88 research outputs found

    Interaction effects in a microscopic quantum wire model with strong spin-orbit interaction

    Full text link
    We investigate the effect of strong interactions on the spectral properties of quantum wires with strong Rashba spin-orbit interaction in a magnetic field, using a combination of Matrix Product State and bosonization techniques. Quantum wires with strong Rashba spin-orbit interaction and magnetic field exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread experimental and theoretical attention due to their unusual physical properties, among which are spin-dependent transport, or a topological superconducting phase when under the proximity effect of an s-wave superconductor. As a microscopic model for the quantum wire we study an extended Hubbard model with spin-orbit interaction and Zeeman field. We obtain spin resolved spectral densities from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions increase the pseudo gap at k=0k = 0 and thus also enhance the Majorana-supporting phase and stabilize the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low energy spiral Luttinger Liquid result, obtained from field theoretical calculations. With interactions, the optical conductivity is dominated by an excotic excitation of a bound soliton-antisoliton pair known as a breather state. We visualize the oscillating motion of the breather state, which could provide the route to their experimental detection in e.g. cold atom experiments

    Geometrical spin dephasing in quantum dots

    Get PDF
    We study spin-orbit mediated relaxation and dephasing of electron spins in quantum dots. We show that higher order contributions provide a relaxation mechanism that dominates for low magnetic fields and is of geometrical origin. In the low-field limit relaxation is dominated by coupling to electron-hole excitations and possibly 1/f1/f noise rather than phonons.Comment: Replaced with final published versio

    Superhard coatings on plastics by nanoparticles

    Get PDF

    Systemic Immune-Inflammation Index (SII) Predicts Poor Survival in Pancreatic Cancer Patients Undergoing Resection

    Get PDF
    Background: The systemic immune-inflammation index based on peripheral neutrophil, lymphocyte, and platelet counts has shown a prognostic impact in several malignancies. The aim of this study was to determine the prognostic role of systemic immune-inflammation index in patients with pancreatic ductal adenocarcinoma undergoing resection. Methods: Consecutive patients who underwent surgical resection at the department of surgery at the Medical University of Vienna between 1995 and 2014 were included into this study. The systemic immune-inflammation index was calculated by the formula platelet*neutrophil/lymphocyte. Optimal cutoffs were determined using Youden's index. Uni-and multivariate analyses were calculated by the Cox proportional hazard regression model for overall survival. Results Three hundred twenty-one patients were included in this study. Clinical data was achieved from a prospective patient database. In univariate survival analysis, elevated systemic immune-inflammation index was found to be significantly associated with shortened patients' overall survival (p = 0.007). In multivariate survival analysis, systemic immune-inflammation index remained an independent prognostic factor for overall survival (p = 0.004). No statistical significance could be found for platelet to lymphocyte ratio and neutrophil to lymphocyte ratio in multivariate analysis. Furthermore, area under the curve analysis showed a higher prognostic significance for systemic immune-inflammation index, compared to platelet to lymphocyte ratio and neutrophil to lymphocyte ratio. Conclusion: A high systemic immune-inflammation index is an independent, preoperative available prognostic factor in patients with resectable pancreatic ductal adenocarcinoma and is superior to platelet to lymphocyte ratio and neutrophil to lymphocyte ratio for predicting overall survival in pancreatic ductal adenocarcinoma patients

    Structure and function of claudins

    Get PDF
    AbstractClaudins are tetraspan transmembrane proteins of tight junctions. They determine the barrier properties of this type of cell–cell contact existing between the plasma membranes of two neighbouring cells, such as occurring in endothelia or epithelia. Claudins can completely tighten the paracellular cleft for solutes, and they can form paracellular ion pores. It is assumed that the extracellular loops specify these claudin functions. It is hypothesised that the larger first extracellular loop is critical for determining the paracellular tightness and the selective ion permeability. The shorter second extracellular loop may cause narrowing of the paracellular cleft and have a holding function between the opposing cell membranes. Sequence analysis of claudins has led to differentiation into two groups, designated as classic claudins (1–10, 14, 15, 17, 19) and non-classic claudins (11–13, 16, 18, 20–24), according to their degree of sequence similarity. This is also reflected in the derived sequence-structure function relationships for extracellular loops 1 and 2. The concepts evolved from these findings and first tentative molecular models for homophilic interactions may explain the different functional contribution of the two extracellular loops at tight junctions

    Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult

    Get PDF
    AbstractObjective: Hyperoxic cardiopulmonary bypass is widely used during cardiac operations in the adult. This management may cause oxygenation injury induced by oxygen-derived free radicals and nitric oxide. Oxidative damage may be significantly limited by maintaining a more physiologic oxygen tension strategy (normoxic cardiopulmonary bypass). Methods: During elective coronary artery bypass grafting, 40 consecutive patients underwent either hyperoxic (oxygen tension = 400 mm Hg) or normoxic (oxygen tension = 140 mm Hg) cardiopulmonary bypass. At the beginning and the end of bypass this study assessed polymorphonuclear leukocyte elastase, nitrate, creatine kinase, and lactic dehydrogenase, antioxidant levels, and malondialdehyde in coronary sinus blood. Cardiac index was measured before and after cardiopulmonary bypass. Results: There was no difference between groups with regard to age, sex, severity of disease, ejection fraction, number of grafts, duration of cardiopulmonary bypass, or ischemic time. Hyperoxic bypass resulted in higher levels of polymorphonuclear leukocyte elastase (377 ± 34 vs 171 ± 32 ng/ml, p = 0.0001), creatine kinase 672 ± 130 vs 293 ± 21 U/L, p = 0.002), lactic dehydrogenase (553 ± 48 vs 301 ± 12 U/L, p = 0.003), antioxidants (1.97 ± 0.10 vs 1.41 ± 0.11 mmol/L, p = 0.01), malondialdehyde (1.36 ± 0.1 μmol/L, p = 0.005), and nitrate (19.3 ± 2.9 vs 10.1 ± 2.1 μmol/L, p = 0.002), as well as reduction in lung vital capacity (66% ± 2% vs 81% ± 1%, p = 0.01) and forced 1-second expiratory volume (63% ± 10% vs 93% ± 4%, p = 0.005) compared with normoxic management. Cardiac index after cardiopulmonary bypass at low filling pressure was similar between groups (3.1 ± 0.2 vs 3.3 ± 0.3 L/min per square meter). [Data are mean ± standard error (analysis of variance), with p values compared with an oxygen tension of 400 mm Hg. Conclusions: Hyperoxic cardiopulmonary bypass during cardiac operations in adults results in oxidative myocardial damage related to oxygen-derived free radicals and nitric oxide. These adverse effects can be markedly limited by reduced oxygen tension management. The concept of normoxic cardiopulmonary bypass may be applied to surgical advantage during cardiac operations. (J Thorac Cardiovasc Surg 1998;116:327-34

    MK2 and ETV1 Are Prognostic Factors in Esophageal Adenocarcinomas

    Get PDF
    Background. Esophageal cancer is ranked in the top ten of diagnosed tumors worldwide. Even though improvements in survival could be noticed over the last years, prognosis remains poor. ETS translocation variant 1 (ETV1) is a member of a family of transcription factors and is phosphorylated by mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2). Aim of this study was to evaluate the prognostic role of MK2 and ETV1 in esophageal cancer. Methods. Consecutive patients that underwent surgical resection at the department of surgery at the Medical University of Vienna between 1991 and 2012 were included into this study. After microscopic analysis, tissue micro arrays (TMAs) were created and immunohistochemistry was performed with antibodies against MK2 and ETV1. Results. 323 patients were included in this study. Clinical data was achieved from a prospective patient data base. Nuclear overexpression of MK2 was observed in 143 (44.3%) cases for nuclear staining and in 142 (44.0%) cases a cytoplasmic overexpression of MK2 was observed. Nuclear and cytoplasmic ETV1 overexpression was detected in 20 cases (6.2%) and 30 cases (9.3%), respectively. In univariate survival analysis, cMK2 and nETV1 were found to be significantly associated with patients' overall survival. Whereas overexpression of cMK2 was associated with shorter, nETV1 was associated with longer overall survival. In multivariate survival analysis, both cMK2 and nETV1 were found to be independent prognostic factors for the subgroup of EAC as well. Discussion. Expression of MK2 and ETV1 are prognostic factors in patients, with esophageal adenocarcinoma

    Die Potenziale der Energieeinsparung in der Abwasserwirtschaft

    Get PDF
    Welche Potenziale birgt die Abwasserwirtschaft im Sinne der Klimaschutzziele? Und welche rechtlichen Rahmenbedingungen sind dabei zu berücksichtigen? Durch innovative Ansätze sowie die Einbindung in den Energiemarkt können erhebliche Effizienzpotenziale ausgeschöpft werden

    Catalytic decomposition of formic acid in a fixed bed reactor – an experimental and modelling study

    Get PDF
    Formic acid is one of the key components in green chemistry being involved in energy storage, production of chemical intermediates and fuel components. Therefore the knowledge of its stability is of crucial importance and a systematic study of its decomposition is needed. The kinetics of formic acid decomposition to hydrogen and carbon dioxide was investigated in a laboratory-scale fixed bed reactor at 150–225 °C and atmospheric pressure. Palladium nanoparticles deposited on porous active carbon Sibunit were used as the heterogeneous catalyst. The catalyst was characterized by nitrogen physisorption and high-resolution transmission electron microscopy. The average palladium nanoparticle size was 5–6 nm. The impacts of mass transfer resistance and formic acid dimerization were negligible under the reaction conditions. Prolonged experiments revealed that the catalyst had a good stability. Hydrogen and carbon dioxide were the absolutely dominant reaction products, whereas the amounts of carbon monoxide and water were negligible. The experimental data were described with three kinetic models: first order kinetics, two-step adsorption-reaction model and multistep adsorption-decomposition model of formic acid. The multistep model gave the best description of the data.</p

    On the Interaction of Clostridium perfringens Enterotoxin with Claudins

    Get PDF
    Clostridium perfringens causes one of the most common foodborne illnesses, which is largely mediated by the Clostridium perfringens enterotoxin (CPE). The toxin consists of two functional domains. The N-terminal region mediates the cytotoxic effect through pore formation in the plasma membrane of the mammalian host cell. The C-terminal region (cCPE) binds to the second extracellular loop of a subset of claudins. Claudin-3 and claudin-4 have been shown to be receptors for CPE with very high affinity. The toxin binds with weak affinity to claudin-1 and -2 but contribution of these weak binding claudins to CPE-mediated disease is questionable. cCPE is not cytotoxic, however, it is a potent modulator of tight junctions. This review describes recent progress in the molecular characterization of the cCPE-claudin interaction using mutagenesis, in vitro binding assays and permeation studies. The results promote the development of recombinant cCPE-proteins and CPE-based peptidomimetics to modulate tight junctions for improved drug delivery or to treat tumors overexpressing claudins
    • …
    corecore