V Y+ L(Ug| ]2 (4
stable below a critical value of the scattering length leading 0 07T 210 ’

to significant classical noise on the outcoupled b¢agj. It where the angle brackets dendi = [ y* Gud®r, and the

would seem sensible to adjust the scattering length via " Ui I 5 ehing the feedback d
Feshbach resonance to a suitably large value to stabilize gfgtegral IS over all space. By switching the feedback on, an
en switching it back off again at some later time, we will

atom laser and reduce classical noise. Quantum and classid v h ltered th lue & Itis | tant t t
noise scale oppositely with scattering length, quantum nois pically have aftered the value ai,. 115 important to note
nat in the presence of feedbadk, does not represent the

increasing with scattering length and classical noise decrea
instantaneous energy, but the energy that the system would

ing. The solution is to operate at low scattering lendtf] . :
and either use mode-selective pumping to stabilize the Iaself_',ave if the feedback were to be sudd_enly switched off a? that
me. The rate of change oE, while the feedback is

or to suppress classical noise by feeding back to the conden-"' hed .
sate. Mode-selective pumping would appear to be difficult tgoWitched on is
implement, and it is the second option, suppression of clas-

sical noise by feedback, that we investigate here. dE, dy* .. . dy od .
Any realistic feedback scheme will require a detector to—== | g7 (T+ Vo) ¢+ ¥* (T+Vo) o+ = a|¢|4d r
measure classical noise, and a control to feedback to in order (5)

to suppress the motion of the condensate. The entire feed-
back loop must have sufficient bandwidth and must be mini- | . . A .
mally destructive. The design of minimally destructive detec—U.SIng Eq.(1) in Eq. (5) and the fact thaH is Hermitian
tors for real time measurement and feedback to stabilize afl''€®

atom laser was discussed in two recent paf@4s25. In the

present work, we have chosen to feedback to realistic con- dE, .. Up d 43
trols provided by the magnetic trap to ensure straightforward T #[H, T+Vol)+ 2 af [y *dr.

implementation in an experiment.

Using the divergence theorem gives
Il. CONTROL OF A CONDENSATE

The choice of an effective feedback scheme is largely _ —ifh ) ) 3
determined by the available methods of controlling that sys-  — 2m Z aifi (N (Y* Vog—yVoy)dr
tem. For a BEC, these controls can correspond either to per-

turbations in the trap potential, or changes in the interactions in 2 e S

between the atoms. We examine the feedback scheme re-  ~ 7mq ; bigi (N[ (* Vo= V=g )dr

quired to control a BEC in three dimensions in an arbitrary

potential. We model the system by the Gross-Pitaevskii equa- d{fi(r)y 1 d(g;(r)|4|?
=2 a — 2 bj(t)————. (6)

tion. We assume that it is possible to control a set of external
potentials>;a;(t) f;(r) and spatially dependent nonlinear in-
teraction strength&;b;(t)g;(r) with time dependent ampli- It can be seen that settina (t)=c. ([d(f:(r))1/dt)? and
tudes. With the feedback switched on, the equation of motio%,(t) —u (d(gi(N)| ¢|2>]/dt)zgl\5vr)1erelc(~[ a<nél(u~)>zire F))ositive
: i i j ’ i j

dt 2 dt

IS constants, so that
i Y o dE d(fi(N)\2 1 d(g; ()] ¥]2))2
ifi =Hy(r,t) 1) o 5 (A o1 [ Kgi(n)] ¥ >)
dt dt 2.: '( dt ) 2 ; uJ( dt ’
with (7)

will always reduceE, while there are oscillations present in
o the appropriate moments of the condensate. This is an im-
H=Ho+ > a()fi(n+> bj(t)g;(n|yl?, (2)  portant result as it illustrates a general scheme to reduce the
! J energy from the condensate depending on the available con-
trols. In practice the feedback may be limited to a finite
.y bandwidth due to detection speed and the ability to dynami-
I:|0='T'+V0(r)+UO|¢|2, T= 2—V2_ (3) cally manipulate the potentials. As with all oscillatory sys-
m tems controlled with feedback, when the response time of the
feedback becomes a significant fraction of the smallest
The a;(t)’s andb;(t)’s are the set of controls used to ma- timescale in the dynamics of the system, the control may
nipulate the potentials. We cor]sider a condensate initiallyperate as positive feedback. For this reason, it would only
evolving under the Hamiltoniaf,. Unless the system is be safe to use controls where the dynamics of the relevant
initially in the ground state, we want to reduce the energyfluctuating moments are within the bandwidth of the feed-
given by back. For most systems involving BEC this will not be a
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major restriction, as a control bandwidth of the order of ki- 1 -
@

lohertz should be sufficient to respond in phase with the g~ 098¢ 1
system. In the following sections, we demonstrate applyingjﬁ/ O.BVVV\/\/\/\A/MW
this feedback scheme to particular examples. In Sec. Ill, we 041 1

investigate how we can use feedback to control a linear 02

(Up=0) system in a harmonic potential. In Sec. IV, we dem- 1 : - , - - .
onstrate control of a Bose-Einstein condensate in a harmonic _._ 28 (b)
otential. A, o8]
p 5 0.41
0.2 2 1 . : L
Il. USING THE FEEDBACK SCHEME TO CONTROL }
A LINEAR HARMONIC OSCILLATOR ' ' ' ' ' ' ' ' ‘
P 0.8} (c)
A. Harmonic oscillator with linear controls NR 0.6 V\/\/VW/\/
0.4}
We now consider the specific example of the linedp (., SV VN
=0) Schrainger equation in one dimension with a har- 0 5 10 15 20 25 30 35 40 45 50
. . . _ l 2 . . . .
monic potential, i.e.Vo=3x* (in harmonic oscillator units t (Harmonic oscillator units)

wherex is measured in units of the lengtffi/mw, timet is
measured in units of the time™* and energy is measured in  FIG. 1. Oscillations in condensate width vs time f@ c,
units of 4w, wherew is the harmonic trapping frequency =0.05; (b) c,=1; (c) ¢c,=5. It can be seen tha@) is under-
We use as our controls the position of the minimum of thedamped,(b) is close to critical damping, antt) is overdamped.
potential, and the strength of the potential. This system is éx?) andt are measured in harmonic-oscillator units.
good model of a BEC in either a magnetic or an optical trap,
Whi(.:h are both approximately har.mc.)nic near the poten_tial We next demonstrate that the two moments of feedback
minimum, and can be modulated in intensity. The equation.a he ysed together to reduce energy from the system. Fig-
of motion is then ure 2 shows the system initially in a nonstationary state. The
feedbazck is turned on at tinte=20, and oscillations irzbl()
. A and (x°) are quickly reducedg, is reduced until it is3,
la=[T+V0+al(t)x+a2(t)x2]1,//. (8) WhiC<h ié the gnergg of the groand-state wave functiozn in a
harmonic potential.

In this particular example, the energy is reduced until the
system is in the ground state. Equati®) shows that the
energy will only be reduced when there are oscillations in
(x) and (x?), so once the system is in a state where

Settinga, (t) =c,[d(x)]/dt anda,(t) =c,[d(x?)]/dt in ac-
cordance with our feedback scheme gives

dE, d(x)\? d(x?)\?
=%l g | C . ©
dt dt dt Density 1 Central density
This will guarantee thaE, is always reduced while there are A L VAVAVAVAVAV s
fluctuations in(x) and(x?), but the rate can be optimized by o0s} | 10
carefully selecting the value; andc,. We can calculate a ! ‘: ] (x>
dynamical equation fo¢x) using Ehrenfest's theorefi26] 04l D /\/\/\
d?(x) AV(x,t) d(x) 03 ; ¢x®
a2z =\ ax —_[1+232(t)]<x>_C1T- : \/\/W
(10) 0.2} ! V \ﬁ
This is mathematically identical to a classical damped har-oaf ;' Eo
monic oscillator. Critical damping will occur where; ' \
=21+ 2a,. The dynamic equation fdix?) is not a simple 0 * - R P
linear harmonic oscillator, so we found an appropriate mag- ° .
pprop g X (H.O. Units) t (H.O. Units)

nitude ofc, numerically.

Equation (8) was _'ntegrated numerically using 6} PSEU- ki, 2. Al guantities measured in harmonic-oscillator units.
dospectral method with a fourth-order Runge-Kutta time stefyoih modes of feedback working simultaneously on a system. The
[27] using MATLAB . The feedback initially turned off, and gensity profile of the initial condition is shown on the right with the
then switched on at timé=20. Figure 1 shows how the solid black line, in comparison to the ground-state density profile,
oscillations in(x?) are damped for different values of. It indicated by the dashed line. The central density is the density at the
appears that critical damping occurs wheyr~1, and this  pointx=0. The energy is reduced E,= 0.5, which is the ground-
value will be used for all subsequent calculations. state energy of the harmonic oscillator.
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FIG. 3. A state with no oscillations ifx) and(x?). The feed- FIG. 4. A condensate in the same initial state as Fig. 3, but

back does nothing to reduce the energy as there is no error signdeding back using a time dependent nonlinear interaction with

=5 as well as the two trap parameters. In this case the additional
[d(x)]/dt=0 and [d<X2>]/dt:0, the feedback will no error signal allows the feedback to reduce the energy until it is the
|onger reduce the energy. Obviously, energy eigenstates Wiground-state energy. The condensate number was normalized to
display no error signal, but these are not a problemnity for this example.
as they are single mode and all expectation values of observ- _ ) )
ables display no time dependence. Using the harmonicexperimental traps. In the following section we introduce a

: 2 2 time dependent nonlinear interaction in an attempt to pro-
—(— + t

oscnlgtor ladder operatord a _( I/Z)_([&MXA X]A)T’ a duce a feedback scheme that will remove all the semiclassi-
=(—i/2)([9/9x]—x)] we can writex=(i/y2)(a—a"). In

; cal fluctuations.
the absence of error signdla;(t) =a,(t)=0], we can use
the Heisenberg equation of motion to calcul@t&x)]/dt
and [d(x?)]/dt. By setting these equal to zero, we get a
condition for our zero error signal states It is possible to tune the nonlinear interaction between
atoms in a Bose-Einstein condensate by controlling the mag-
netic field close to a Feshbach resonal&&j. In experimen-

B. Harmonic oscillator with a nonlinear control

2, n+laf e +aqan € =0, (11

016 Density Central density
°° ' R CE:
20 Vn+1yn+2(af, ,ane 2= at a,, ,62") =0, 0.14 ] o.1/\/\/\/\/\/\/\——
i
(12 042} {x)

where|n) are the energy eigenstatel({n)=E,[n)), and 0.1
a, are their coefficient$y)=3r_ a,e” ("2 ). This

M O N

shows us that there are an infinite number of nonstationary” 15 ¢x%
states that display no error signal. 0.06 1O A A A AN
This result demonstrates that feedback using these con g
trols will not always be effective, as the system may be at-%%4}| Eo
tracted to one of these states rather than an eigenstate. s 02
these nonstationary states with no error signal, the energy 10 \
will not be further reduced, and semiclassical fluctuations o T 80 - = = R—
will continue. Figure 3 shows an example of such a state. It X (H.O. Units) ¢ (HLO. Units)

displays no oscillations ifx) and(x?), and the feedback

does nothing to reduce the energy. The oscillations in the £ 5 Feedback on a condensate with a large nonlinear inter-
density at the center of the trap are included to demonstratg.ion (Uo=100, condensate number normalized to unitging x

that the condensate is dynamic. Obviously, our two errolngx2 as our controls for the time dependent potential. The density
signals are insufficient to reduce dynamics fluctuations folrofile of the initial state is shown on the left with a solid line,
the system in general. Our choice of error signal is governedompared to the ground state with a dashed line. Oscillatiofis)in

by the controls we have available to us. We chose the curvaand(x?) are reduced and the energy is reduce@#e8.51, which
ture and position of the minimum of the harmonic potentialis the ground-state energyg, was chosen to be 0.05 for this ex-
as our controls as they are easy to manipulate in currergmple.

013605-4



CONTROL OF AN ATOM LASER USING FEEDBACK PHYSICAL REVIEW 469, 013605 (2004

Density Central density 14
0.18] 19%2 13|
0.1
0.16
) (x) 121
0.14 s 5 S
Lop 0 \/\/\/\,— 1|
0.12 I ‘\ ]
] * 10
\ b L
0.1 ! \ < x2>
0.08 " l‘ i
| P LYATATATATAS °I —
0.06 ;' || i} 8 N . . n 5 L
0.04 ! ! s Eo 0 5 10 15 20 25 30 35 40 45 50
1
002l ! \ of t (H.O. Units)
; v
. [ . . .
%% 5 0o s 00 10 20 30 40 50 FIG. 7. Comparison of energy reduction by feedback with and
X (H.O. Units) t (H.O. Units) without the time dependent nonlinear interaction strength. The solid

line is E, for Fig. 6, and the dashed line i, with the time depen-
FIG. 6. Feedback on a Condensate with a |arge nonlineal’ interdent nonlinear interaction included fuﬁ: 1000.
action U,=100, condensate number normalized to unitya dif-
ferent initial state. The feedback quickly removes energy from the
two controlled modes, but energy in higher order excitations istions. In contrast to the linear system, the motion in these
more slowly reduced as it is coupled into the controlled modes vighigher moments is coupled into the controlled modes via the
the nonlinear interaction. nonlinear interaction, and hence slowly reduced. This is an
inefficient process that may be alleviated by including the
time dependent interaction strength as a third control. Figure
tal systems, this is equivalent to controlling the bias mag-7 compares the results of using all three feedback controls on
netic field in a magnetic trap, or applying a constanta BEC with nonzero interaction with the effects of using only
magnetic field in an optical trap, and it has been achieveghe linear controls. The use of the nonlinear feedback dra-
with considerable finesse in many recent experimg®®.  matically accelerates the energy removal process after the
Adding a time dependent interaction between the atomgapid initial control due to the linear controls.
gives the equation of motion
V. CONCLUSION

dy .
g ~[T+Votan()x+ ap()x*+by(t)[¢]*]y. (13) We have described a feedback scheme for reducing en-
ergy from a BEC in an arbitrary potential with an arbitrary
Setting bl(t)=u1([d(|¢|2)]/dt) in accordance with our Set of controls. This reduces the semiclassical fluctuations in

feedback scheme will always reduBg. Figure 4 shows a the condensate, a process that will be essential for producing
system in the same initial state as Fig. 3 but with the addihigh quality atom lasers. In the case of a linear harmonic
tional control. The additional error signal allows us to per-oscillator with a modulated trapping potential, we demon-
turb the system from the stable state, and the energy is rétrated that energy can only be extracted from the moments
duced to the ground-state energy. We have demonstrated hdw the motion corresponding to the moments present in the
we can use feedback effectively to remove energy from nonavailable controls. The ability to modulate the nonlinear in-
stationary states in the linear regimé4=0). In the follow-  teraction between the atoms provides a feedback scheme that
ing section we look at the more physically realistic examplecan control a far greater range of initial states. Formally, any

of a Bose-Einstein condensate with a strong nonlinear intereigenstate will be unaffected by the feedback scheme, but as
action. our scheme can only remove energy from the system, a slight

perturbation will usually result in the system coming to
steady state in a lower-energy eigenstate.

In the case of a Bose-Einstein condensate with a large
nonlinear interaction, there is already coupling between dif-

We use as our next example the more realistic system of ferent modes of oscillations. This means that each mode of
Bose-Einstein condensate with strong interatomic interacfeedback can remove energy from more than one mode of
tions in a harmonic trap. We begin by just using the two traposcillation. This indirect method of extracting energy from
controls as described in Sec. Il to reduce the energy. Figurthe higher modes is quite inefficient. Adding a nonlinear con-
5 shows a condensate that is initially in an excited state, antfol improves the efficiency of the feedback because it di-
the two modes of feedback reduce the energy until it is in theectly removes energy from a larger range of modes.
ground state. This is a special case, however, and Fig. 6 It was shown in Ref[22] that pumping and damping
shows the feedback acting on a more general initial statecaused multimode excitations in the condensate. The possi-
The energy is quickly removed from the two controlled mo-bility of controlling these excitations with feedback will be
ments, but there is still energy left in higher-energy excita-the topic of a subsequent paper.

IV. CONTROLLING A BOSE-EINSTEIN CONDENSATE
WITH FEEDBACK
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