85 research outputs found
Compress® Periprosthetic Fractures: Interface Stability and Ease of Revision
Periprosthetic fractures after massive endoprosthetic reconstructions pose a reconstructive challenge and jeopardize limb preservation. Compressive osseointegration technology offers the promise of relative ease of prosthetic revision, since fixation is achieved by means of a short intramedullary device. We retrospectively reviewed the charts of 221 patients who had Compress® devices implanted in two centers between December, 1996 and December, 2008. The mean followup was 50 months (range, 1–123 months). Six patients (2.7%) sustained periprosthetic fractures and eight (3.6%) had nonperiprosthetic ipsilateral limb fractures occurring from 4 to 79 months postoperatively. All periprosthetic fractures occurred in patients with distal femoral implants (6/154, 3.9%). Surgery was performed in all six patients with periprosthetic femur fractures and for one with a nonperiprosthetic patellar fracture. The osseointegrated interface was radiographically stable in all 14 cases. All six patients with periprosthetic fracture underwent limb salvage procedures. Five patients had prosthetic revision; one patient who had internal fixation of the fracture ultimately underwent amputation for persistent infection. Periprosthetic fractures involving Compress® fixation occur infrequently and most can be treated successfully with further surgery. When implant revision is needed, the bone preserved by virtue of using a shorter intramedullary Compress® device as compared to conventional stems, allows for less complex surgery, making limb preservation more likely
Compressive Osseointegration of Tibial Implants in Primary Cancer Reconstruction
Compressive osseointegration technology, which provides immediate, mechanically compliant endoprosthetic fixation, has been adapted for massive proximal tibial reconstructions in an attempt to avoid aseptic failure encountered with conventional stems. A retrospective review of 16 patients with resected tumors was undertaken to determine whether compressive osseointegration can provide durable anchorage of tibial implants. Medical records, radiographs, and clinical examinations were reviewed to assess surgical, local disease control, and prosthetic outcomes. The average age was 18 years (range, 12–42 years). Diagnoses included osteosarcoma (12), Ewing sarcoma (two), chondrosarcoma (one), and undifferentiated sarcoma (one). Minimum followup was 2 years (mean, 4.5 years; range, 2–10.3 years); no patient was lost to followup. There were no local recurrences. Four patients developed metastatic disease; one patient died of his primary tumor, and another died from a chemotherapy-related malignancy. Complications included one early deep infection that ultimately resulted in prosthetic loosening and the need for an above-knee amputation. There were two late deep infections; prosthetic retention was achieved with débridement and antibiotics. One patient developed aseptic loosening and underwent revision; the other 15 implants provided stable osseointegration at last followup. Compressive osseointegration technology can thus achieve acceptable short-term endoprosthetic fixation results and may reduce the risk of aseptic loosening reported with conventional tibial stems
Use of antibiotic spacers for knee endoprosthesis infections treatment
OBJCTIVE: The aim of this study is to evaluate the use of cement spacers impregnated with antibiotics for the treatment of infections in the nonconventional endoprostheses of the knee. METHODOLOGY: We have treated seven patients since 2004 (of which six were submitted to surgery in our service and one patient had been submitted to a primary tumor surgery in another removal service) with deep infection in knee tumor prosthesis. All patients were submitted to endoprosthesis removal and reconstructed with antibiotic cement spacer. All patients were monitored both clinically and by lab tests as for monitoring the evolution, being considered able for reviews after 6 (six) months without infections signs. RESULTS: We have noted a small predominance of infectious processes on the prosthesis inserted on proximal tibia as compared with distal femur (57.1% x 42.9%). The mean follow-up time of patients was 68.2 months. During the follow up, one patient died as a result of the root disease. Six patients out of seven were regarded as cured and one persisted with infection signs and symptoms. CONCLUSION: The results obtained up to date have motivated us to continue using this method of treatment.OBJETIVO: O objetivo do estudo é avaliar a utilização dos espaçadores de cimento acrílico com antibiótico no tratamento das infecções em endopróteses não convencionais de joelho. MÉTODO: Desde de 2004 foram tratados sete pacientes (seis pacientes operados no nosso serviço e um paciente que havia sido submetido a cirurgia primária do tumor em outro serviço) com infecção peri-endoprótese não convencional de joelho. Todos pacientes foram submetidos a retirada da endoprótese e reconstrução com espaçador com cimento acrílico com antibiótico. Todos os pacientes foram monitorados clínica e laboratorialmente quanto ao controle da evolução, sendo considerados aptos para a revisão e recolocação de endoprótese após 06 (seis) meses sem sinais infecciosos RESULTADOS: Notamos um discreto predomínio do do processo infeccioso nas próteses realizadas na tíbia proximal em comparação com o fêmur distal (57,1% x 42,9%). O seguimento médio dos pacientes foi 68,2 meses. Durante o seguimento, um paciente faleceu devido a doença de base. Dos sete pacientes, 6 foram considerados curados e um persistiu com sinais e sintomas de infecção. CONCLUSÃO: Os resultados obtidos até o momento tem motivado a continuidade deste método de tratamento.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de Ortopedia e TraumatologiaUNIFESP, EPM, Depto. de Ortopedia e TraumatologiaSciEL
Revision Distal Femoral Arthroplasty With the Compress® Prosthesis Has a Low Rate of Mechanical Failure at 10 Years
BACKGROUND: Patients with failed distal femoral megaprostheses often have bone loss that limits reconstructive options and contributes to the high failure rate of revision surgery. The Compress(®) Compliant Pre-stress (CPS) implant can reconstruct the femur even when there is little remaining bone. It differs from traditional stemmed prostheses because it requires only 4 to 8 cm of residual bone for fixation. Given the poor long-term results of stemmed revision constructs, we sought to determine the failure rate and functional outcomes of the CPS implant in revision surgery. QUESTIONS/PURPOSES: (1) What is the cumulative incidence of mechanical and other types of implant failure when used to revise failed distal femoral arthroplasties placed after oncologic resection? (2) What complications are characteristic of this prosthesis? (3) What function do patients achieve after receiving this prosthesis? METHODS: We retrospectively reviewed 27 patients who experienced failure of a distal femoral prosthesis and were revised to a CPS implant from April 2000 to February 2013. Indications for use included a minimum 2.5 mm cortical thickness of the remaining proximal femur, no prior radiation, life expectancy > 10 years, and compliance with protected weightbearing for 3 months. The cumulative incidence of failure was calculated for both mechanical (loss of compression between the implant anchor plug and spindle) and other failure modes using a competing risk analysis. Failure was defined as removal of the CPS implant. Followup was a minimum of 2 years or until implant removal. Median followup for patients with successful revision arthroplasty was 90 months (range, 24–181 months). Functional outcomes were measured with the Musculoskeletal Tumor Society (MSTS) functional assessment score. RESULTS: The cumulative incidence of mechanical failure was 11% (95% confidence interval [CI], 4%–33%) at both 5 and 10 years. These failures occurred early at a median of 5 months. The cumulative incidence of other failures was 18% (95% CI, 7%–45%) at 5 and 10 years, all of which were deep infection. Three patients required secondary operations for cortical insufficiency proximal to the anchor plug in bone not spanned by the CPS implant and unrelated to the prosthesis. Median MSTS score was 27 (range, 24–30). CONCLUSIONS: Revision distal femoral replacement arthroplasty after a failed megaprosthesis is often difficult as a result of a lack of adequate bone. Reconstruction with the CPS implant has an 11% failure rate at 10 years. Our results are promising and demonstrate the durable fixation provided by the CPS implant. Further studies to compare the CPS prosthesis and other reconstruction options with respect to survival and functional outcomes are warranted. LEVEL OF EVIDENCE: Level IV, therapeutic study
- …