623 research outputs found

    Many-Body Localization Implies that Eigenvectors are Matrix-Product States

    Get PDF
    The phenomenon of many-body localization has received a lot of attention recently, both for its implications in condensed-matter physics of allowing systems to be an insulator even at nonzero temperature as well as in the context of the foundations of quantum statistical mechanics, providing examples of systems showing the absence of thermalization following out-of- equilibrium dynamics. In this work, we establish a novel link between dynamical properties—a vanishing group velocity and the absence of transport—with entanglement properties of individual eigenvectors. For systems with a generic spectrum, we prove that strong dynamical localization implies that all of its many-body eigenvectors have clustering correlations. The same is true for parts of the spectrum, thus allowing for the existence of a mobility edge above which transport is possible. In one dimension these results directly imply an entanglement area law; hence, the eigenvectors can be efficiently approximated by matrix-product states

    Validated age and growth estimates for Carcharhinus obscurus in the northwestern Atlantic Ocean, with pre- and post management growth comparisons

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Environmental Biology of Fishes 97 (2014): 881-896, doi:10.1007/s10641-013-0189-4.Age and growth estimates for the dusky shark, Carcharhinus obscurus, were derived from vertebral centra collected in the northwestern Atlantic Ocean. Sample collection spanned the years prior to and following the implementation of management measures (1963–2010). Growth was compared pre- and post- population depletion and pre- and post- management to investigate the possibility of density-mediated shifts in age and growth parameters over time. There was no evidence of difference between periods for either sex. Additionally, bomb radiocarbon dating was used to determine the periodicity of band pair formation. Results support the traditional interpretation of annual band pairs up to approximately 11 years of age. After this time, vertebral counts considerably underestimate true age. Maximum validated ages were estimated to be between 38 and 42 years of age (an increase of 15 to 19 years over the band count estimates), confirming longevity to at least 42 years of age. Growth curves estimated using only validated data were compared to those generated using band pair counts. Logistic growth parameters derived from validated vertebral length-at-age data were L ∞  = 261.5 cm FL, L o  = 85.5 cm, t o  = 4.89 year and g = 0.15 year−1 for the sexes combined. Revised estimates of age at maturity were 17.4 years for males and 17.6 years for females

    Transcriptomic signatures of schizophrenia revealed by dopamine perturbation in an ex vivo model

    Get PDF
    The dopaminergic hypothesis of schizophrenia (SZ) postulates that dopaminergic over activity causes psychosis, a central feature of SZ, based on the observation that blocking dopamine (DA) improves psychotic symptoms. DA is known to have both receptor- and non-receptor-mediated effects, including oxidative mechanisms that lead to apoptosis. The role of DA-mediated oxidative processes in SZ has been little studied. Here, we have used a cell perturbation approach and measured transcriptomic profiles by RNAseq to study the effect of DA exposure on transcription in B-cell transformed lymphoblastoid cell lines (LCLs) from 514 SZ cases and 690 controls. We found that DA had widespread effects on both cell growth and gene expression in LCLs. Overall, 1455 genes showed statistically significant differential DA response in SZ cases and controls. This set of differentially expressed genes is enriched for brain expression and for functions related to immune processes and apoptosis, suggesting that DA may play a role in SZ pathogenesis through modulating those systems. Moreover, we observed a non-significant enrichment of genes near genome-wide significant SZ loci and with genes spanned by SZ-associated copy number variants (CNVs), which suggests convergent pathogenic mechanisms detected by both genetic association and gene expression. The study suggests a novel role of DA in the biological processes of immune and apoptosis that may be relevant to SZ pathogenesis. Furthermore, our results show the utility of pathophysiologically relevant perturbation experiments to investigate the biology of complex mental disorders

    CERN West Area neutrino facility beam line alignment

    Get PDF
    This papers describes the alignment of the West Area Neutrino Beam Line at CERN to the two neutrino experiments CHORUS and NOMAD. The T9 neutrino (n) target position and the position of the magnetic horn were optimised using the secondary muon intensity profiles from the muon pits in the shielding. In the experiments the improved geometry provides a better centred beam (< 5 cm) and a measured increase in the n flux of 8%

    Volcanic glass from the 1.8 ka Taupō eruption (New Zealand) detected in Antarctic ice at ~ 230 CE.

    Get PDF
    Chemical anomalies in polar ice core records are frequently linked to volcanism; however, without the presence of (crypto)tephra particles, links to specific eruptions remain speculative. Correlating tephras yields estimates of eruption timing and potential source volcano, offers refinement of ice core chronologies, and provides insights into volcanic impacts. Here, we report on sparse rhyolitic glass shards detected in the Roosevelt Island Climate Evolution (RICE) ice core (West Antarctica), attributed to the 1.8 ka Taupō eruption (New Zealand)-one of the largest and most energetic Holocene eruptions globally. Six shards of a distinctive geochemical composition, identical within analytical uncertainties to proximal Taupō glass, are accompanied by a single shard indistinguishable from glass of the ~25.5 ka Ōruanui supereruption, also from Taupō volcano. This double fingerprint uniquely identifies the source volcano and helps link the shards to the climactic phase of the Taupō eruption. The englacial Taupō-derived glass shards coincide with a particle spike and conductivity anomaly at 278.84 m core depth, along with trachytic glass from a local Antarctic eruption of Mt. Melbourne. The assessed age of the sampled ice is 230 ± 19 CE (95% confidence), confirming that the published radiocarbon wiggle-match date of 232 ± 10 CE (2 SD) for the Taupō eruption is robust

    Futureproofing [18F]Fludeoxyglucose manufacture at an Academic Medical Center

    Full text link
    Abstract Background We recently upgraded our [18F]fludeoxyglucose (FDG) production capabilities with the goal of futureproofing our FDG clinical supply, expanding the number of batches of FDG we can manufacture each day, and improving patient throughput in our nuclear medicine clinic. In this paper we report upgrade of the synthesis modules to the GE FASTLab 2 platform (Phase 1) and cyclotron updates (Phase 2) from both practical and regulatory perspectives. We summarize our experience manufacturing FDG on the FASTLab 2 module with a high-yielding self-shielded niobium (Nb) fluorine-18 target. Results Following installation of Nb targets for production of fluorine-18, a 55 μA beam for 22 min generated 1330 ± 153 mCi of [18F]fluoride. Using these cyclotron beam parameters in combination with the FASTLab 2, activity yields (AY) of FDG were 957 ± 102 mCi at EOS, corresponding to 72% non-corrected AY (n = 235). Our workflow, inventory management and regulatory compliance have been greatly simplified following the synthesis module and cyclotron upgrades, and patient wait times for FDG PET have been cut in half at our nuclear medicine clinic. Conclusions The combination of FASTlab 2 and self-shielded Nb fluorine-18 targets have improved our yield of FDG, and enabled reliable and repeatable manufacture of the radiotracer for clinical use.https://deepblue.lib.umich.edu/bitstream/2027.42/145727/1/41181_2018_Article_48.pd

    Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes

    Get PDF
    Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.

    Search for the exotic Θ+\Theta^+ resonance in the NOMAD experiment

    Get PDF
    A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the NOMAD muon neutrino DIS data is reported. The special background generation procedure was developed. The proton identification criteria are tuned to maximize the sensitivity to the Theta signal as a function of xF which allows to study the Theta production mechanism. We do not observe any evidence for the Theta state in the NOMAD data. We provide an upper limit on Theta production rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal

    Production properties of K*(892) vector mesons and their spin alignment as measured in the NOMAD experiment

    Get PDF
    First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results obtained for the rho00 parameter, 0.40 +/- 0.06 (stat) +/- 0.03 (syst) and 0.28 +/- 0.07 (stat) +/- 0.03 (syst) for K*+ and K*- produced in nu_mu CC interactions, are compared to theoretical predictions tuned on LEP measurements in e+e- annihilation at the Z0 pole. For K*+ mesons produced in nu NC interactions the measured rho00 parameter is 0.66 +/- 0.10 (stat) +/- 0.05 (syst).Comment: 20 p

    Puntos de inflexión en los gradientes de composición de las comunidades de plantas acuáticas de diferentes continentes

    Get PDF
    Unravelling patterns and mechanisms of biogeographical transitions is crucial if we are to understand compositional gradients at large spatial extents, but no studies have thus far examined breakpoints in community composition of freshwater plants across continents. Using a dataset of almost 500 observations of lake plant community composition from six continents, we examined, for the first time, if such breakpoints in geographical space exist for freshwater plants and how well a suite of ecological factors (including climatic and local environmental variables) can explain transitions in community composition from the subtropics to the poles. Our combination of multivariate regression tree (MRT) analysis and k-means partitioning suggests that the most abrupt breakpoint exists between temperate to boreal regions on the one hand and freshwater plant communities harbouring mainly subtropical or Mediterranean assemblages on the other. The spatially structured variation in current climatic conditions is the most likely candidate for controlling these latitudinal patterns, although one cannot rule out joint effects of eco-evolutionary constraints in the harsher high-latitude environments and post-glacial migration lags after Pleistocene Ice Ages. Overall, our study supports the foundations of global regionalisation for freshwater plants and anticipates further biogeographical research on freshwater plant communities once datasets have been harmonised for conducting large-scale spatial analyses.publishedVersio
    corecore