609 research outputs found

    Mesozoic climates and oceans – a tribute to Hugh Jenkyns and Helmut Weissert

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.The study of past greenhouse climate intervals in Earth history, such as the Mesozoic, is an important, relevant and dynamic area of research for many sedimentary geologists, geochemists, palaeontologists and climate modellers. The Mesozoic sedimentary record provides key insights into the mechanics of how the Earth system works under warmer conditions, providing examples of natural climate change and perturbations to ocean chemistry, including anoxia, that are of societal relevance for understanding and contextualizing ongoing and future environmental problems. Furthermore, the deposition of widespread organic-carbon-rich sediments (‘black shales’) during the Mesozoic means that this is an era of considerable economic interest. In July 2015, an international group of geoscientists attended a workshop in Ascona, Switzerland, to discuss all aspects of the Mesozoic world and to celebrate the four-decade-long contributions made by Hugh Jenkyns (University of Oxford) and Helmut Weissert (ETH Zürich) to our understanding of this fascinating era in Earth history. This volume of Sedimentology arose from that meeting and contains papers inspired by (and co-authored by!) Hugh and Helmi. Here, a brief introduction to the volume is provided that reviews aspects of Hugh and Helmi's major achievements; contextualizes the papers of the Thematic Issue; and discusses some of the outstanding questions and areas for future research

    All Inequalities for the Relative Entropy

    Full text link
    The relative entropy of two n-party quantum states is an important quantity exhibiting, for example, the extent to which the two states are different. The relative entropy of the states formed by reducing two n-party to a smaller number mm of parties is always less than or equal to the relative entropy of the two original n-party states. This is the monotonicity of relative entropy. Using techniques from convex geometry, we prove that monotonicity under restrictions is the only general inequality satisfied by relative entropies. In doing so we make a connection to secret sharing schemes with general access structures. A suprising outcome is that the structure of allowed relative entropy values of subsets of multiparty states is much simpler than the structure of allowed entropy values. And the structure of allowed relative entropy values (unlike that of entropies) is the same for classical probability distributions and quantum states.Comment: 15 pages, 3 embedded eps figure

    Ultradian rhythms in shell composition of photosymbiotic and non-photosymbiotic mollusks

    Get PDF
    The chemical composition of mollusk shells is a useful tool in (paleo)climatology since it captures inter- and intra-annual variability in environmental conditions. Trace element and stable isotope analysis with improved sampling resolution now allows in situ determination of the composition of mollusk shell volumes precipitated at daily to sub-daily time intervals. Here, we discuss hourly resolved Mg /Ca, Mn /Ca, Sr /Ca, and Ba /Ca profiles measured by laser ablation inductively coupled plasma – mass spectrometry (ICP-MS) through shells of the photosymbiotic giant clams (Tridacna maxima, T. squamosa, and T. squamosina) and the non-photosymbiotic scallop Pecten maximus. Precise sclerochronological age models and spectral analysis allowed us to extract daily and tidal rhythms in the trace element composition of these shells. We find weak but statistically significant expressions of these periods and conclude that this cyclicity explains less than 10 % of the subannual variance in trace element profiles. Tidal and diurnal rhythms explain variability of, at most, 0.2 mmol mol−1 (∼ 10 % of mean value) in Mg /Ca and Sr /Ca, while ultradian Mn /Ca and Ba / Ca cyclicity has a median amplitude of less than 2 µmol mol−1 mol mol−1 (∼ 40 % and 80 % of the mean of Mn /Ca and Ba /Ca, respectively). Daily periodicity in Sr /Ca and Ba /Ca is stronger in Tridacna than in Pecten, with Pecten showing stronger tidal periodicity. One T. squamosa specimen which grew under a sunshade exhibits among the strongest diurnal cyclicity. Daily cycles in the trace element composition of giant clams are therefore unlikely to be driven by variations in direct insolation but rather reflect an inherent biological rhythmic process affecting element incorporation. Finally, the large amount of short-term trace element variability unexplained by tidal and daily rhythms highlights the dominance of aperiodic processes in mollusk physiology and/or environmental conditions over shell composition at the sub-daily scale. Future studies should aim to investigate whether this remaining variability in shell chemistry reliably records weather patterns or circulation changes in the animals’ environment

    An assessment of latest Cretaceous <i>Pycnodonte vesicularis</i> (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation

    Get PDF
    In order to assess the potential of the honeycomb oyster Pycnodonte vesicularis for the reconstruction of palaeoseasonality, several specimens recovered from late Maastrichtian strata in the Neuquén Basin (Argentina) were subject to a multi-proxy investigation, involving scanning techniques and trace element and isotopic analysis. Combined CT scanning and light microscopy reveals two calcite microstructures in P. vesicularis shells (vesicular and foliated calcite). Micro-XRF analysis and cathodoluminescence microscopy show that reducing pore fluids were able to migrate through the vesicular portions of the shells (aided by bore holes) and cause recrystallization of the vesicular calcite. This renders the vesicular portions not suitable for palaeoenvironmental reconstruction. In contrast, stable isotope and trace element compositions show that the original chemical composition of the foliated calcite is well-preserved and can be used for the reconstruction of palaeoenvironmental conditions. Stable oxygen and clumped isotope thermometry on carbonate from the dense hinge of the shell yield sea water temperatures of 11°C, while previous TEX86H palaeothermometry yielded much higher temperatures. The difference is ascribed to seasonal bias in the growth of P. vesicularis, causing warm seasons to be underrepresented from the record, while TEX86H palaeothermometry seems to be biased towards warmer surface water temperatures. The multi-proxy approach employed here enables us to differentiate between well-preserved and diagenetically altered portions of the shells and provides an improved methodology for reconstructing palaeoenvironmental conditions in deep time. While establishing a chronology for these shells was complicated by growth cessations and diagenesis, cyclicity in trace elements and stable isotopes allowed for a tentative interpretation of the seasonal cycle in late Maastrichtian palaeoenvironment of the Neuquén Basin. Attempts to independently verify the seasonality in sea water temperature by Mg∕Ca ratios of shell calcite are hampered by significant uncertainty due to the lack of proper transfer functions for pycnodontein oysters. Future studies of fossil ostreid bivalves should target dense, foliated calcite rather than sampling bulk or vesicular calcite. Successful application of clumped isotope thermometry on fossil bivalve calcite in this study indicates that temperature seasonality in fossil ostreid bivalves may be constrained by the sequential analysis of well-preserved foliated calcite samples using this method

    Single-shot security for one-time memories in the isolated qubits model

    Get PDF
    One-time memories (OTM's) are simple, tamper-resistant cryptographic devices, which can be used to implement sophisticated functionalities such as one-time programs. Can one construct OTM's whose security follows from some physical principle? This is not possible in a fully-classical world, or in a fully-quantum world, but there is evidence that OTM's can be built using "isolated qubits" -- qubits that cannot be entangled, but can be accessed using adaptive sequences of single-qubit measurements. Here we present new constructions for OTM's using isolated qubits, which improve on previous work in several respects: they achieve a stronger "single-shot" security guarantee, which is stated in terms of the (smoothed) min-entropy; they are proven secure against adversaries who can perform arbitrary local operations and classical communication (LOCC); and they are efficiently implementable. These results use Wiesner's idea of conjugate coding, combined with error-correcting codes that approach the capacity of the q-ary symmetric channel, and a high-order entropic uncertainty relation, which was originally developed for cryptography in the bounded quantum storage model.Comment: v2: to appear in CRYPTO 2014. 21 pages, 3 figure

    A combined X-ray scattering and simulation study of halothane in membranes at raised pressures

    Get PDF
    Using a combination of high pressure wide angle X-ray scattering experiments and molecular dynamics simulations, we probe the effect of the archetypal general anaesthetic halothane on the lipid hydrocarbon chain packing and ordering in model bilayers and the variation in these parameters with pressure. Incorporation of halothane into the membrane causes an expansion of the lipid hydrocarbon chain packing at all pressures. The effect of halothane incorporation on the hydrocarbon chain order parameter is significantly reduced at elevated pressure

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
    corecore