1	State of the Science: Mesozoic climates and oceans – a tribute to Hugh
2	Jenkyns and Helmut Weissert
3	
4	Stuart A. Robinson ^{1*} , Ulrich Heimhofer ² , Stephen P. Hesselbo ³ , Maria Rose
5	Petrizzo ⁴
6	
7	1: Department of Earth Sciences, University of Oxford, South Parks Road,
8	Oxford, OX1 3AN, UK
9	2: Institute for Geology, Leibniz University Hannover, Callinstraße 30, 30167
10	Hannover, Germany
11	3: Camborne School of Mines, and Environment and Sustainability Institute,
12	University of Exeter, Penryn Campus, Treliever Road, Penryn, Cornwall,
13	TR10 9FE, UK
14	4: Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di
15	Milano, via Mangiagalli 34, 20133 Milano, Italy
16	
17	
18	*stuart.robinson@earth.ox.ac.uk
19	
20	Abstract
21	The study of past greenhouse climate intervals in Earth history, such as the
22	Mesozoic, is an important, relevant, and dynamic area of research for many
23	sedimentary geologists, geochemists, palaeontologists and climate modellers.
24	The Mesozoic sedimentary record provides key insights into the mechanics of
25	how the Earth system works under warmer conditions, providing examples of

natural climate change and perturbations to ocean chemistry, including anoxia, that are of societal relevance for understanding and contextualizing ongoing and future environmental problems. Furthermore, the deposition of widespread organic-carbon-rich sediments ("black shales") during the Mesozoic means that this is an era of considerable economic interest. In July 2015, an international group of geoscientists attended a workshop in Ascona, Switzerland to discuss all aspects of the Mesozoic world and to celebrate the four-decade-long contributions to our understanding of this fascinating era in Earth history made by Hugh Jenkyns (University of Oxford) and Helmut Weissert (ETH Zurich). This volume of Sedimentology arose from that meeting and contains papers inspired by (and co-authored by!) Hugh and Helmi. Here a brief introduction to the volume is provided that reviews aspects of Hugh and Helmi's major achievements; contextualizes the papers of the Thematic Issue; and discusses some of the outstanding questions and areas for future research.

The research legacy of Hugh Jenkyns & Helmut Weissert

Hugh Jenkyns was awarded a PhD from the University of Leicester (UK) in 1970 with a thesis on the origin of the Jurassic carbonate platform and pelagic basinal deposits of Western Sicily (Jenkyns, 1970a); a study that laid the foundations for much of his work in the early 1970s exploring the origin of condensed sequences and platform drowning, as well as broader issues of Tethyan evolution (e.g. Jenkyns, 1970b, 1971; Bernoulli & Jenkyns, 1974). In 1974, with Ken Hsü, he edited the first volume of the IAS Special Publication

series, on the topic of "Pelagic Sediments: on Land and under the Sea" (Hsü & Jenkyns, 1974) and participated in Deep Sea Drilling Project (DSDP) Leg 33 in the central Pacific. During this leg, Lower Cretaceous organic-carbon-rich sediments were recovered at Site 317 on the Manihiki Plateau. These were described by Jenkyns (1976) as indicating "... an episode of stagnant deoxygenated bottom-water conditions..." and were suggested to be "...correlative with carbonaceous sediments drilled on DSDP Leg 11 in the western Atlantic...". These observations, coupled with others drawn from Tethvan sections on land (Figure 1) and other DSDP leas in the Pacific and Atlantic, provided the evidence for Schlanger and Jenkyns (1976) to propose that "...certain stratigraphically restricted carbon-rich horizons are...the result of...widespread and thick O₂ minimum zones in the world ocean [rather] than the result of the structural-topographic isolation of relatively local basins". Schlanger and Jenkyns (1976), referred to these stratigraphic horizons as representing "oceanic anoxic events" (OAEs), a concept that was to rapidly gain ground and set the agenda for much of Mesozoic palaeoceanographic research for the following decades. Since the seminal paper in 1976, Hugh Jenkyns has continued to be at the forefront of OAE research and, more broadly, Mesozoic palaeoclimatology and palaeoceanography. His major contributions include demonstrating the existence of an OAE in the Toarcian (Early Jurassic) (Jenkyns, 1985, 1988); constraining the Early Jurassic timescale through cyclostratigraphy (Weedon & Jenkyns, 1999); provision of an original interpretation for the origin of Pacific guyots (Jenkyns & Wilson, 1999) and leading on the application of novel geochemical proxies to Mesozoic sediments (e.g. Jones et al., 1994; Jenkyns et al. 2001, 2004, 2007; Lu *et al.*, 2010; Pogge von Strandmann *et al.*, 2013). Throughout his work, he has been able to draw on a wide variety of datasets and make links that provide deep insights into the workings of the Earth system during the Mesozoic, exemplified in this volume by his contribution on the variety of geochemical and sedimentological signatures associated with the Plenus cold event during OAE2 (Jenkyns *et al.*, this volume).

Helmi Weissert completed his PhD at the ETH Zürich, Switzerland in 1979 under supervision of Ken Hsü, with a study on the, superficially, monotonous Cretaceous deep-water deposits of the Maiolica limestones. By analyzing the stable isotopic signatures of these pelagic carbonates, he was amongst the first to apply carbon-isotope variations as a new stratigraphic tool for correlating sedimentary strata and to investigate their biogeochemical and palaeoenvironmental significance (Weissert, 1979, 1989, 1990; Weissert et al., 1985). During the 1970s and early 1980s, the field of Mesozoic palaeoceanography was just emerging, fostered by the integration of geological observations with the novel discoveries from ocean drilling. During his early career, he took part in DSDP Leg 73 to the South Atlantic Ocean encountering new palaeoceanographic concepts and ideas, and developing research on Pliocene climates and oceanography (Weissert et al., 1984; Weissert & Oberhänsli, 1985). Although the Mesozoic remained his primary stratigraphic focus, his work on Neogene palaeoceanography certainly influenced his later work on deep-time sedimentary systems. His highresolution (for the time) approach to Mesozoic carbon-isotope stratigraphy was applied to Late Jurassic-Early Cretaceous sequences, and successfully

integrated with biostratigraphic and palaeomagnetic data, to produce a detailed stratigraphic framework for this time interval (e.g. Weissert & Channell, 1989; Weissert & Lini, 1991; Lini et al., 1992; Weissert & Mohr, 1996). In doing so, Helmi and his students identified a prominent carbon-isotope anomaly in the Valanginian (e.g. Weissert & Lini, 1991; Lini et al., 1992; Hennig et al., 1999), occurring prior to the major OAEs of the Cretaceous and known today as the "Weissert" event (Figure 1; Erba et al., 2004). His next step was the establishment of pelagic basin-to-carbonate platform transects in order to trace the impact of oceanographic events (including OAEs) in the shallow-water domain. An important finding was the stratigraphic correspondence of pelagic black shale episodes with shallow-water carbonate platform drowning events (Weissert et al., 1998; Wissler et al., 2003; Burla et al., 2008), effectively illustrating the complex interplay between greenhouse climates, oceanography, and the global carbon cycle. More recently, Helmi Weissert's work focused on the role of ocean acidification in deep time (Mehay et al., 2009; Erba et al., 2010), the timing and consequences of Cretaceous OAEs (e.g. Giogoni et al., 2012), perturbations of the Early Mesozoic carbon cycle (e.g. Galli et al., 2005), and on the overall evolution of CO₂ and climate during the Mesozoic (Weissert & Erba, 2004; Millán et al. 2009). In his research, Helmi Weissert combined work on deep-sea drill cores with materials from on-land sections, with a strong preference for the exceptional outcrops of the Swiss and Italian Alps that have provided ideal analogues for the study of deep-ocean sediments and their geochemical signatures. Besides his significant contributions to the field of Mesozoic chemostratigraphy and palaeooceanography, his studies

have provided new views on global climate change and carbon-cycle dynamics in deep time.

During their careers, Hugh Jenkyns and Helmi Weissert have only been coauthors on one paper (Erba et al., 2015), yet their individual contributions and direct interactions have complemented and inspired each other. Carbonisotope stratigraphy, in addition to providing a powerful tool for stratigraphic correlation, has been used to argue for the causes and consequences of OAEs. Each of the three most widespread OAEs (occurring in the Early Toarcian, Early Aptian and Late Cenomanian) has been shown to have occurred synchronously with fluctuations in carbon-isotope ratios of carbonates and organic matter, interpreted as representing perturbations to the ocean-atmosphere carbon reservoir (Figure 2; e.g. Scholle & Arthur, 1980; Jenkyns & Clayton, 1986, 1997; Weissert et al., 1985, 1998; Weissert, 1989; Weissert, & Bréhéret, 1991; Jenkyns et al., 1994; Gröcke et al., 1999; Hesselbo et al., 2000; Weissert & Erba, 2004; Jenkyns, 2010). The current general model for the genesis of oceanic anoxic events (Figure 3; Weissert, 2000; reviewed in Jenkyns, 2003, 2010) invokes a source of carbon, which, as CO₂ in the atmosphere, caused greenhouse warming. The release of carbon triggering an OAE may be detectable by carbon-isotope stratigraphy as negative excursions, as postulated sources (including volcanism, methane hydrates, and thermogenic methane; Figure 3) are isotopically lighter than the ocean-atmosphere carbon reservoir (but note that not all OAEs, or OAE-like events, are associated with detectable negative excursions). Greenhouse warming at the onset of an OAE is hypothesized to have caused a number of

effects that were conducive to increased rates of organic-carbon deposition, including elevated freshwater run-off (delivering nutrients), stratification of restricted basins, and enhanced wind-driven upwelling. Nutrients may also have been sourced from alteration of basalt (e.g. Erba & Larson, 1999), produced by eruption of large igneous provinces (LIPs). Increased primary productivity and expansion of oxygen-minimum zones led to the deposition of the characteristic black shales, associated with OAEs in many parts of the ocean (Figures 1, 2 and 3). The burial of organic carbon is recognized by positive excursions in carbon-isotope stratigraphy (Figure 2), which may also suppress the signal of isotopically light inputs (e.g. Jenkyns, 2010), which leads to difficulties in estimating the true fluxes of carbon into, and out of, the surficial carbon reservoirs. The sequestration of carbon into the sedimentary record ultimately is thought to have caused a reversal of greenhouse conditions (Figure 3), eventually terminating the OAE. Although this simple model (albeit with added nuances) has been applied to many events, the fit to each event is variable. For example, OAE2 in the Late Cenomanian conforms to the conceptual model well (Jenkyns, et al., this volume), except for the absence of a definitive negative δ^{13} C excursion; in contrast the Late Valanginian "Weissert" Event, a prominent positive carbon-isotope excursion (Figure 2), is not associated with a discrete period of time characterized by widespread black-shale deposition, leading some to speculate that organic carbon was deposited on land instead (e.g. Westermann et al., 2010). Similarly OAE1a does not quite fit the model – although it is represented by globally distributed black shale, carbon-isotope values, after an initial negative excursion, become positive in the latter stages of anoxic conditions and

continue to increase long-after black shale deposition ceased (e.g. Menegatti et al., 1998). These, and other events, demonstrate the complexity of reconstructing interactions between the carbon cycle and palaeoclimate based on the sedimentary record and continue to provide new questions for science.

State of the science

Although it is now clear that during the Jurassic and Cretaceous there were intervals of widespread low-oxygen conditions in the ocean associated with major carbon-cycle perturbations, many questions remain regarding the context, origins, and wider significance of the OAEs, and the background carbon cycling and climates of the Mesozoic. A brief description and discussion of these issues is presented here.

Many records of OAEs have been identified, yet there is still a need to identify, document and interpret new localities at outcrop and in the ocean, particularly in the Southern and Arctic Oceans. As can be seen in Figure 4, there is a considerable geographic sampling bias towards records of OAEs from the circum-North Atlantic and Tethyan region. New localities, both outside and within this region, can provide important constraints on the extent, and variability, of low-oxygen conditions and can help provide a more complete picture of palaeoceanographic and palaeoclimatic change during OAEs. For example, it has long been recognized that although anoxic (and even euxinic) conditions were widespread during the Cretaceous OAEs, such conditions were not ubiquitous (e.g. Jenkyns, 1980, 2010; Pancost *et al.*,

201	2004; Robinson et al., 2004, 2008; Takashima et al. 2011; Eldrett et al., 2014;
202	Westermann et al., 2014; Zhou et al., 2015) and the deposition of black
203	shales was, in some cases, diachronous (e.g. Tsikos et al., 2004; Petrizzo et
204	al., 2008). Consequently, the sedimentological and geochemical expression of
205	individual OAEs can be quite different depending on local conditions (e.g.
206	Bornemann <i>et al.</i> , this volume; Müller <i>et al.</i> , this volume).

The OAE concept grew from cores recovered by deep-sea drilling (Schlanger & Jenkyns, 1976; Jenkyns, 1980), vet with much of the Mesozoic ocean floor now lost to subduction, there is also a need to explore orogenic regions associated with accretion of oceanic crust and sediments in order to provide evidence of palaeoceanographic conditions in these "lost" regions of the Mesozoic oceans. Although sediments in these terranes are often diagenetically altered and, in some cases, weakly metamorphosed, they can still provide valuable evidence for variations in the record of palaeoceanographic events including carbon-isotope stratigraphy that provides correlations to other regions (e.g. Robinson et al., 2008; Ikeda and Hori 2014; Wohlwend et al., this volume). In addition to searching for new records of OAEs, it is also informative to consider periods of more localized organic-carbon accumulation that did not occur during OAEs in order to assess the controls on this process under "normal" conditions during the Mesozoic and the role of orbital forcing (e.g. Giorgioni et al., this volume; Xu et al. this volume). Furthermore, high organic-carbon burial rates and associated low-oxygen conditions have a significant effect on preservation

and diagenetic processes, which can result in exceptional palaeontological archives (e.g. Heimhofer *et al.*, this volume).

OAEs were first identified by their sedimentological characteristics and, later, their carbon-isotopic records, but can now be shown to be complex geochemical events that led to perturbations in the concentrations and isotopic ratios of many elements, reflecting changing local and global environmental conditions. The ongoing expansion of analytical techniques available to determine the concentration and isotopic ratio of metals (e.g. ICP-MS, MC-ICP-MS), and the increased interest in applying these methods to modern seawater and to sedimentary archives, has led to a revolution in palaeoceanography and in the study of OAEs. Key radiogenic and unconventional stable isotopic systems used in sedimentary archives include strontium (87 Sr/ 86 Sr) osmium (187 Os/ 188 Os), calcium (δ^{44} Ca), lithium (δ^{7} Li) and neodymium isotopes (ε_{Nd}). To date, many studies using these systems have demonstrated tight temporal coincidence between OAEs and basaltic volcanism, increased weathering and changes in ocean circulation patterns (e.g. Jones & Jenkyns, 2001; Cohen et al., 2004; MacLeod et al., 2008; Turgen & Creaser, 2008; Tajeda et al., 2009; Blättler et al., 2011; Pogge von Strandmann et al., 2013; Zheng et al. 2013, 2016; Lechler et al., 2015; Percival et al., 2016), providing support for the conceptual models of feedbacks and relationships posited to be important during OAEs (Figure 3). However, of all the environmental changes associated with OAEs, it is the paucity of oxygen that had the most striking effect on the sedimentological record in the form of laminated black shales, often commonly interbedded with

250	pelagic carbonates deposited in well-oxygenated conditions. In this aspect of
251	OAE research, concentrations and isotopes of redox-sensitive elements, such
252	as Cr, Fe, I, Mn, Mo, N, S, Tl, U and V, have proven particularly valuable in
253	reconstructing changing redox conditions both locally and globally (e.g.
254	Kuypers et al., 2002; Pearce et al., 2005; Jenkyns et al., 2001, 2007, this
255	volume; Jenkyns, 2010; Lu et al., 2010; Montoya-Pino et al., 2010; Gill et al.,
256	2011; Nielsen et al., 2011; Owens et al., 2013, this volume; Westermann et
257	al., 2014; Zhou et al., 2015; Dickson et al., 2016, this volume; Gomes et al.,
258	2016; Holmden et al., 2016). Through the integration of the different
259	geochemical systems discussed here, it has been possible to develop a
260	detailed understanding of the temporal (and, arguably, mechanistic) links
261	between changes in the physical environment, seawater chemistry and
262	biogeochemical cycles during OAEs (e.g. Owens et al., 2013; Pogge von
263	Strandmann et al., 2013; Dickson et al., 2016, this volume; Jenkyns et al., this
264	volume).
265	
266	The Mesozoic world has long been an attractive target for climate and ocean
267	modelling, due to the challenges presented by warm polar regions and
268	continental interiors and oceans that were periodically dysoxic and anoxic
269	(e.g. Parrish & Curtis, 1982; Parrish et al., 1982, Sloan & Barron, 1990,
270	Chandler et al., 1992, Valdes & Sellwood, 1992; Barron et al., 1995).

Increased computational power has allowed global climate models (GCMs) to be used to test hypotheses regarding the long-term controls on climate and ocean circulation and the importance of atmospheric composition (e.g.

Poulsen et al., 2001, 2003, 2015; Zhou et al., 2008; Lunt et al., 2016).

Additionally, less computationally demanding models of climate and (bio-) geochemical cycles are available that can be used to understand the underlying physical and biogeochemical processes controlling the sedimentological and geochemical variability observed in the Mesozoic geological record (e.g. Kump & Arthur, 1999; Donnadieu et al., 2006, 2016; Montienaro et al., 2012; Zhou et al., 2015; Bauer et al., this volume). Climate models are providing increasingly detailed spatial and temporal simulations of the Mesozoic world, but in order to be of maximum value they need to be compared with robust palaeoclimatic and palaeoenvironmental data taken from the geological record. Such data includes estimates of palaeotemperatures from oxygen-isotopes of carbonate fossils or from organic geochemical palaeothermometers, such as TEX₈₆ (e.g. Robinson et al., this volume), reconstructions of seasonality through detailed elemental analysis of seasonal growth bands in macrofossils, such as bivalves (e.g. de Winter & Claevs, this volume) and reconstructions of local palaeoceanographic conditions from sedimentological, geochemical and palaeontological datasets (e.g. Petrizzo et al., this volume).

Impact beyond the Mesozoic

The OAE concept has also been proving useful in explanations of palaeoenvironment change for times both before and after the Mesozoic.

There are many examples of black shale deposition associated with geochemical anomalies for both the Early Palaeozoic, (e.g. McLaughlin *et al.*, 2012; Vandenbroucke *et al.* 2016) and the Late Palaeozoic (e.g. Carmichael *et al.* 2014, 2016; De Vleeschouwer *et al.* 2014); as more data are acquired

from a range of depositional settings, so the global nature of these events, and their similarities to Mesozoic counterparts, are becoming more clearly established. However, it is also the case that for these deeper time events, coincidence in time to potential extrinsic triggers such as large igneous provinces are not at all well established, let alone inference of causal linkages. It remains to be seen whether the Palaeozoic 'exceptions to the rule' will eventually provide insights into additional Earth System mechanisms also operating in the Mesozoic but so far undiscovered.

Similarly, comparisons and contrasts between OAEs and Cenozoic warming events, such as the Paleocene-Eocene Thermal Maximum or the Miocene Monterey Event, has elucidated common processes and highlighted the extreme magnitude of the Earth system perturbations that have occurred in the earlier history of the planet (e.g. Jenkyns 2003, 2010; Cohen *et al.* 2007; Brandano *et al.*, this volume). The widespread distribution of studied localities and overall larger datasets for Cenozoic events generally provides greater opportunity to comprehend the potential rapidity of environmental processes, and the timing of consequent environmental changes in the different reservoirs of the lithosphere, hydrosphere and biosphere, something that has not yet been achieved with any degree of confidence for the Mesozoic.

Outlook

Although it has now been 40 years since the publication of Schlanger and Jenkyns (1976), the field of Mesozoic palaeoceanography and palaeoclimatology still has many unanswered questions. As discussed above,

the search, on land and under the sea, for new localities in areas that ha	ave
been either tectonically quiescent or active over time, remains an impor-	tant
endeavour that helps to constrain the spatial pictures of Mesozoic	
palaeoenvironments. A future focus on underexplored regions (e.g. the	high
latitudes and the southern hemisphere) would be of great benefit, but the	ere is
still scope for new findings in areas that appear to have been well samp	led.
Unfortunately, many of the classic DSDP records of Jurassic and Cretad	ceous
oceanography, cored at a time when the science objectives were rather	
different but which provide tantalizing glimpses of the past, were poorly	
recovered, and in some cases little material remains after years of samp	oling.
This situation is undoubtedly a limiting factor on the extent of our knowledge.	edge
as it can prohibit the application, at high resolution, of new, insightful pro	oxies.
Thankfully, both IODP (International Ocean Discovery Program) and IC	DP
(International Continental Drilling Project) are continuing to support the	
development and implementation of Mesozoic drilling projects (e.g. Bral	ower
et al., 2013; Hesselbo et al., 2013; Wagner & Dunkley-Jones, 2015), ma	any of
which will come to fruition in the coming years. Additionally, industry	
boreholes and independently funded drilling campaigns, such as the	
Tanzanian Drilling Project (e.g. Jimenez Berrocoso et al., 2015), or the	KARIN
Project in the Karoo Basin (see	
https://www.uj.ac.za/faculties/science/Pages/Karoo-Research-Initiative-	in-
CIMERA.aspx), also have a critical role in furthering the science.	
Although the vast majority of studies have focused on marine sediments	s, the
Mesozoic terrestrial record is a rich archive, yet our understanding of ho)W

terrestrial faunas and floras respond to climatic and environmental extremes is based on a rather limited number of studies (e.g. Kujau *et al.* 2013; Cors *et al.* 2015). Furthermore, the quantification of terrestrial climatic variability has generally been reliant on floral proxies (e.g. Spicer *et al.*, 2008), although new opportunities exist since the recognition of climate signals in early diagenetic soil carbonates (e.g. Ludvigson *et al.*, 1998) and the emergence of organic biomarker palaeothermometry (e.g. Kemp *et al.*, 2014).

A sampling bias also exists in geological time, with many studies focused on key events, such as the major OAEs, and, relatively, fewer efforts to understand the intervening intervals of time. As Helmi Weissert demonstrated, major chemical perturbations, such as the Late Valanginian carbon isotope excursion, occur without any, at first, striking lithological signature. As stratigraphic resolution has increased, so more events have begun to emerge from the record (e.g. Riding et al. 2013). Investigating the long-term climatic, geographic and oceanographic context is key to help understand why the OAEs and similar events were so prevalent in the Mesozoic. Furthermore, efforts to document the mechanisms operating in events with either global (e.g. T-OAE, OAEs 1a and 2) and regional (OAEs 1b, 1c, 1d and 3) lithological signatures is absolutely necessary to constrain the climatic. geochemical, and palaeoceanographic mechanisms, and determine to what extent a single universal model (such as that shown in Figure 3) can realistically be applied. The model(s) used to explain OAEs has much in common with those used to explain other carbon-cycle perturbations occurring throughout Earth history (including some associated with mass

extinction events and other extreme perturbations), so a better understanding of the mechanisms operating during OAEs will likely help to constrain the causes of consequences of major environmental and biotic change throughout the Phanerozoic.

In order to extract the maximum information from sedimentary archives, both old and new, marine and terrestrial, it is essential that proxies continue to be developed, tested and applied. Some variables of climatic and oceanographic interest can, in some settings, be relatively well constrained by multiple approaches (e.g. local redox, temperature). However, other important variables, such as atmospheric gas composition, are still poorly known, yet essential if valid comparisons are to be made with climate and Earth system models. Some progress has made been in determining the trends of CO₂, for example during OAEs (e.g. Barclay et al., 2010; Jarvis et al., 2011; Naafs et al., 2016) but estimation of absolute values has not been without problems and remains a source of considerable uncertainty in Mesozoic palaeoclimate reconstructions. Hope for new proxy estimates exists in advances being made in the understanding of the physiology and chemistry of plants in relationship to pCO₂ (e.g. Schubert & Jahren 2013; Franks et al., 2014). In addition to CO_2 , climate modeling suggests that pO_2 may also be an important determinant in regulating Mesozoic climates (Poulsen et al., 2015), presenting an, arguably, greater challenge for proxies than pCO₂ reconstructions. Past pO₂ levels have proven very difficult to constrain, with estimates for the Cretaceous varying from less than to greater than present-day levels, but recent work on gas inclusions in halite may signal the way ahead (Blamey et

al., 2016). Modelling studies, with key boundary conditions such as atmospheric composition accurately estimated, are essential to helping unravel the complexities of the Mesozoic world and they can provide hypotheses to be tested, often with estimates of rates and magnitudes of environmental change. Testing the outputs of models therefore requires a detailed re-reading and understanding of the stratigraphic record, with an appreciation for sedimentary processes, diagenesis, and timescales – an approach that both Hugh Jenkyns and Helmi Weissert have championed throughout their careers.

Acknowledgements

We are grateful to all the contributors to this Thematic Issue of Sedimentology and the participants in the workshop in Ascona. We thank Hugh Jenkyns, Helmi Weissert, an anonymous reviewer and Emmanuelle Pucéat for their comments on this manuscript. We express our gratitude to the editors of Sedimentology, Nigel Mountney and Tracy Frank, and Elaine Richardson in the Editorial Office for all their help and support in the compilation of the issue.

References

Abramovich, S., G. Keller, D. Stüben and Z. Berner (2003)

- Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. *Palaeogeog.*,
- 423 Palaeoclimat., Palaeoecol. 202,1-29.

425	Barclay, R.S., McElwain, J.C. and Sageman, B.B. (2010) Carbon
426	sequestration activated by a volcanic CO ₂ pulse during Ocean Anoxic Event
427	2. Nature Geoscience, 3, 205–208
428	
429	Barron, E.J., Fawcett, P.J., Peterson, W.H., Pollard, D., and Thompson,
430	S.L., (1995) A "simulation" of mid-Cretaceous climate. Palaeoceanography,
431	10 , 953-962.
432	
433	Bauer, K.W., Zeebe, R.E., and Wortmann, U.G. (this volume). Quantifying
434	the Volcanic Emissions Which Triggered OAE1a, and Their Effect on Ocean
435	Acidification. Sedimentology, this volume.
436	
437	Bernoulli, D. and Jenkyns, H.C. (1974). Alpine, Mediterranean and Central
438	Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In:
439	R.H. Dott and R.H. Shaver, (eds), Modern and Ancient Geosynclinal
440	Sedimentation, a Symposium, Spec. Publ. Soc. Econ. Paleont. Miner., 19,
441	129–160.
442	
443	Blamey, N.J.F., Brand, U., Parnell, J., Spear, N., Lécuyer, C., Benison, K.,
444	Meng, F., and Ni, P., (2016), Paradigm shift in determining Neoproterozoic
445	atmospheric. Geology, 44, 651–654.
446	
447	Blättler, C.L., Jenkyns, H.C., Reynard, L.M., and Henderson, G.M., (2011)
448	Significant increases in global weathering during Oceanic Anoxic Event 2
449	indiciated by calcium isotopes. Earth Planet. Sci. Letts. 309, 77-88.

450	
451	Bornemann, A., Erbacher, J., Heldt, M., Kollaske, T., Wilmsen, M., Lübke,
452	N., Huck, S., Vollmar, N.M., and Wonik. T., (this volume). The Albian-
453	Cenomanian transition and Oceanic Anoxic Event 1d in the Boreal Realm.
454	Sedimentology, this volume;
455	
456	Brandano, M., Cornacchia, I., Raffi, I., Tomassetti, L. and Agostini, S.
457	(this volume). The Monterey Event within the Central Mediterranean area:
458	the shallow-water record. Sedimentology, (this volume).
459	
460	Bralower, T.J., Bown, E., Erba, E., Jenkyns, H., Leckie, M., and Robinson,
461	S. (2013) Advancing our Understanding of Cretaceous Ocean Dynamics by
462	Scientic Drilling ECORD Newsletter, 21, p.22
463	
464	Burla, S., Heimhofer, U., Hochuli, P. A., Weissert, H., Skelton, P., (2008).
465	Changes in sedimentary patterns of coastal and deep-sea successions from
466	the North Atlantic (Portugal) linked to Early Cretaceous environmental
467	change. Palaeogeography, Palaeoclimatology, Palaeoecology, 257 , 38-57.
468	
469	Carmichael, S.K., Waters, J.A., Suttner, T.J., Kido, E., and DeReuil, A.A.
470	(2014). A new model for the Kellwasser Anoxia Events (Late Devonian):
471	Shallow water anoxia in an open oceanic setting in the Central Asian
472	Orogenic Belt. Palaeogeogr., Palaeoclimatol., Palaeoecol. 399, 394–403.
473	

474	Carmichael, S.K., Waters, J.A., Batchelor, C.J., Coleman, D.M., Suttner,
475	T.J., Kido, E., Moore, L.M., Chadimova, L. (2016). Climate instability and
476	tipping points in the Late Devonian: Detection of the Hangenberg Event in an
477	open oceanic island arc in the Central Asian Orogenic Belt. Gondwana
478	Research, 32 , 213-231.
479	
480	
481	Chandler, M.A., Rind, D., and Ruey, R. (1992) Pangean climate during the
482	Early Jurassic: GCM simulations and the sedimentary record of paleoclimate.
483	GSA Bull., 104, 543-559.
484	
485	Cohen, A.S., Coe, A.L., Harding, S.M. and Schwark, L. (2004) Osmium
486	isotope evidence for the regulation of atmospheric CO ₂ by continental
487	weathering. Geology, 32, 157-160.
488	
489	Cohen, A.S., Coe, A.L. and Kemp, D.B. (2007). The Late Palaeocene, Early
490	Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a
491	comparison of their time scales, associated environmental changes, causes
492	and consequences. J.Geol. Soc., Lond. 164, 1093–1108.
493	
494	Cors, J., Heimhofer, U., Adatte, T., Hochuli, PA., Huck, S., Bover-Arnal,
495	T. (2015). Climatic evolution across oceanic anoxic event 1a derived from
496	terrestrial palynology and clay minerals (Maestrat Basin, Spain). Geological
497	Magazine, 152 , 632-647.

499	De Vleeschouwer, D., Crucifix, M., Bounceur, N., and Claeys, P. (2014).
500	The impact of astronomical forcing on the Late. Devonian greenhouse
501	climate. Global, Planetary Change 120, 65–80.
502	
503	de Winter, N.J. and Claeys, Ph. (this volume). Micro X-ray fluorescence
504	(μXRF) line scanning on Cretaceous rudist bivalves: A new method for
505	reproducible trace element profiles in bivalve calcite. Sedimentology, this
506	volume.
507	
508	Dickson, A.J., Jenkyns, H.C., Porcelli, D., van den Boorn, S., and Idiz, E.
509	(2016). Basin-scale controls on the molybdenum-isotope composition of
510	seawater during Oceanic Anoxic Event 2 (Late Cretaceous). Geochim.
511	Cosmochim. Acta, 178 , 291–306
512	
513	Dickson, A.J., Saker-Clark, M., Jenkyns, H.C., Bottini, C., Erba, E.,
514	Russo, F., Gorbanenko, O., Naafs, B.D.A., Pancost, R.D., Robinson, S.A.,
515	and van den Boorn, S.H.J.M. (this volume) A Southern Hemisphere record
516	of global trace-metal drawdown and orbital modulation of organic-matter burial
517	across the Cenomanian-Turonian boundary (ODP Site 1138, Kerguelen
518	Plateau). Sedimentology, this volume.
519	
520	Donnadieu, Y., Pierrehumbert, R., Jacob, R., and Fluteau, F., (2006)
521	Modelling the primary control of paleogeography on Cretaceous climate. Earth
522	Planet. Sci. Letts., 248, 426–437.
523	

524	Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck,
525	JF., (2016) A better-ventilated ocean triggered by Late Cretaceous changes
526	in continental configuration. Nat. Comms., DOI: 10.1038/ncomms10316
527	
528	Dromart, G., Garcia, JP., Gaumet, F., Picard, S., Rousseau, M., Atrops,
529	F., Lecuyer, C., and Sheppard, S.M.F. (2003). Perturbation of the carbon
530	cycle at the Middle/Late Jurassic transition: Geological and geochemical
531	evidence. Am. Jour. Sci., 303, 667-707.
532	
533	Eldrett, J. S., Minisini, D. and Bergman, S.C. (2014) Decoupling of the
534	carbon cycle during Ocean Anoxic Event 2. Geology, 42, 567–570
535	
536	Erba, E., Bartolini, A. and Larson, R.L. (2004) Valanginian Weissert oceanic
537	anoxic event. <i>Geology</i> , 32 , 149-152.
538	
539	Erba, E., Bottini, C., Weissert, H., Keller, C. E. (2010). Calcareous
540	nannoplankton response to surface-water acidification around oceanic anoxic
541	event 1a. Science, 329 , 428-432.
542	
543	Erba, E., Duncan, R.A., Bottini, C., Tiraboschi, D., Weissert, H., Jenkyns,
544	H.C. and Malinverno, A. (2015). Environmental consequences of Ontong
545	Java Plateau and Kerquelen Plateau volcanism. <i>In:</i> Neal, C.R., Sager, W.W.,
546	Sano, T. & Erba, E., Eds, The origin, evolution, and environmental
547	consequences of oceanic Large Igneous Provinces, Geol. Soc. Am. Spec.
548	Paper, 511 , 271–303.

549	
550	Erbacher, J., Thurow, J., and Littke, R., (1996). Evolution patterns of
551	radiolaria and organic matter variations: A new approach to identify sea-level
552	changes in mid-Cretaceous pelagic environments. <i>Geology</i> , 24 , 499–502.
553	
554	Franks, P.J., Royer, D.L., Beerling, D.J., van de Water, P.K., Cantrill, D.J.,
555	Barbour, M.M. and Berry, J.A. (2014) New constraints on atmospheric CO ₂
556	concentration for the Phanerozoic. <i>Geophys. Res. Lett.</i> , 41 , 4685–4694.
557	
558	Galli, M. T., Jadoul, F., Bernasconi, S. M., Weissert, H. (2005). Anomalies
559	in global carbon cycling and extinction at the Triassic/Jurassic boundary:
560	Evidence from a marine C-isotope record. Palaeogeography,
561	Palaeoclimatology, Palaeoecology, 216 , 203-214.
562	
563	Gill, B.C., Lyons, T.W., Jenkyns, H.C., (2011). A global perturbation to the
564	sulfur cycle during the Toarcian Oceanic Anoxic Event, Earth Planet. Sci.
565	Letts., 312, 484–496.
566	
567	Giorgioni, M., Weissert, H., Bernasconi, S. M., Hochuli, P. A., Coccioni,
568	R., Keller, C. E. (2012). Orbital control on carbon cycle and oceanography in
569	the mid-Cretaceous greenhouse. Paleoceanography, 27, PA1204.
570	
571	Giorgioni, M., Tiraboschi, D., Erba, E., Hamann, Y., and Weissert , H.,
572	(this volume) Sedimentary patterns and palaeoceanography of the Albian

573	Marne a Fucoidi Formation (Central Italy) revealed by high-resolution
574	geochemical and nannofossil data. Sedimentology, this volume.
575	
576	Gomes, M.L., Hurtgen, M.T. and Sageman, B.B. (2016) Biogeochemical
577	sulfur cycling during Cretaceous Ocean Anoxic Events: A comparison of
578	OAE1a and OAE2. Paleoceanography, 31, 233–251.
579	
580	Gröcke, D., Hesselbo, S.P. and Jenkyns, H.C. (1999). Carbon-isotope
581	composition of Lower Cretaceous fossil wood: ocean-atmosphere chemistry
582	and relation to sea-level change. <i>Geology</i> , 27 , 155–158.
583	
584	Gröcke, D.R., Hori, R.S., Trabucho-Alexandre, J., Kemp, D.B. and
585	Schwark, L. (2011). An open ocean record of the Toarcian oceanic anoxic
586	event. Solid Earth, 2, 245-257
587	
588	Heimhofer, U., Meister, P., Bernasconi, S., Ariztegui, D., Martill, D., de
589	Moraes RN., Schwark, L. (this volume). Isotope and elemental
590	geochemistry of black shale-hosted fossiliferous concretions from the
591	Cretaceous Santana Formation fossil Lagerstätte (Brazil). Sedimentology, this
592	volume.
593	
594	Hennig, S., Weissert, H., Bulot, L. (1999). C-isotope stratigraphy, a
595	calibration tool between ammonite- and magnetostratigraphy: the
596	Valanginian-Hauterivian transition. <i>Geologica Carpathica</i> , 50 , 91-96.
597	

598	Hesselbo, S.P., Gröcke, D., Jenkyns, H.C., Bjerrum, C.J., Farrimond, P.,
599	Bell, H.S.M., and Green, O.R., (2000). Massive dissociation of gas hydrate
600	during a Jurassic oceanic anoxic event. Nature, 406, 392–395
601	
602	Hesselbo, S.P., Bjerrum, C.J., Hinnov, L.A., MacNiocaill, C., Miller, K.G.,
603	Riding, J.B., van de Schootbrugge, B., and the Mochras Revisited
604	Science Team (2013) Mochras borehole revisited: a new global standard for
605	Early Jurassic Earth history, Sci. Dril., 16, 81-91,
606	
607	Holmden, C., Jacobson, A.D., Sageman, B.B., Hurtgen, M.T., (2016)
608	Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a
609	pelagic carbonate succession from the Western Interior Seaway, Geochim.
610	Cosmochim. Acta, 186, 277–295.
611	
612	Hsü K.J. and Jenkyns, H.C. (eds) (1974). Pelagic Sediments: on Land and
613	under the Sea. Spec. Publ. Int. Ass. Sediment., 1, 447 pp.
614	
615	Ikeda, M. and Hori, R.S. (2014). Effects of Karoo–Ferrar volcanism and
616	astronomical cycles on the Toarcian Oceanic Anoxic Events (Early Jurassic.
617	Palaeogeog., Palaeoclimat., Palaeoecol., 410 , 134–142.
618	
619	Jarvis, I., Mabrouk, A., Moody, R.T.J., and Cabrera, S.D., (2002). Late
620	Cretaceous (Campanian) carbon isotope events, sea-level change and
621	correlation of the Tethyan and Boreal realms.
622	Palaeogeog., Palaeoclimat., Palaeoecol., 188 , 215–248.

623	
624	Jarvis, I., Lignum, J.S., Gröcke, D.R., Jenkyns, H.C. and Pearce, M.A.
625	(2011) Black shale deposition, atmospheric CO ₂ drawdown and cooling during
626	the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography, 26,
627	PA3201, doi: 10.1029/2010PA002081.
628	
629	Jenkyns, H.C., (1970a) Sedimentology of the west Sicilian Jurassic.
630	Unpublished PhD thesis, University of Leicester, UK.
631	
632	Jenkyns, H.C. (1970b) Growth and disintegration of a carbonate
633	platform. Neues Jb. Geol. Paläont., Mh., 1970, 325–344.
634	
635	Jenkyns, H.C. (1971). The genesis of condensed sequences in the Tethyan
636	Jurassic. <i>Lethaia</i> , 4 , 327–352.
637	
638	Jenkyns H.C. (1976). Sediments and sedimentary history of the Manihiki
639	Plateau, South Pacific Ocean. In: Schlanger, S.O., Jackson E.D., et al., Initial
640	Reports of the Deep Sea Drilling Project, US Government Printing Office, 33,
641	873–890.
642	
643	Jenkyns, H.C. (1980). Cretaceous anoxic events: from continents to
644	oceans. J. Geol. Soc. Lond., 137, 171-188.
645	
646	Jenkyns, H.C. (1985). The Early Toarcian and Cenomanian-Turonian anoxic
647	events in Europe: comparisons and contrasts. Geol. Rdsch., 74, 505–518

648	
649	Jenkyns, H.C. (1988). The Early Toarcian (Jurassic) Anoxic Event:
650	stratigraphic, sedimentary and geochemical evidence. Am. J. Sci., 288, 101-
651	151
652	Jenkyns H.C. (2003). Evidence for rapid climate change in the Mesozoic-
653	Palaeogene greenhouse world. Philos Trans A Math Phys Eng Sci.
654	361(1810) , 1885-1916.
655	
656	Jenkyns, H.C. (2010). Geochemistry of oceanic anoxic events. Geochem.
657	Geophys. Geosys., 11, Q03004.
658	
659	Jenkyns, H.C., and Clayton, C.J., (1986). Black shales and carbon isotopes
660	in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33, 87-
661	106 .
662	
663	Jenkyns, H.C., and Clayton, C.J., (1997). Lower Jurassic epicontinental
664	carbonates and mudstones from England and Wales: chemostratigraphic
665	signals and the early Toarcian anoxic event. Sedimentology, 44, 687-706.
666	
667	Jenkyns, H.C. and Wilson, P.A. (1999). Stratigraphy, paleoceanography
668	and evolution of Cretaceous Pacific guyots: relics from a greenhouse
669	earth. Am. J. Sci., 299, 341–392
670	

671	Jenkyns, H.C., Gale, A.S., and Corfield, R.M. (1994) Carbon- and oxygen-
672	isotope stratigraphy of the English chalk and Italian Scaglia and its
673	paleoclimatic significance. Geol. Mag., 131, 1–34.
674	
675	Jenkyns, H.C., Gröcke, D.R. and Hesselbo, S.P. (2001). Nitrogen-isotope
676	evidence for watermass denitrification during the Early Toarcian (Jurassic)
677	Oceanic Anoxic Event. Paleoceanography, 16, 593–603.
678	
679	Jenkyns, H.C., Forster, A., Schouten, S. and Sinninghe Damsté, J.S.
680	(2004). High temperatures in the Late Cretaceous Arctic Ocean. Nature, 432,
681	888–892
682	
683	Jenkyns, H.C., Matthews, A., Tsikos, H. and Erel, Y. (2007). Nitrate
684	reduction, sulfate reduction, and sedimentary iron isotope evolution during the
685	Cenomanian-Turonian oceanic anoxic event. <i>Paleoceanography</i> , 22,
686	PA3208, doi:10.1029/2006PA001355.
687	
688	Jenkyns, H.C., Dickson, A.J., Ruhl, M., van den Boorn, S.H.J.M., (this
689	volume), Basalt-seawater interaction, the Plenus Cold Event, enhanced
690	weathering and geochemical change: Deconstructing Oceanic Anoxic Event 2
691	(Cenomanian–Turonian, Late Cretaceous). Sedimentology, this volume.
692	
693	Jimenez Berrocoso, A., Huber, B.T., MacLeod, K.G., Petrizzo, M.R., Lees,
694	J.A., Wendler, I., Coxall, H., Mweneinda, A.K., Falzoni, F., Birch, H.,
695	Haynes, S.J., Bown, P.R., Robinson, S.A., Singano, J.M., (2015) The Lindi

696	Formation (upper Albian-Coniacian) and Tanzania Drilling Project Sites 36-40
697	(Lower Cretaceous to Paleogene): lithostratigraphy, biostratigraphy and
698	chemostratigraphy, Jour. African Earth Sci., 101, 282-308
699	
700	Jones, C.E., and Jenkyns, H.C. (2001) Seawater strontium isotopes,
701	Oceanic Anoxic Events, and seafloor hydrothermal activity in the Jurassic
702	and Cretaceous. Am. Jour. Sci. 301, 112-149.
703	
704	Jones, C.E., Jenkyns, H.C., Coe, A.L. and Hesselbo, S.P. (1994). Sr
705	isotopic variations in Jurassic and Cretaceous seawater. Geochim.
706	Cosmochim. Acta, 58, 3061–3074.
707	
708	Kemp, D.B., Robinson, S.A., Crame, J.A., Francis, J.E., Ineson, J.,
709	Whittle, R.J., Bowman, V., and O'Brien, C., (2014). A cool temperate
710	climate on the Antarctic Peninsula through the latest Cretaceous to early
711	Paleogene, Geology, 42, 583-586
712	
713	Kujau, A., Heimhofer, U., Hochuli, P. A., Pauly, S., Morales, C., Adatte, T.,
714	Föllmi, K.B., Ploch, I., Mutterlose, J. (2013). Reconstructing Valanginian
715	(Early Cretaceous) mid-latitude vegetation and climate dynamics based on
716	spore-pollen assemblages. Review of Palaeobotany and Palynology, 197, 50-
717	69.
718	
719	Kump, L.R., and Arthur, M.A., (1999). Interpreting carbon-isotope
720	excursions: carbonates and organic matter. Chem. Geol., 161, 181–198.

721	
722	Kuypers, M.M.M., Pancost, R.D., Nijenhuis, I.A. and Sinninghe Damsté,
723	J.S. (2002), Enhanced productivity led to increased organic carbon burial in
724	the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic
725	event, <i>Paleoceanography</i> , 17 , 1051, doi:10.1029/2000PA000569
726	
727	Lechler, M., Pogge von Strandmann, P.A.E., Jenkyns, H.C., Prosser, G. &
728	Parente, M. (2015). Lithium-isotope evidence for enhanced silicate
729	weathering during OAE 1a (Early Aptian Selli event). Earth Planet. Sci. Letts,
730	432 , 210–222.
731	
732	Lini, A., Weissert, H., and Erba, E. (1992). The Valanginian carbon isotope
733	event: a first episodes of greenhouse climate conditions during the
734	Cretaceous. Terra Nova, 4, 374-384.
735	
736	Lu, Z., Jenkyns, H.C. and Rickaby, R.E.M. (2010). lodine to calcium ratios in
737	marine carbonate as a paleo-redox proxy during oceanic anoxic events.
738	Geology, 38, 1107–1110
739	
740	Lunt, D.J., Farnsworth, A., Loptson, C., Foster, G.L., Markwick, P.,
741	O'Brien, C.L., Pancost, R.D., Robinson, S.A., and Wrobel, N. (2016)
742	Palaeogeographic controls on climate and proxy interpretation, Clim. Past, 12,
743	1181-1198, doi:10.5194/cp-12-1181-2016.
744	

745	MacLeod, K.G., Martin, E.E., and Blair, S W. (2008), Nd isotopic excursion
746	across Cretaceous oceanic anoxic event 2 (Cenomanian Turonian) in the
747	tropical North Atlantic, Geology, 36, 811–814.
748	
749	McLaughlin, P.I., Emsbo, P. and Brett, C.E. (2012). Beyond black shales:
750	the sedimentary and stable isotope records of oceanic anoxic events in a
751	dominantly oxic basin (Silurian; Appalachian Basin, USA). Palaeogeogr.
752	Palaeoclimatol. Palaeoecol. 367-368, 153–177.
753	
754	Mehay, S., Keller, C.E., Bernasconi, S.M., Weissert, H., Erba, E., Bottini,
755	C., and Hochuli, P.A. (2009). A volcanic CO ₂ pulse triggered the Cretaceous
756	oceanic Anoxic event 1a and a biocalcification crisis, <i>Geology</i> , 37 , 819-822.
757	
758	Millán, M. I., Weissert, H., Fernández-Mediola, P.A., and García-Mondéjar,
759	J. (2009). Impact of Early Aptian carbon cycle perturbations on evolution of a
760	marine shelf system in the Basque-Cantabrian Basin (Aralar, Northern Spain).
761	Earth Planet. Sci. Letts, 287 , 392-401.
762	
763	Montienaro, F.M., Pancost, R.D., Ridgwell, A., and Donnadieu, Y. (2012)
764	Nutrients as the dominant control on the spread of anoxia and euxinia across
765	the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data
766	comparison. Paleoceanography, 27, doi:10.1029/2012PA002351
767	
768	Montoya-Pino, C., Weyer, S., Anbar, A.D., Pross, J., Oschmann, W., van
769	de Schootbrugge, B., and Arz. H.W., (2010). Global enhancement of ocean

770	anoxia during Oceanic Anoxic Event 2: A quantitative approach using U
771	isotopes. Geology, 38, 315-318.
772	
773	Morettini, E., Santantonio, M., Bartolini, A., Cecca, F., Baumgartner, P.O.
774	and Hunziker, J.C., (2002) Carbon isotope stratigraphy and carbonate
775	production during the Early–Middle Jurassic: Examples from the Umbria-
776	Marche-Sabina Apennines (central Italy). Palaeogeog., Palaeoclimat.,
777	Palaeoecol., 184 , 251–273.
778	
779	Müller,T., Price, G.D., Bajnai, D., Nyerges, A., Kesjár, D., Raucsik, B.,
780	Varga, A., Judik, K., Fekete, J., May, Z. and Pálfy, J. (this volume). New
781	multiproxy record of the Jenkyns Event (a.k.a. Toarcian Oceanic Anoxic
782	Event) from the Mecsek Mountains (Hungary): differences, duration and
783	drivers. Sedimentology, (this volume).
784	
785	Naafs, B.D.A., Castro, J.M., De Gea, G.A., Quijano, M.L., D. N. Schmidt,
786	D.N., Pancost, R.D., (2016) Gradual and sustained carbon dioxide release
787	during Aptian Oceanic Anoxic Event 1a, Nat. Geosci., 9, 135–139.
788	
789	Nielsen, S.G., Goff, M., Hesselbo, S.P., Jenkyns, H.C., LaRowe, D.E. &
790	Lee, C.A. (2011). Thallium isotopes in early diagenetic pyrite – a paleoredox
791	proxy? Geochim. Cosmochim Acta, 75, 6690–6704
792	
793	Owens, J.D., Gill, B.C., Jenkyns, H.C., Bates, S.M., Severmann, S.,
794	Kuypers M.M.M. Woodfine R.G. and Lyons T.W. (2013) Sulfur isotopes

234.

795	track the global extent and dynamics of euxinia during Cretaceous Oceanic
796	Anoxic Event 2. Proc. Natl Acad. Sci. USA, 110, 18407–18412.
797	
798	Owens, J., Lyons, T., Hardisty, D., Chris, C., Zunli, L., and Jenkyns, H.C.
799	(this volume). Patterns of local and global redox variability during the
800	Cenomanian-Turonian Boundary Event (OAE2) recorded in carbonates and
801	shales from central Italy (Furlo, Marche-Umbria). Sedimentology, this volume
802	
803	Pancost, R.D., Crawford, N., Magness, S., Turner, A., Jenkyns, H.C. and
804	Maxwell, J.R. (2004). Further evidence for the development of photic zone
805	euxinic conditions during Mesozoic oceanic anoxic events. J. Geol. Soc., 161,
806	353– 364.
807	
808	Parrish, J.T. and Curtis, R.L., (1982). Atmospheric circulation, upwelling,
809	and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr.,
810	Palaeoclimatol., Palaeoecol., 40 , 31–66
811	
812	Parrish, J.T., Ziegler, A.M., and Scotese, C.R. (1982) Rainfall patterns and
813	the distribution of coals and evaporites in the Mesozoic and Cenozoic.
814	Palaeogeog., Palaeoclim., Palaeoecol., 40 , 67–101.
815	
816	Pearce, C.R., Cohen, A.S., Coe, A.L., and Burton, K.W. (2008).
817	Molybdenum isotope evidence for global oceanic anoxia coupled with
818	perturbations to the carbon cycle during the Early Jurassic, Geology, 36, 231-

820	
821	Percival, L.M.E., Cohen, A.S., Davies, M.K., Dickson, A.J., Hesselbo, S.P.
822	Jenkyns, H.C., Leng, M.J., Mather, T.A., Storm, M.S., and Xu , W., (2016).
823	Osmium isotope evidence for two pulses of increased continental weathering
824	linked to Early Jurassic volcanism and climate change. <i>Geology</i> ,
825	doi:10.1130/G37997.1
826	
827	Petrizzo, M.R., Huber B.T., Wilson, P.A., and MacLeod, K.G. (2008). Late
828	Albian paleoceanography of the western subtropical North Atlantic.
829	Paleocean., 23, doi:10.1029/2007PA001517
830	
831	Petrizzo, M.R., Jiménez Berrocoso, A., Falzoni, F., Huber, B.T., and
832	MacLeod, K.G., (this volume). The Coniacian-Santonian sedimentary record
833	in southern Tanzania (Ruvuma Basin, East Africa): planktonic foraminiferal
834	evolutionary, geochemical and palaeoceanographic patterns. Sedimentology,
835	(this volume)
836	
837	Pogge von Strandmann, P.A.E., Jenkyns, H.C. and Woodfine, R.G.
838	(2013). Lithium isotope evidence for enhanced weathering during Oceanic
839	Anoxic Event 2. Nature Geosci., 6, 668–672
840	
841	Poulsen, C.J., Barron, E.J., Arthur, M.A., and Peterson, W.H., (2001)
842	Response of the mid-Cretaceous global oceanic circulation to tectonic and
843	CO ₂ forcings. <i>Paleoceanography</i> , 16 , 1-17
844	

845	Poulsen, C.J., Gendaszek, A.S., and Jacob, R.L., (2003) Did the rifting of
846	the Atlantic Ocean cause the Cretaceous thermal maximum? Geology, 31,
847	115–118.
848	
849	Poulsen, C.J., Tabor, C., and White, J.D. (2015) Long-term climate forcing
850	by atmospheric oxygen concentrations. Science, 348, 1238–1241.
851	
852	Riding, J.B., Leng, M.J., Kender, S, Hesselbo, S.P., Feist-Burkhardt, S
853	(2013). Isotopic and palynological evidence for a new Early Jurassic
854	environmental perturbation. Palaeogeog., Palaeoclim., Palaeoecol., 374, 16-
855	27.
856	
857	Robinson, S.A., Williams, T. and Bown, P.R. (2004). Fluctuations in
858	biosiliceous production and the generation of Early Cretaceous oceanic
859	anoxic events in the Pacific Ocean (Shatsky Rise, Ocean Drilling Program
860	Leg 198). <i>Paleoceanography</i> , 19, PA4024, doi:10.1029/2004PA001010.
861	
862	Robinson, S.A., Clark, L.J., Nederbragt, A., and Wood, I.G., (2008) Mid-
863	Cretaceous oceanic anoxic events in the Pacific Ocean revealed by carbon-
864	isotope stratigraphy of the Calera Limestone, California, USA. Bull. Geol. Soc
865	Am., 120, 1416–1427.
866	
867	Robinson, S.A., Ruhl, M., Astley, D.L., Naafs, B.D.A., Farnsworth, A.J.,
868	Bown, P.R., Jenkyns, H.C., Lunt, D.J., O'Brien, C., Pancost, R.D., and

869	Markwick, P.J. (this volume). Early Jurassic North Atlantic sea-surface
870	temperatures from TEX ₈₆ palaeothermometry, <i>Sedimentology</i> , this volume.
871	
872	Schlanger, S.O. and Jenkyns, H.C. (1976). Cretaceous oceanic anoxic
873	events: causes and consequences. Geol. Mijnb., 55, 179–194.
874	
875	Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., and Scholle, P.A., (1987).
876	The Cenomanian Turonian Oceanic Anoxic Event I. Stratigraphy and
877	distribution of organic-carbon rich beds and the marine $\delta^{13} \text{C}$ excursion. <i>Geol.</i>
878	Soc. London Spec. Publ. 26 , 371-399.
879	
880	Scholle, P., and Arthur, M.A., (1980). Carbon isotopic fluctuations in pelagic
881	limestones: Potential stratigraphic and petroleum exploration tool. AAPG Bull.
882	64 , 67-87
883	
884	Schubert, B.A., and Jahren. A.H. (2013). Reconciliation of marine and
885	terrestrial carbon isotope excursions based on changing atmospheric CO ₂
886	levels. Nature Comms, 4, 1653, DOI: 10.1038/ncomms2659
887	
888	Sloan, L.C., and Barron, E.J., (1990) "Equable" climates during Earth
889	history? <i>Geology</i> , 18 , 489-492.
890	
891	Smith A.G., Hurley, A.M., and Briden, J.C., (1981) Phanerozoic
892	paleocontinental World Maps. Cambridge University Press, Cambridge, UK.
893	102 pp.

894	
895	Spicer, R.A., Ahlberg, A., Herman, A.B., Hofmann, CC. Raikevich, M.,
896	Valdes, P.J., and Markwick, P.J., (2008). The Late Cretaceous continental
897	interior of Siberia: A challenge for climate models. Earth Planet. Sci. Letts.
898	267 , 228–235.
899	
900	Takashima, R., Nishi, H., Huber, B.T., and Leckie, R.M. (2006),
901	Greenhouse World and the Mesozoic Ocean. Oceanography, 19, 82-92.
902	
903	Takashima, R., Nishi, H., Yamanaka, T., Tomosugi, T., Fernando, A.G.,
904	Tanabe, K., Moriya, K., Kawabe, F., and Hayashi, K., (2011). Prevailing
905	oxic environments in the Pacific Ocean during the mid-Cretaceous Oceanic
906	Anoxic Event 2. Nat. Comms., DOI: 10.1038/ncomms1233.
907	
908	Tejada, M.L.G., Suzuki, K., Kuroda, J., Coccioni, R., Mahoney, J.J.,
909	Ohkouchi, N., Sakamoto, T., and Tatsumi, Y. (2009). Ontong Java Plateau
910	eruption as a trigger for the Early Aptian oceanic anoxic event, <i>Geology</i> , 37 ,
911	855–858
912	
913	Tsikos, H., Jenkyns, H.C., Walsworth-Bell, B., Petrizzo, M.R., Forster, A.,
914	Kolonic, S., Erba, E., Premoli Silva, I., Wagner, T., and Sinninghe
915	Damsté, J.S. (2004), Carbon isotope stratigraphy recorded by the
916	Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications
917	based on three key localities. J. Geol. Soc. London,, 161, 711–719
918	

919	
920	Turgeon, S. and Creaser, R.A. (2008) Cretaceous oceanic anoxic event 2
921	triggered by a massive magmatic episode. Nature, 454, 323–326.
922	
923	Valdes, P.J., and Sellwood, B.W. (1992) A palaeoclimate model for the
924	Kimmeridgian. Palaeogeog., Palaeoclim., Palaeoecol. 95, 47–72.
925	
926	Van de Schootbrugge, B., Bailey, T.R., Rosenthal, Y., Katz, M.E., Wright,
927	J.D., Miller, K.G., Feist- Burkhardt, S., and Falkowski, P.G. (2005). Early
928	Jurassic climate change and the radiation of organic-walled phytoplankton in
929	the Tethys Ocean. Paleobiology 31, 73–97
930	
931	Vandenbroucke, T.R.A., Emsbo, P., Munnecke, A., Nuns, N., Duponchel,
932	L., Lepot, K., Quijada, M., Paris, F., Servais, T., Kiessling, W. (2016)
933	Metal-induced malformations in early Palaeozoic plankton are harbingers of
934	mass extinction Nature Comms 6, Article Number 7966.
935	
936	Wagner, T. and Dunkley Jones, T., (2015) Drilling the Cretaceous
937	Palaeogene Tropical South Atlantic. ECORD Newsletter, 24, p.20.
938	
939	Weedon, G.P. and Jenkyns, H.C. (1999). Cyclostratigraphy and the Early
940	Jurassic time scale: data from the Belemnite Marls, Dorset, Southern
941	England. Bull. Geol. Soc. Am., 111, 1823–1840.
942	

943	Weissert, H.J. (1979). Die Palaeoozeanographie der suedwestlichen Tethys
944	in der Unterkreide. Unpublished PhD thesis, Eidgenössische Technische
945	Hochschule, Zürich, Switzerland.
946	
947	Weissert, H.J., (1989). C-isotope stratigraphy, a monitor of
948	paleoenvironmental change: a case study from the Early Cretaceous. Surv.
949	Geophys. 10, 1-61
950	
951	Weissert, H. (1990) Siliciclastics in Early Cretaceous Tethys and Atlantic
952	Oceans. Mem. Soc. Geol. It., 44, 59-69
953	
954	Weissert, H. (2000). Deciphering methane's fingerprint. Nature, 406, 356-
955	357
956	
957	Weissert, H., and Bréhéret, J.G., (1991). A carbonate-carbon isotope record
958	from Aptian-Albian sediments of the Vocontian Trough. Bull. Soc. Géol. Fr.
959	162 , 1133-1140.
960	
961	Weissert, H., and Channell, J.E.T., (1989). Tethyan carbonate carbon
962	isotope stratigraphy across the Jurassic Cretaceous boundary: an indicator of
963	decelerated carbon cycling. Paleoceanography 4, 483 494.
964	
965	Weissert, H., and Erba, E. (2004). Volcanism, CO ₂ and palaeoclimate: A
966	Late Jurassic-Early Cretaceous carbon and oxygen isotope record. Jour.
967	Geol. Soc., 161, 695-702.

968	
969	Weissert, H. and Lini, A. (1991), Ice age interludes during the time of
970	Cretaceous greenhouse climate. In: Müller, D.W., McKenzie, J.A., Weissert,
971	H. (Eds.), Controversies in Modern Geology. Academic Press, London, pp.
972	173-191.
973	
974	Weissert, H., and Mohr, H., (1996). Late Jurassic climate and its impact on
975	carbon cycling. Palaeogeogr., Palaeoclimatol., Palaeoecol. 122, 27-43.
976	
977	Weissert, H. and Oberhänsli, H., (1985), Pliocene Oceanography and
978	Climate: An Isotope Record from the Southwest Angola Basin <i>In:</i> Hsu K.J.
979	and Weissert, H. (eds.), South Atlantic Paleoceanography, Cambridge
980	University Press, 79-98.
981	
982	Weissert, H., McKenzie, J.A., Wright, R.C., Clark, M., Oberhänsli, H., and
983	Casey, M., (1984) Paleoclimatic Record of the Pliocene at Deep Sea Drilling
984	Project Sites 519, 521, 522, and 523 (Central South Atlantic); In Hsu, K.J. and
985	LaBreque, J.L. et al. (eds.), Initial Reports of the Deep Sea Drilling Project,
986	73, Washington, D.C., U.S.Govt. Printing Office, pp. 701-715
987	
988	Weissert, H.J., McKenzie, J.A., Channell, J.E.T., (1985) Natural variations
989	in the carbon cycle during the Early Cretaceous. <i>In:</i> Sundquist, E.T.,
990	Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural
991	variations Archean to the Present. Geophys. Monogr. 32, 531 545.
992	

993	Weissert, H., Lini, A., Föllmi, K.B., and Kuhn, O. (1998). Correlation of
994	Early Cretaceous carbon isotope stratigraphy and platform drowning events:
995	A possible link? Palaeogeog., Palaeoclimat., Palaeoecol., 137, 189-203.
996	
997	Westermann, S., Vance, D., Cameron, V., Archer, C. and Robinson, S.A.
998	(2014). Heterogeneous oxygenation states in the Atlantic and Tethys Oceans
999	during Oceanic Anoxic Event 2. Earth Planet. Sci. Lett., 404, 178–189.
1000	
1001	Wissler, L., Funk, H., and Weissert, H. (2003). Response of Early
1002	Cretaceous carbonate platforms to changes in atmospheric carbon dioxide
1003	levels. Palaeogeog., Palaeoclimat., Palaeoecol, 200, 187-205.
1004	
1005	Wohlwend, S., Celestino, R., Reháková, D., Huck, S., and Weissert, H.,
1006	(this volume), Late Jurassic to Cretaceous evolution of the eastern Tethyan
1007	Hawasina Basin (Oman Mountains). Sedimentology, this volume.
1008	
1009	Xu, W., Ruhl, M., Hesselbo, S.P., Riding, J.B., and Jenkyns. H.C. (this
1010	volume). Orbital pacing of the Early Jurassic carbon cycle, black shale
1011	formation and seabed methane seepage. Sedimentology, this volume
1012	
1013	Zheng, XY., Jenkyns, H.C., Gale, A.S., Ward, D.J. and Henderson, G.M.
1014	(2013). Changing ocean circulation and hydrothermal inputs during Ocean
1015	Anoxic Event 2 (Cenomanian_Turonian): Evidence from Nd-isotopes in the
1016	European shelf sea. Earth Planet. Sci. Letts, 375, 338–348.
1017	

1018	Zheng, XY., Jenkyns, H.C., Gale, A.S., Ward, D.J. and Henderson, G.M.
1019	(2016). A climatic control on reorganization of ocean circulation during the
1020	mid-Cenomanian event and the Cenomanian-Turonian oceanic anoxic event
1021	(OAE 2): Nd isotope evidence. Geology, 44, 151–154.
1022	
1023	Zhou, J., Poulsen, C.J., Pollard, D., and White, T.S., (2008) Simulation of
1024	modern and middle Cretaceous marine $\delta^{\text{18}}\text{O}$ with an ocean-atmosphere
1025	general circulation model. Paleoceanography, 23,
1026	doi:10.1029/2008PA001596
1027	
1028	Zhou, X., Jenkyns, H.C., Owens, J.D., Junium, C.K., Zheng, XY.,
1029	Sageman, B.B., Hardisty, D.S., Lyons, T.W., Ridgwell, A., and Lu, Z.,
1030	(2015) Upper ocean oxygenation dynamics from I/Ca ratios during the
1031	Cenomanian–Turonian OAE2. Paleoceanography, 30, 510–526.
1032	
1033	FIGURE CAPTIONS
1034	
1035	Figure 1 Example of black shale deposited during oceanic anoxic events. (A)
1036	Livello Bonarelli, deposited during OAE2 in the Furlo Quarry, Umbria-Marche
1037	region, Italy (B) close up view of Livello Bonarelli in Furlo Quarry, where it is
1038	~1.2 m thick. Within the black shales are lighter coloured radiolarian sands.
1039	Above and below the black shales are pelagic limestones (white sediments)
1040	with relatively thin chert beds (dark grey to black sediments). Metre-stick for
1041	scale.
1042	

Figure 2 Bulk carbonate carbon-isotope ($\delta^{13}C_{carb}$) stratigraphy of the Jurassic and Cretaceous (modified from Takashima *et al.*, 2006) and age of prominent 'Oceanic Anoxic Events' and other related phenomena. Carbon-isotope data from (1) Van de Schootbrugge *et al.* (2005); (2) Hesselbo *et al.* (2000); (3) Morettini *et al.* (2002); (4) Dromart *et al.* (2003); (5) Weissert *et al.* (1998); (6) Erbacher *et al.* (1996); (7) Jenkyns *et al.* (1994); (8) Jarvis *et al.* (2002); and (9) Abramovich *et al.* (2003).

Figure 3 Cartoon illustrating major aspects of the positive and negative feedbacks that led to the onset and termination of oceanic anoxic events, as described in the text. The figure has been modified from Jenkyns (2010), based on an original figure in Weissert (2000).

Figure 4 Maps showing the distribution of localities presenting black shales and sediments containing more than 1% total organic carbon associated with oceanic anoxic events in the (a) Early Toarcian (T-OAE), (b) Early Aptian (OAE1a) and (c) Cenomanian—Turonian (OAE2). The Toarcian map is adapted from the data and plate reconstruction presented in Jenkyns (1988), Jenkyns *et al.*, (2002) and Gröcke *et al.*, (2011). The plate tectonic reconstruction is similar to those presented in Smith *et al.*, (1981). Early Aptian sites are based upon the compilation of Erba *et al.*, (2015), but excludes localities with <1%TOC or no TOC data. Cenomanian—Turonian OAE2 sites are based upon Schlanger *et al.*, (1987) and Takashima *et al.*, (2006) with new data from Dickson *et al.* (this volume). Early Aptian and Late

- 1067 Cenomanian plate reconstructions are from the Ocean Drilling Stratigraphic
- 1068 Network (http://www.odsn.de).

Figure 1 Example of black shale deposited during oceanic anoxic events. (A) Livello Bonarelli, deposited during OAE2 in the Furlo Quarry, Umbria-Marche region, Italy (B) close up view of Livello Bonarelli in Furlo Quarry, where it is ~ 1.2 m thick. Within the black shales are lighter coloured radiolarian sands. Above and below the black shales are pelagic limestones (white sediments) with relatively thin chert beds (dark grey to black sediments). Meter-stick for scale.

207x316mm (300 x 300 DPI)

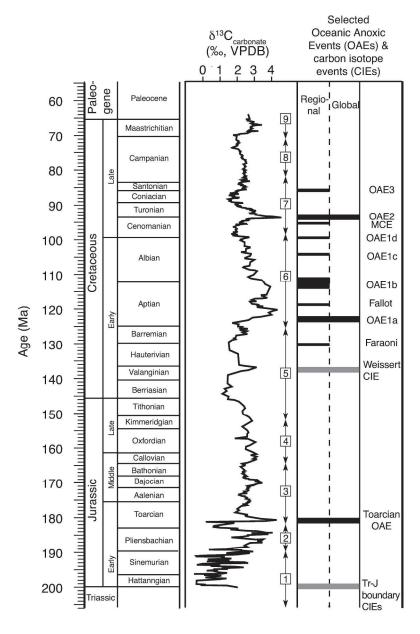


Figure 2. Bulk carbonate carbon-isotope (δ 13Ccarb) stratigraphy of the Jurassic and Cretaceous (modified from Takashima et al., 2006) and age of prominent 'Oceanic Anoxic Events'). Carbon-isotope data from (1) Van de Schootbrugge et al. (2005); (2) Hesselbo et al. (2000); (3) Morettini et al. (2002); (4) Dromart et al. (2003); (5) Weissert et al. (1998); (6) Erbacher et al. (1996); (7) Jenkyns et al. (1994); (8) Jarvis et al. (2002); and (9) Abramovich et al. (2003).

199x310mm (300 x 300 DPI)

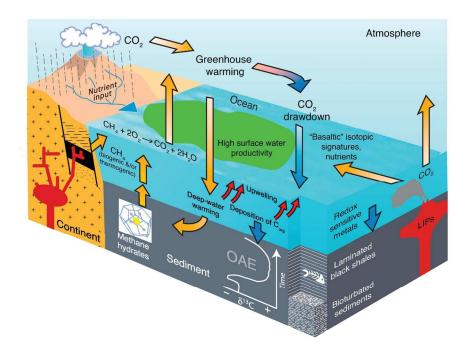


Figure 3 Cartoon illustrating major aspects of the positive and negative feedbacks that led to the onset and termination of oceanic anoxic events, as described in the text. The figure has been modified from Jenkyns (2010), based on an original figure in Weissert (2000).

127x94mm (300 x 300 DPI)

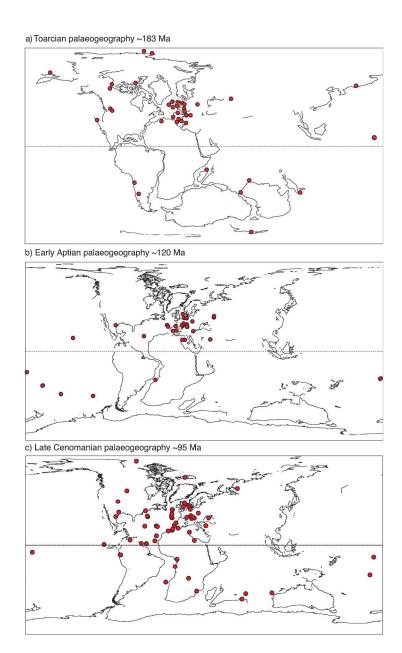


Figure 4 Maps showing the distribution of localities presenting black shales and sediments containing more than 1% total organic carbon associated with oceanic anoxic events in the (a) Early Toarcian (T-OAE), (b) Early Aptian (OAE1a) and (c) Cenomanian–Turonian (OAE2). The Toarcian map is adapted from the data and plate reconstruction presented in Jenkyns (1988), Jenkyns et al., (2002) and Gröcke et al., (2011). The plate tectonic reconstruction is similar to those presented in Smith et al., (1981). Early Aptian sites are based upon the compilation of Erba et al., (2015), but excludes localities with <1%TOC or no TOC data. Cenomanian–Turonian OAE2 sites are based upon Schlanger et al., (1987) and Takashima et al., (2006) with new data from Dickson et al. (this volume). Early Aptian and Late Cenomanian plate reconstructions are from the Ocean Drilling Stratigraphic Network (http://www.odsn.de).