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Transcriptomic signatures of schizophrenia
revealed by dopamine perturbation in an
ex vivo model
Jubao Duan1,2, Harald H. H. Göring3, Alan R. Sanders1,2, Winton Moy1,2, Jessica Freda1, Eugene I. Drigalenko4, Mark Kos3,
Deli He1 and Pablo V. Gejman1,2 MGS

Abstract
The dopaminergic hypothesis of schizophrenia (SZ) postulates that dopaminergic over activity causes psychosis, a
central feature of SZ, based on the observation that blocking dopamine (DA) improves psychotic symptoms. DA is
known to have both receptor- and non-receptor-mediated effects, including oxidative mechanisms that lead to
apoptosis. The role of DA-mediated oxidative processes in SZ has been little studied. Here, we have used a cell
perturbation approach and measured transcriptomic profiles by RNAseq to study the effect of DA exposure on
transcription in B-cell transformed lymphoblastoid cell lines (LCLs) from 514 SZ cases and 690 controls. We found that
DA had widespread effects on both cell growth and gene expression in LCLs. Overall, 1455 genes showed statistically
significant differential DA response in SZ cases and controls. This set of differentially expressed genes is enriched for
brain expression and for functions related to immune processes and apoptosis, suggesting that DA may play a role in
SZ pathogenesis through modulating those systems. Moreover, we observed a non-significant enrichment of genes
near genome-wide significant SZ loci and with genes spanned by SZ-associated copy number variants (CNVs), which
suggests convergent pathogenic mechanisms detected by both genetic association and gene expression. The study
suggests a novel role of DA in the biological processes of immune and apoptosis that may be relevant to SZ
pathogenesis. Furthermore, our results show the utility of pathophysiologically relevant perturbation experiments to
investigate the biology of complex mental disorders.

Introduction
Schizophrenia (SZ) is a severe brain disorder with

0.5–1% prevalence and ~80% heritability estimated from
twin studies1. The primary evidence for the hyperdopa-
minergic hypothesis of SZ rests on the observation that
psychotogenic stimulants such as methamphetamines
lead to elevated brain dopamine (DA) levels and can cause

psychosis2–10. Furthermore, brain imaging studies have
shown that amphetamine-induced increases in DA
response are correlated with positive symptoms of SZ
(e.g., hallucinations and delusions)11–13. Recent SZ
genome-wide association studies (GWAS) suggest an
association between common variants at the dopamine
receptor D2 (DRD2) locus and SZ14. However, DA is also
known to have non-receptor mediated functions, e.g.,
through DA autoxidation upon exposure to air or oxygen,
a process that contributes to DA neuron loss in Parkin-
son’s disease (PD) and other neurodegenerative disorders
involving DA neurotransmission15,16.
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While classical hypotheses of SZ etiology focus on
neuronal origins of the disease, the strongest and most
replicable SZ-GWAS finding is at the extended major
histocompatibility complex (xMHC) region14,17–21 that is
known to contain many genes playing important roles in
the immune system. Most recently, common alleles of the
xMHC region immune system gene, complement com-
ponent 4A (C4A), have been shown to be able to explain
much of the xMHC region GWAS signal, and C4A
showed increased expression in SZ postmortem brains22.
Even without considering the xMHC region, GWAS-
implicated genes are also enriched in key immune pro-
cesses such as TGF-β signaling, B-cell activation, and T-
cell activation14. Cytokines play roles in cytotoxicity and
apoptosis, as well as influencing DA and other neuro-
transmitter systems23,24 that are implicated in the
pathophysiology of SZ. Anti-inflammatory agents, such as
celecoxib and aspirin, are reported to ameliorate some
psychotic symptoms23, and classic antipsychotics affect
microglial cells and astrocytes in the central nervous
system (CNS) partly through the modulation of the
expression of cyclo-oxygenase-2 (COX-2)25,26. There is
also growing evidence from clinical studies with COX-2
inhibitors that points to favorable effects of anti-
inflammatory therapy in SZ25,26. Most recently, type I
interferon (IFN) was shown to activate the synapse
pruning function of microglia in lupus-prone mice, sug-
gesting a mechanism underlying the prevalent neu-
ropsychiatric conditions in patients with systemic lupus
erythematosus27.
We hypothesized that some pathogenic effects of DA

may be mediated through non-receptor mechanisms, and
that some of these effects may be detectable in cells from
a primary immune tissue. Lymphoblastoid cell lines (LCL)
collections are the most accessible and sizable samples
available for functional studies. Given that a large pro-
portion of gene expression signatures are shared between
different tissues28–35, we have used LCLs as a model to
gain insights on SZ biology36–38. Here, we have analyzed
RNAseq data of 1204 LCLs derived from 514 European-
ancestry (EA) SZ cases and 690 controls in the absence or
presence of DA, and have identified different effects of DA
on transcriptomic profiles between SZ cases and controls.

Materials and methods
Samples
The initially processed RNAseq sample consisted of 515

SZ cases and 692 controls, and the final analyzed sample
contained 514 SZ cases and 690 controls after excluding
three expression outliers (see QC below). These EA sub-
jects are from the GWAS- and CNV-studied portion of
the MGS collection17,20,39 and have previously been
reported on for their transcriptomics only at the baseline

(unstimulated) condition37. There are 639 males (263
cases and 376 controls) and 565 females (251 cases and
314 controls). Detailed phenotypic data have been pre-
viously described40. Accession numbers from the database
of Genotypes and Phenotypes (dbGaP) include
phs000775, phs000021, and phs000167. The NorthShore
University HealthSystem Institutional Review Board
approved the study.

Cell culture and RNA preparation
LCLs of the study sample were derived at Rutgers

University Cell and DNA Repository (RUCDR)36. For
each LCL, we measured EBV (viral) load (copy number),
viable cell count (to index growth rate), and ATP level (to
index energy status) at cell harvest (for use as covariates in
expression analyses), which are known to have an effect
on gene expression in LCLs41. For the initially processed
515 SZ cases and 692 controls, RNAseq was carried out in
five large batches; further detailed methodology was pre-
viously described37. For DA perturbation (the pilot on
four LCLs and the large-scale RNAseq samples), we grew
cells in independent wells (on 6-well plates) in the pre-
sence or absence of DA at indicated concentrations. DA
perturbation lasted 24 h. To block DA effects, we pre-
treated the cells with the DA receptor antagonists for 6 h
before adding DA to the cell culture medium. These DA
blockers included: D1-like receptor (D1 or D5) antagonist
SCH23390 (200 nM; ~100-fold saturation concentra-
tion42) and D2-like receptor (D2, D3, or D4) antagonist
spiperone (200 nM; ~100-fold saturation concentra-
tion43). We purchased DA, SCH23390, and spiperone
from Sigma-Aldrich. We included batch as a possible
confounding variable in the analysis, i.e., as a covariate.

RNAseq and data processing
RNA sequencing was carried out at the University of

Minnesota Genomics Center (UMGC) on an Illumina
HiSeq2000 at a depth of ~10M reads/sample. RNAseq
data for baseline and DA-stimulated samples were pro-
cessed as previously described37,38. We aligned the 50-bp
single reads to the human reference gene map (Gencode
v20) using the mapping tool Tophat v2.0.544, allowing for
two mismatches. We counted the raw reads by using the
HTseq-count script (www-huber.embl.de/users/anders/
HTSeq/doc/overview.html)45 and calculated gene level
expression as RPKM46 based on the exon model of the
longest transcript of a gene (Gencode v20). We then
quantile-normalized gene level RPKMs to help account
for batch/run bias38.

Quality control
For RNAseq data quality control (QC), we examined the

mean Pearson correlations of gene level RPKM among 10
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technical replicates (i.e., same RNA) and among 16 bio-
logical replicates (independent cell cultures of the same
LCL)38. To capture genes with possible changes from or
to very-low expression values upon DA stimulation, we
analyzed all the genes (N= 21,043) with RPKM > 0 in at
least 50% of either baseline or DA-stimulated samples. All
samples included in the RNAseq had > 6M mappable
reads. We performed initial sample QC by: (1) checking
for consistency between expression levels of chromosome
X (XIST) and chromosome Y genes (RPS4Y1, ZFY,
USP9Y, DDX3Y, UTY, KDM5D, and EIF1AY) vs. reported
sex, and (2) by comparing RNAseq-called genotypes
(using SAMtools mpileup function47, requiring > 8 reads
at a called SNP site) with previous GWAS SNP genotypes
(Affymetrix 6.0)17,20 for a panel of 175 informative
SNPs17,20. The initial sample QC left us with 515 SZ cases
and 692 controls. We carried out additional QC analyses
to assure no systematic expression bias to either cases or
controls, no batch effects, and to identify any potential
outlier samples. We first compared the percentage of
cases and controls that express each gene (i.e., sample
completion rate) at baseline or DA stimulation condition
(Fig. S1A-B). Under both baseline and DA-stimulation
conditions, the sample completion rate (i.e., proportion of
samples with RPKM > 0) in SZ cases and controls were
highly correlated (R= 0.99; Fig. S1). Genes with higher
sample completion rate differences between DA and
baseline conditions tended to have lower expression
values. However, such sample completion rate differences
in cases and in controls were highly correlated (R= 0.91
for all the tested genes, and R= 0.98 for the subset of
genes tested for SZ-associated differential DA response;
Fig. S1). Furthermore, the DA-induced gene expression
FCs in cases and controls are also well matched (i.e., did
not show significant bias to either cases or controls; Fig.
S2). Comparing expression correlations among all sam-
ples further identified two samples appearing to be “out-
liers” under the DA stimulation condition (Fig. S3A-B).
The same two outliers were also among the three outliers
identified by expression PCA (Fig. S3C-D). Both cases and
controls appeared to be evenly distributed in a single big
cluster in all the plots of expression PCs, except for those
outlier samples (Fig. S3C-D). After excluding those three
outliers (1 case and 2 controls), a total of 514 SZ cases and
690 controls remained for DA-perturbed differential gene
expression analyses.

Differential gene expression analyses
We first tested differential gene expression before and

after DA stimulation. To capture genes that showed
very different expression levels in the absence or pre-
sence of DA, we considered those with RPKM > 0 in ≥
50% of baseline and/or DA-stimulated samples as
expressed genes (N= 21,043). The rationale of using a

more relaxed expression cut-off (50%) here vs. a pre-
viously used cut-off (80%)38 was to capture genes that
might be expressed at a very-low level under either
baseline or DA-stimulated condition, but potentially
elevated in the other condition. For both baseline and
DA-stimulated expression data, we regressed out the
possible effects of affection status, sex, age, cell counts,
EBV load, ATP level, genotypic ancestry principal
components (PCs 1–5), and sequencing batch (5 bat-
ches). Although the cell counts and ATP levels at
baseline conditions were just moderately correlated
with the same measurements under DA stimulation
condition (R= 0.60), we included the cell counts and
ATP levels at both conditions in the regression analyses,
which actually gave very similar results to the analysis
when only baseline cell counts and ATP levels were
regressed out (Fig. S4). The residuals were used in a
paired Student’s t-test to identify genes showing dif-
ferential expression between baseline and DA-
stimulated conditions. FC for a gene was calculated as
the ratio of its gene expression value in the presence of
DA vs. baseline. The significance of the differential
expression was FDR adjusted.
To identify genes that differ in expression level between

SZ cases and controls (at either baseline or after DA sti-
mulation), we first log2 (RPKM value+ 1)-transformed the
expression values, and then used standard multiple linear
regression analysis to regress out all the above-listed cov-
ariates (except for affection status). The resulting residuals
were rank-normalized (to ensure a normal distribution),
and are the covariate-adjusted normalized expression values
at baseline and upon DA stimulation. We then performed a
single linear regression analysis of SZ status (independent
variable) on these residuals (dependent variable) to identify
the genes whose expression differs between cases and
controls at either baseline or upon DA perturbation. The
linear regression model is (E(rank-normalized residualized
expression of gene X)= beta_0+ beta_1 × affection status
+ epsilon). The same approach, but with one additional
step, was used to identify genes showing differential DA
response between SZ cases and controls. Namely, we sub-
tracted the covariate-adjusted normalized expression values
at baseline from the DA state, to obtain the covariate-
adjusted expression response of DA perturbation. Subse-
quently, affection status was regressed against these
response variables, using a single linear regression model as
above. We also explored the effect of regressing out the top
5 expression PCs, after already regressing out the previously
mentioned known covariates, in the linear regression ana-
lyses, as a check for analytical robustness, in particular
the possibility that the selected measured covariates
may not have adequately captured all potentially existing
confounder effects, which very well might be tagged by
top PCs.
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Gene ontology and gene set enrichment analyses
We used the DAVID tool48 and WebGestalt49 for GO-

term enrichment analyses, with all the genes expressed in
LCLs as the background gene set. REVIGO50 was used to
cluster and visualize the enriched GO-terms. Because of
the large number of genes showing differential expression
upon DA stimulation (>90%; Fig. 3), for GO-term
enrichment analysis we selected a subset of genes that
showed relatively larger magnitudes presumably repre-
senting more likely meaningful biological changes. Based
on the distribution of all FCs, we used an arbitrary cut-off
of 1SD and included all the genes with FCs of <0.88 or
>1.23 (N= 3756), representing ~20% expression changes
upon DA stimulation. For SZ-associated differentially
expressed genes, we used FDR < 5% to select genes for
GO-term enrichment analyses. We used all the LCL-
expressed genes in our data set as a reference gene list for
enrichment analyses.
For enrichment analysis of specific gene sets, we

assembled different gene sets relevant to SZ pathogenesis
based on public databases and literature searches as we
described38, including 14,295 adult brain-expressed genes
accounting for ~81% of well-annotated protein-coding
genes51, 227 SZ-CNV genes within the 17 SZ-associated
CNVs39,52–55, 435 genes with SNPs (within 500 kb)
showing genome-wide significant (GWS) association to
SZ in the Psychiatric Genomics Consortium (PGC2)
sample14, and 863 genes that were differentially expressed
(P < 0.05) between SZ cases and controls in the Stanley
Array Collection of postmortem frontal cortex samples
(www.stanleygenomics.org) (Table S8). For genes showing
SZ-associated differential DA response, or differential
expression at baseline or in the DA-stimulated condition,
we counted the number of genes in each gene set. Using
all the LCL-expressed genes in each gene set as the
denominator, we then estimated the enrichment of each
category of differential expressed genes in a pre-
assembled gene set (Table 1). We evaluated the sig-
nificance of the gene set enrichment using Fisher’s exact
test (two-sided).

Results
To investigate the impact of DA exposure on LCLs, we

first explored which concentration of DA showed robust
effects in LCLs. Subsequently, we examined the tran-
scriptomic profiles associated with DA exposure to
identify expression responses associated with SZ (Fig. 1).

DA effects on LCL growth and gene expression
We tested different DA concentrations in four LCLs of

control subjects. We found that DA, at a commonly used
concentration range of 100–150 μM56–58, started to show
an inhibitory effect on LCL growth by ~20% (no effect
with smaller DA concentrations) (Fig. 2a), an effectTa
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probably related to an apoptotic effects of DA59. At higher
concentrations (1000 μM DA), which is near the esti-
mated DA concentration (1.6 mM) in rat brain synaptic
cleft60, ~80% of the LCLs were dead after 24 h of exposure
(Fig. 2a). Pre-treating LCLs with DA receptor antagonists
before applying DA did not block the overall DA effect
(Fig. 2b), which was consistent with our observation that
LCLs did not show significant expression of DA receptors
(Reads Per Kilobase of transcript per Million mapped
reads, RPKM < 0.1) in LCLs. In the baseline condition,
23,966 genes were expressed in all four LCLs (RPKM> 0).
Approximately 13% (n= 2,999) of the genes showed sig-
nificant expression changes in the presence of 100 μMDA
(nominal P < 0.05; paired Student’s t-test). As expected, a
lower DA concentration (1 μM) showed a substantially
smaller magnitude of gene expression changes (Fig. 2b).
As above, the DA effects were not blocked with DA
receptor antagonists (Table S1). We decided to use a DA
concentration of 100 μM in our DA perturbation experi-
ment with a large sample, since this concentration
achieved a widespread impact on gene expression with
limited cell death.
We next studied the gene expression profiles of 1207

LCLs (515 MGS SZ cases and 692 controls) in the absence
(baseline) or presence (DA-stimulated) of 100 μM DA. A
total of 21,043 genes were expressed (RPKM > 0) in at
least 50% of either baseline or DA-stimulated samples.
We found no differences in the proportion of case and
control samples expressing a given gene (Fig. S1) or for
the expression fold change (FC) upon DA stimulation
(Fig. S2). We also identified three samples that were
outliers which we removed from further analyses (Fig. S3).
The analysis of 1204 clean samples (514 SZ cases and 690
controls) showed that ~91% (19,085) of all the expressed
genes were responsive to DA (FDR < 5%; paired Student’s
t-test; Fig. 3a and Table S2). The FCs were small in most

of these genes (Fig. 3a), but 150 genes showed > 2-fold
expression differences (Table S2). Gene expression was
very strongly correlated between the baseline and DA-
stimulated conditions (R= 0.993; Fig. 3b). To better
understand the biology of DA-responsive genes, we car-
ried out gene ontology (GO) term enrichment analysis for
3756 genes with expression FCs > 1SD (1SD cut-off
represents ~20% expression change upon DA stimula-
tion). About 1762 genes showed reduced expression and
1994 showed increased expression. GO-terms related to
apoptosis and immune responses were enriched (Fig. 3c).

Fig. 1 Flow chart of the study design. SZ schizophrenia, GWAS
genome-wide association study, CNV copy number variation, DA
dopamine, LCL lymphoblastoid cell line

Fig. 2 Dosage effect of dopamine (DA) on cell growth and
genome-wide expression of 4 LCLs. a DA effect on cell growth after
24 h of DA treatment (1 μM, 10 μM, 100 μM, and 1,000 μM). 100 μM DA
started to show a significant inhibitory effect on cell growth, and most
cells were dead at 1000 μM DA. Pre-treatment of the cells with the D1
receptor antagonist SCH23390 (200 nM) and/or the D2 receptor
antagonist Spiperone (SP; 200 nM) for 6 h did not block the inhibitory
effect of DA on cell growth. * P < 0.05 and ** P < 0.01 were derived
from two-sided paired Student’s t-test. b Box plot of DA effect on
genome-wide expression. 100 μM DA showed a substantially stronger
effect than 1 μM DA, but pre-treatment of the cells with D1 or D2
receptor antagonists did not reverse the effect of DA. Plotted are 2999
genes that showed significant expression changes after DA
stimulation (100 μM) (P < 0.05). Arrows point to the values for HMOX1
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The most enriched GO-terms in the 1994 DA-
upregulated genes were related to apoptosis, while the
most enriched GO-terms in the 1762 DA-downregulated
genes were related to RNA processing and metabolism
(Table S3). These results are in agreement with the
hypothesis that DA stimulation had a widespread toxic
effect leading to cell death and apoptosis, as previously
described59.
We examined whether genes showing relatively large

FC were related to DA effects in the brain. Out of the five
genes (HMOX1, GDF15, AMBP, SLC48A1, and NQO1)
showing > 5-fold expression changes (see Table S3), four
were expressed at highly elevated levels (HMOX1, GDF15,
AMBP, and NQO1) and have brain functions likely related
to DA mechanisms. The most stimulated (>42-fold) gene,
HMOX1 (heme oxygenase 1), is hypothesized to induce
pathological brain iron sequestration under oxidative
stress61 and has been reported to be upregulated by DA in
cultured rat astrocytes, where astrocyte-specific proteins

and pathways (e.g., impairment of glutamate transporters)
play important roles in neurodegenerative diseases62.
Furthermore, transgenic mice overexpressing HMOX1
showed SZ-relevant features including increased tyrosine
hydroxylase (TH), augmented DA and serotonin levels in
basal ganglia, and attenuated prepulse inhibition63.
Interestingly, over-expression of HMOX1 in brain has
been reported in Alzheimer’s disease (AD), PD, multiple
sclerosis (MS), and other degenerative and non-
degenerative CNS diseases61,64,65. The second most sti-
mulated (10-fold) gene, GDF15 (growth differentiation
factor 15), encodes a trophic factor for midbrain DA
neurons66,67. AMBP (alpha-1-microglobulin/bikunin pre-
cursor) has been proposed to be a urinary marker for
major depression68, and NQO1 (NAD(P)H dehydrogenase,
quinone 1) encodes an enzyme which removes quinone,
leading to protection of DA cells69–71. NQO1 has also
been considered as a SZ candidate gene72, although
unsupported by SZ-GWAS14. These results strongly

Fig. 3 DA-responsive genes in 1204 LCLs of MGS subjects. a Distribution of expression fold change (FC) for all genes expressed in LCLs upon DA
(100 μM) stimulation. An expressed gene was defined as having RPKM > 0 in at least 50% of baseline or DA-stimulated samples. Two-side paired
Student’s t-test was used to test for DA response. The red dots show values for genes with log2 FC beyond the 1 SD cut off. b Gene expression before
and after DA stimulation are highly correlated (Pearson R= 0.993). c GO-term enrichment analysis by DAVID. The enriched GO-terms were clustered
and visualized by REVIGO50. Scale bar= log(FDR), blue indicates the most significant enrichment
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suggest that the non-receptor mediated DA effects in
LCLs may be relevant to brain disorders including SZ.

DA-mediated transcriptomic responses associated with SZ
We hypothesized that some DA-induced transcriptomic

changes would differ in SZ cases and controls and used
multiple linear regression analysis to test whether DA-
induced expression FC was associated with disease status.
Cell count and ATP level were correlated at both baseline
and DA-stimulated conditions (R= 0.58 for both vari-
ables). We also examined analytical robustness by
repeating the analysis omitting the cell counts and ATP
levels obtained after DA stimulation as covariates, which
yielded very similar results (Fig. S4). Overall, 1455 genes
(~7% of all analyzed genes) showed SZ-associated differ-
ential DA response at FDR < 5% (Table S2). Among the
top-ranking genes were interferon-induced protein with
tetratricopeptide repeats 3 (IFIT3; rank #2) and interferon
receptor 1 (IFNAR1; rank #15; Table S2), implying a
possible pathogenic role of IFN signaling genes. Inter-
estingly, IFIT3 and IFNAR1 have been recently implicated
in blood transcriptome profiles of recurrent major
depression73. Also among the top-ranking genes showing
SZ-associated differential DA response was tumor necrosis
factor receptor superfamily, member 11b (TNFRSF11b;
rank #1), which may be involved in TNF-α-induced
apoptosis24. The most enriched GO-terms among genes
showing SZ-associated differential expression response to
DA stimulation were immune system process and
response (FDR < 1.1–1.3 × 10–11) as well as response to
virus (FDR < 1.99×10−8; Table S5). GO-terms related to
regulation of apoptosis were also highly enriched (FDR <
3.41 × 10−5; Table S5). Since it is possible that the chosen
covariates did not sufficiently tag all existing confounders,
we further carried out an exploratory analysis where we
regressed out the effects of the top five expression PCs
after accounting for the effects of the above-mentioned
covariates. In spite of this analysis substantially reducing
the total number of SZ-associated differential DA-
responsive genes (from 1455 to 588; Table S2), the top-
ranked genes and the most enriched GO-terms remained
very similar (Table S6). Together with the observed
inhibitory effect of DA on LCL growth, these results
suggest that certain immune genes, including those rela-
ted to apoptosis, may play a role in SZ pathogenesis and
mediate the differential response to DA between cases
and controls.
We then tested whether the set of genes showing dif-

ferential DA response in SZ was enriched for genes that
were: (1) brain expressed, (2) differentially expressed in
schizophrenia postmortem brains, (3) loci showing GWS
association to SZ, or (4) located in SZ-risk CNVs55. We
found significant enrichment of brain-expressed genes
(1.5-fold enrichment; P= 3.2 × 10−96, two-sided Fisher’s

exact test). In the Stanley SZ postmortem brain collection
(www.stanleygenomics.org) we observed enrichment of
SZ-associated genes (1.8-fold enrichment; P= 3.3 × 10−4,
two-sided Fisher’s exact test; Table 1). Furthermore, we
found a non-significant enrichment of genes spanned by
SZ-associated CNVs55 (1.4-fold enrichment; P= 0.25,
two-sided Fisher’s Exact test; Table 1). We also observed a
nominally significant enrichment of SZ-GWAS genes
(1.8-fold enrichment, P= 0.03, two-sided Fisher’s Exact
test; Table 1). Table S7 shows the 25 SZ-GWAS genes and
8 SZ-CNV genes that showed differential response to DA
between SZ cases and controls. These genes include
dihydropyrimidine dehydrogenase (DPYD) at 1p21.3, one
of the loci showing the strongest association with SZ,
although the strongest association signal there clusters
around two microRNAs14, MIR137 and MIR2682, where
we have found a rare functional enhancer SNP possibly
associated with both SZ and bipolar disorder74. Four
genes (MAPK3, SPN, TAOK2, and YPEL3) out of the 8
SZ-CNV genes that showed SZ-associated differential
expression response to DA are in the 16p11.2 duplication
CNV, suggesting a possible role for DA dysfunction in the
pathogenic mechanism underlying this CNV’s association
with SZ (Table S7).

Comparison of case-control gene expression differences in
baseline and DA-stimulated conditions
We have recently reported genes that showed differ-

ential expression at the baseline (unstimulated) condition
between SZ cases and controls in a meta-analysis of both
RNAseq (complete overlap with this current study) and
microarray data sets with similar sample size37. Here we
examined whether genes showing SZ-associated differ-
ential DA response also showed case-control differential
expression under baseline or DA-perturbed conditions.
Using a similar linear regression analysis as described
above, we tested the case-control gene expression differ-
ences at baseline and upon DA stimulation, respectively.
When a pre-defined set of cell culture and demographic
covariates was regressed out, we found that the SZ-
associated differentially expressed genes under both
conditions showed a substantial overlap (n= 3655; Fig. 4a
and Table S2), and the directions of case/control differ-
ential expression for the overlapping genes were com-
pletely concordant (except for one RNA gene
ENSG00000278514.1) (Fig. S5). About 84% of the genes
showing SZ-associated differential DA response were also
differentially expressed at baseline and/or DA-stimulation
conditions (Fig. 4a). Genes that only showed SZ-
associated differential DA response (but did not differ at
either baseline or after DA exposure) are most enriched
for GO-terms related to apoptosis (Fig. 4b), while the rest
are most enriched for GO-terms related to immune
response (Fig. 4c).
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In our alternative model using both known covariates
and the top five expression PCs, geared towards making
sure that we adjust even for unknown potential con-
founders, we found a substantially smaller number of
genes that showed SZ-associated differential expression
under each condition (Table 1 and Fig. S6). Most (92%) of
the genes showing SZ-associated differential DA response
under this analytical model were not differentially
expressed at either baseline or DA-stimulation condition
(Fig. S6). Similar to the genes showing SZ-associated
differential DA response, genes that were differentially
expressed in SZ cases under baseline or DA-perturbed
conditions are also highly enriched for GO-terms invol-
ving immune response.
Enrichment analyses of baseline and DA-stimulated

conditions yielded overlapping but different gene sets (Fig.
4). We found that differentially expressed genes in cases
in the baseline condition (but not upon DA stimulation)
showed a nominally significant enrichment for PGC2 SZ
GWS genes (P= 0.04, two-sided Fisher’s Exact test).
Furthermore, compared to genes differentially expressed
in case/control in the baseline condition, genes showing
SZ-associated differential DA response showed more fold

enrichment of brain-expressed genes (1.5 vs. 1.3), SZ-
CNV genes (1.4 vs. 0.8) and Stanley SZ-associated brain-
expressed genes (1.8 vs. 1.4; Table 1). Interestingly, in an
exploratory analysis where both known covariates and the
top 5 expression PCs were regressed out, only genes
showing SZ-associated differential DA response showed
significant enrichment for brain-expressed genes and
Stanley SZ-associated brain-expressed genes (Table 1).
Finally, five SZ-CNV genes and four SZ-GWAS genes that
showed SZ-associated differential DA response did not
show SZ-associated differential expression under the
baseline condition (Table S7). Our results suggest that DA
perturbation was instrumental to detect relevant tran-
scriptomic profiles missed by the analysis of baseline
condition only.

Discussion
SZ-risk loci include both common and rare variants in

many genes, each with small to modest effects on disease
risk, as well as polygenic contributions of individually
even smaller, and so far impossible to localize, effects75,76.
We have studied the differential transcriptomic effects of
DA perturbation of LCLs from SZ cases and controls, and

Fig. 4 Genes showing SZ-associated differential expression under different conditions and the enriched gene ontology terms. a Venn
diagram that shows the overlap of genes showing SZ-associated differential DA response, differentially expressed genes in baseline and under DA
stimulation. b 229 genes that only showed SZ-associated differential response to DA are highly enriched for GO-terms related to cell death. c 541
genes that showed SZ-associated differential expression in all three analyses are highly enriched for GO-terms related to immune response and
response to virus
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found that a substantial number of genes responded to
DA perturbation, that the DA response differed for many
genes between SZ cases and controls, and that these dif-
ferential response genes are enriched for immune and
apoptosis-related genes, as well as those implicated by
previous SZ-GWAS and CNV studies. Most genes
showing SZ-associated differential expression under DA
stimulation were also differentially expressed at baseline
conditions (Figs. 3a & 4). However, 16% of the genes
showing differential response to DA by SZ case-control
status did not show differential expression at the baseline
condition. This suggests that relevant but cryptic biolo-
gical mechanisms associated with schizophrenia become
detectable in our model only by functional perturbation.
Although abnormal DA neurotransmission remains a

major pathogenic hypothesis for SZ, transcriptional
effects of DA perturbation and the possible differential
DA response in a large sample of SZ cases and controls
have not been previously investigated. The use of strong
system perturbations to increase the size of functional
effects of genetic variation (and therefore their detect-
ability) is becoming more recognized77. In organisms or
even in a simple cellular model, the inherent redundancy
of regulatory molecular and cellular mechanisms, e.g.,
duplicated paralogs78, buffers biological systems for the
effect of many genetic variations. Such systems’ “robust-
ness” thus may frequently mask the small effect sizes of
common genetic variations even if they can cause disease
under appropriate environmental stimuli. Our DA per-
turbation generates an artificial stress situation designed
to mimic a relevant environmental stimulus as follows: an
asymptomatic individual has a normal range of DA tone,
and their DA-related networks only express variation
which translates into normal physiological non-
pathological states. However, as soon as this individual
abuses amphetamine or cocaine (DA-releasing drugs
associated with psychosis79) or upon exposure to other
environmental SZ-risk factors, the activation of cryptic
genetic variation may uncover an underlying genetic
susceptibility to delusions and hallucinations, and the
individual may then develop an episode of psychosis. By
using LCLs derived from SZ cases and controls as a
simplified albeit imperfect cellular model of SZ, our DA
perturbation revealed transcriptomic changes that were
invisible to the baseline transcriptomic study, adding
additional information for understanding disease biology
underlying the genetic contributions to SZ. Compared to
genes showing SZ-associated differential expression in
baseline or DA-stimulated conditions, genes showing
differential DA responses between SZ cases and controls
are more enriched for those implicated by SZ-GWAS,
CNV studies, and postmortem brain transcriptomic stu-
dies (Table 1). Altogether, these results suggest that DA
perturbation and testing case-control differential

transcriptomic response to DA may add value to studying
disease-relevant transcriptomic baseline profiles by
enriching for disease-relevant genes.
Genes showing SZ- associated differential response to

DA perturbation are highly enriched for those related to
immune response (Fig. 3 and Table S4). In part, our
results may be enabled by the type of tissue (i.e., immune)
used for the experiments. However, we note that genes
related to IFN and tumor necrosis factor (TNF) functions
are among the top-ranking genes showing SZ-associated
differential DA response (Table S3), many of which
belong to interferon pathway genes (IFIT3, IFIT2, ISG15,
MX2, OASL, and USP18) that have been previously
implicated in in blood transcriptome profiles of recurrent
major depression73. Our results overall are consistent with
the immune hypothesis of SZ80,81. Maternal immune
activation (e.g., via an infectious exposure such as influ-
enza) has been reported to be associated with risk of SZ
and autism, and blood levels of cytokines (e.g., IL1B,
IL2RA, IL-6, and TNF) are elevated in SZ patients (see
reviews82–84). Large population-based cohort research
also suggests a shared etiology between SZ and several
other autoimmune diseases, with increased risks of
1.1–1.6 for SZ80. In addition, epidemiological evidence
shows a negative correlation between rheumatoid arthri-
tis, an autoimmune disease, and SZ85. Most recent SZ
GWAS also strongly suggest the involvement of immune
mechanisms in SZ pathogenesis. The strongest and most
replicable SZ GWAS finding is at the xMHC region14,17–
21. Furthermore, immune-related genes were enriched
among the transcripts differentially expressed by SZ
affection status in our previous baseline transcriptome
profiling studies36,37. Cytokines play roles in cytotoxicity
as well as influence DA and other neurotransmission
systems that are implicated in the pathophysiology of
SZ23. For instance, IL-6 modestly increases locomotion in
rodents, behaviors modeling hyperdopaminergic-related
psychotic symptoms in SZ86,87. Because of the possible
role of cytokines and inflammatory factors in early-life
infectious exposure of SZ patients, anti-inflammatory
agents, such as celecoxib and aspirin, have been used as
novel treatments in SZ patients to relieve some psychotic
symptoms23. On the other hand, some antipsychotic
drugs rebalance the immune response in SZ patients in
microglial cells and astrocytes in the CNS25,26. Part of the
mechanism is through modulating expression of cyclo-
oxygenase-2 (COX-2), and growing evidence from clinical
studies with COX-2 inhibitors points to favorable effects
of anti-inflammatory therapy in SZ25,26.
DA stimulation had a widespread effect on gene

expression in LCLs, leading to cell death likely through
apoptosis as suggested from our gene set enrichment
analysis. Consistently, we only observed the enrichment of
apoptosis-related genes in the gene set showing increased
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expression upon DA stimulation. Apoptotic (and inflam-
matory) pathways are altered both in brain and the per-
iphery during PD, a disease where neuronal loss is
associated with chronic neuroinflammation characterized
by microglial activation through the release of inflam-
matory mediators, as well as apoptosis triggered by the
neuronal increase of calcium and DA59. Such neurode-
generative aspects (including, e.g., cellular apoptosis/
excitotoxicity) have been proposed to confer vulnerability
to SZ25. Although we did not find robust expression of
mRNAs of any DA receptors in LCLs (Table S1), a finding
which was supported by the observed inability of DA
antagonists to block DA effects on cell growth and gene
expression changes (Fig. 2), our main observations appear
to be consistent with reported DA effects in brains or in
neuronal cell cultures. For instance, four (HMOX1,
GDF15, AMBP, and NQO1) out of the five most highly
DA-responsive genes are related to brain DA function. It
has been controversial whether DA receptors are
expressed in human peripheral blood lymphocytes88–92.
Although we did not examine DA receptor expression at a
protein level in our LCLs, the observed extremely low
level of DA receptor mRNAs suggested our observed DA
effects on cell growth and gene expression were likely
mediated through non-receptor mediated mechanisms. A
possible mechanism for DA function in LCLs may be
through DA autoxidation, a process that contributes to
DA neuron loss in PD or other neurodegenerative dis-
orders involving DA neurotransmission15,16. Like in the
human body, DA in cell culture may directly interact with
oxygen, yielding quinones plus various free radicals as
products15,16. In support of this hypothesis, some of our
observed highly DA-responsive and brain-function-
relevant genes are related to oxidation. For example, the
most DA-responsive gene (HMOX1) contributes to iron
sequestration under oxidative stress61, another highly DA-
responsive gene (NQO1) catalyzes removal of the qui-
none69–71, and QPRT (quinolinate phosphoribosyl-
transferase) is one of the three genes within SZ-associated
16p11.2 duplications that responded to DA perturbation.
However, the roles of DA autoxidation in SZ pathophy-
siology remain to be further explored.
It is noteworthy that we have observed a widespread

effect of DA on gene expression changes (>90% of the
genes) in LCLs and a very high percentage of genes that
showed SZ-associated differential expression under
baseline (31%) or DA stimulation (21%) conditions. We
think that our observation is not a reflection of non-
specific effects of a seemingly high DA concentration or
other technical artifacts, but rather a result of using a
large number of well-controlled LCLs whose authentic
biology is revealed by the experiment. First of all, the
chosen DA concentration 100 μM is within the range
commonly used by the field56–58, which is even lower than

the estimated DA concentration (1.6 mM) in rat brain
synaptic cleft60, and did not show much inhibitory effect
on cell growth (Fig. 2a). Secondly, to minimize any pos-
sible effects of technical confounders, we have inter-
calated SZ cases and controls in each batch of cell culture,
RNA preparation, and RNAseq. Moreover, our QC
metrics did not show any systematic case/control bias or
batch effects, and we have excluded three potential outlier
samples identified by expression PCA and other QC
procedures (Figs. S1–3). Instead, our large sample size
may have contributed to the large number of differentially
expressed genes by boosting the power to detect very
small effects of DA on gene expression (only ~150 genes
showed > 2-fold expression change upon DA stimulation).
Biologically, DA affected cell growth, a central process
that involves diverse signaling pathways, and it is thus
unsurprising that we observed drastic transcriptomic
changes upon DA stimulation. With regards to the large
number of genes showing differential expression in SZ
cases, our observation may be biologically explained by
the association of SZ with immune-related genes includ-
ing those in the xMHC region14,17–21. Indeed, there are 8
HLA genes (HLA-A, HLA-B, HLA-DMA, HLA-DOA,
HLA-DOB, HLA-DPB1, HLA-DRA, and HLA-F) and 21
histone genes at the xMHC region that showed differ-
ential expression in SZ cases at baseline (Table S2).
Alternatively, detecting such large number of SZ-

associated differentially expressed genes in a well-
powered sample may reflect the “omnigenic” model,
where most, if not all, genes outside core disease-related
pathways are also involved in conferring disease liability
by indirectly affecting the functions of core genes93.
However, we have found that the number of genes
showing SZ-associated differential DA response are much
fewer than those differentially expressed at baseline or
upon DA stimulation (Table 1). This might be explained
by the fact that each LCL serves as an internal control
when examining the differential DA response, where
relevant (but potentially unknown) variables (including
confounders) might play much less of a role than at
baseline or DA-stimulated conditions.
The use of LCLs as a cellular model vs. brain (pre-

sumably the most relevant tissue for SZ) for DA pertur-
bation in our study presents some clear limitations,
because some gene expression changes in LCLs sub-
stantially differ from that in brain. However, LCLs are the
most accessible tissue with a sizable sample, compared
with other alternatives such as postmortem brain or
neuronal cell lines, and also allow for experimental
manipulations such as DA perturbation. Furthermore, a
large proportion of gene expression signatures are shared
between different tissues28–35, and we expect many LCL-
expressed genes also show relevant transcription in the
brain. Indeed, we have found a nominal enrichment of

Duan et al. Translational Psychiatry  (2018) 8:158 Page 10 of 13



genes implicated by SZ-GWAS (Table 1), while a large SZ
postmortem brain transcriptomic profiling study from the
CommonMind Consortium (258 SZ cases and 279 con-
trols) did not find enrichment of SZ-GWAS genes94.
Another potential limitation of using LCLs as a model is
that some functional effects may be an artifact of EBV
transformation to produce the LCLs. This concern may be
particular relevant for the observation that IFN and TNF
pathway genes are among the most significantly SZ-
associated differential DA responses (Table S2). However,
we have included EBV copy number as a covariate in the
analyses (and also excluded monoclonal or pauciclonal
LCLs); we thus expect that EBV copy number would pose
minimal confounding effects on our observations.
Therefore, regardless of LCLs not being brain-derived
cells, given the strong support for an immune hypothesis
of SZ95, our DA perturbation study on LCLs may provide
some insights for immune aspects of SZ.
In summary, through DA perturbation that may be

pathophysiologically relevant to SZ, we have demon-
strated differential transcriptomic effects of DA in SZ
cases and controls. Our results yield novel insight into SZ
disease biology underlying SZ GWAS and CNV loci, and
suggest a new approach to delineate the functional effect
of genetic variants of small effect sizes by system
perturbation.
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