155 research outputs found

    Standard and Null Weak Values

    Full text link
    Weak value (WV) is a quantum mechanical measurement protocol, proposed by Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is weighed in, conditional on the outcome of a later, strong measurement. Here we define another two-step measurement protocol, null weak value (NVW), and point out its advantages as compared to WV. We present two alternative derivations of NWVs and compare them to the corresponding derivations of WVs.Comment: 11 pages, 2 figures. To appear in Quantum Theory: A Two-Time Success Story: Yakir Aharonov Festschrif

    Quantum feedback with weak measurements

    Get PDF
    The problem of feedback control of quantum systems by means of weak measurements is investigated in detail. When weak measurements are made on a set of identical quantum systems, the single-system density matrix can be determined to a high degree of accuracy while affecting each system only slightly. If this information is fed back into the systems by coherent operations, the single-system density matrix can be made to undergo an arbitrary nonlinear dynamics, including for example a dynamics governed by a nonlinear Schr\"odinger equation. We investigate the implications of such nonlinear quantum dynamics for various problems in quantum control and quantum information theory, including quantum computation. The nonlinear dynamics induced by weak quantum feedback could be used to create a novel form of quantum chaos in which the time evolution of the single-system wave function depends sensitively on initial conditions.Comment: 11 pages, TeX, replaced to incorporate suggestions of Asher Pere

    Stochastic Phase Space Localization for a Single Particle

    Full text link
    We propose a feedback scheme to control the vibrational motion of a single trapped particle based on indirect measurements of its position. It results the possibility of a motional phase space uncertainty contraction, correponding to cool the particle close to the motional ground state.Comment: 9 pages, 1 figure. Concluding section and figure revised. In press on Phys. rev.

    Sequences of Bubbles and Holes: New Phases of Kaluza-Klein Black Holes

    Full text link
    We construct and analyze a large class of exact five- and six-dimensional regular and static solutions of the vacuum Einstein equations. These solutions describe sequences of Kaluza-Klein bubbles and black holes, placed alternately so that the black holes are held apart by the bubbles. Asymptotically the solutions are Minkowski-space times a circle, i.e. Kaluza-Klein space, so they are part of the (\mu,n) phase diagram introduced in hep-th/0309116. In particular, they occupy a hitherto unexplored region of the phase diagram, since their relative tension exceeds that of the uniform black string. The solutions contain bubbles and black holes of various topologies, including six-dimensional black holes with ring topology S^3 x S^1 and tuboid topology S^2 x S^1 x S^1. The bubbles support the S^1's of the horizons against gravitational collapse. We find two maps between solutions, one that relates five- and six-dimensional solutions, and another that relates solutions in the same dimension by interchanging bubbles and black holes. To illustrate the richness of the phase structure and the non-uniqueness in the (\mu,n) phase diagram, we consider in detail particular examples of the general class of solutions.Comment: 71 pages, 22 figures, v2: Typos fixed, comment added in sec. 5.

    Fibromatosis of the Plantar Fascia: Diagnosis and Indications For Surgical Treatment

    Get PDF
    Plantar fibromatosis is a rare, benign lesion involving the plantar aponeurosis. Eleven patients (13 feet) underwent 24 operations, including local excision, wide excision, or complete plantar fasciectomy. Clinical results were evaluated retrospectively. There were no differences among the subgroups in postoperative complications. Two primary fasciectomies did not recur. Three of six revised fasciectomies, seven of nine wide excisions, and six of seven local excisions recurred. Our results indicate that recurrence of plantar fibromatosis after surgical resection can be reduced by aggressive initial surgical resection

    Randall-Sundrum black holes and strange stars

    Get PDF
    It has recently been suggested that the existence of bare strange stars is incompatible with low scale gravity scenarios. It has been claimed that in such models, high energy neutrinos incident on the surface of a bare strange star would lead to catastrophic black hole growth. We point out that for the flat large extra dimensional case, the parts of parameter space which give rise to such growth are ruled out by other methods. We then go on to show in detail how black holes evolve in the the Randall-Sundrum two brane scenario where the extra dimensions are curved. We find that catastrophic black hole growth does not occur in this situation either. We also present some general expressions for the growth of five dimensional black holes in dense media.Comment: 16 pages, more numerics has lead to different path to same conclusion. Accepted in PR

    Determinisitic Optical Fock State Generation

    Get PDF
    We present a scheme for the deterministic generation of N-photon Fock states from N three-level atoms in a high-finesse optical cavity. The method applies an external laser pulsethat generates an NN-photon output state while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present analytical estimates of the error due to amplitude leakage from these dark states for general N, and compare it with explicit results of numerical simulations for N \leq 5. The method is shown to provide a robust source of N-photon states under a variety of experimental conditions and is suitable for experimental implementation using a cloud of cold atoms magnetically trapped in a cavity. The resulting N-photon states have potential applications in fundamental studies of non-classical states and in quantum information processing.Comment: 25 pages, 9 figure

    Entanglement Sharing in the Two-Atom Tavis-Cummings Model

    Full text link
    Individual members of an ensemble of identical systems coupled to a common probe can become entangled with one another, even when they do not interact directly. We investigate how this type of multipartite entanglement is generated in the context of a system consisting of two two-level atoms resonantly coupled to a single mode of the electromagnetic field. The dynamical evolution is studied in terms of the entanglements in the different bipartite partitions of the system, as quantified by the I-tangle. We also propose a generalization of the so-called residual tangle that quantifies the inherent three-body correlations in our tripartite system. This enables us to completely characterize the phenomenon of entanglement sharing in the case of the two-atom Tavis-Cummings model, a system of both theoretical and experimental interest.Comment: 11 pages, 4 figures, submitted to PRA, v3 contains corrections to small error

    The XMM Cluster Survey: Exploring scaling relations and completeness of the Dark Energy Survey Year 3 redMaPPer cluster catalogue

    Full text link
    We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of three years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg2^2, bounded by the area of 4 contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray selected sample is fully matched with entries in the redMaPPer catalogue, above λ>\lambda>20 and within 0.1<z<< z <0.9. Conversely, only 38\% of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray selected clusters, we investigate the form of the X-ray luminosity-temperature (LX−TXL_{X}-T_{X}), luminosity-richness (LX−λL_{X}-\lambda) and temperature-richness (TX−λT_{X}-\lambda) scaling relations. We find that the fitted forms of the LX−TXL_{X}-T_{X} relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray selected sample. When considering the scaling of richness with X-ray properties, we again find consistency in the relations (i.e., LX−λL_{X}-\lambda and TX−λT_{X}-\lambda) between the optical and X-ray selected samples. This is contrary to previous similar works that find a significant increase in the scatter of the luminosity scaling relation for X-ray selected samples compared to optically selected samples.Comment: Accepted for publication to MNRA
    • 

    corecore