157 research outputs found
Reconstruction of long-distance bird migration routes using advanced machine learning techniques on geolocator data
Geolocators are a well-established technology to reconstruct migration routes of animals that are too small to carry satellite tags (e.g. passerine birds). These devices record environmental light-level data that enable the reconstruction of daily positions from the time of twilight. However, all current methods for analysing geolocator data require manual pre-processing of raw records to eliminate twilight events showing unnatural variation in light levels, a step that is time-consuming and must be accomplished by a trained expert. Here, we propose and implement advanced machine learning techniques to automate this procedure and we apply them to 108 migration tracks of barn swallows (Hirundo rustica). We show that routes reconstructed from the automated pre-processing are comparable to those obtained from manual selection accomplished by a human expert. This raises the possibility of fully automating light-level geolocator data analysis and possibly analysing the large amount of data already collected on several species
The shape of a moving fluxon in stacked Josephson junctions
We study numerically and analytically the shape of a single fluxon moving in
a double stacked Josephson junctions (SJJ's) for various junction parameters.
We show that the fluxon in a double SJJ's consists of two components, which are
characterized by different Swihart velocities and Josephson penetration depths.
The weight coefficients of the two components depend on the parameters of the
junctions and the velocity of the fluxon. It is shown that the fluxon in SJJ's
may have an unusual shape with an inverted magnetic field in the second
junction when the velocity of the fluxon is approaching the lower Swihart
velocity. Finally, we study the influence of fluxon shape on flux-flow
current-voltage characteristics and analyze the spectrum of Cherenkov radiation
for fluxon velocity above the lower Swihart velocity. Analytic expression for
the wavelength of Cherenkov radiation is derived.Comment: 12 pages, 12 figure
Ordering and finite-size effects in the dynamics of one-dimensional transient patterns
We introduce and analyze a general one-dimensional model for the description
of transient patterns which occur in the evolution between two spatially
homogeneous states. This phenomenon occurs, for example, during the
Freedericksz transition in nematic liquid crystals.The dynamics leads to the
emergence of finite domains which are locally periodic and independent of each
other. This picture is substantiated by a finite-size scaling law for the
structure factor. The mechanism of evolution towards the final homogeneous
state is by local roll destruction and associated reduction of local
wavenumber. The scaling law breaks down for systems of size comparable to the
size of the locally periodic domains. For systems of this size or smaller, an
apparent nonlinear selection of a global wavelength holds, giving rise to long
lived periodic configurations which do not occur for large systems. We also
make explicit the unsuitability of a description of transient pattern dynamics
in terms of a few Fourier mode amplitudes, even for small systems with a few
linearly unstable modes.Comment: 18 pages (REVTEX) + 10 postscript figures appende
Managerial judgment and forecast combination: An experimental study
This paper examines the role of managerial judgment in forming a final forecast, or judging the achievability of a critical level of sales, when multiple forecasts or opinions are available to the decision maker. Several factors that can help improve the quality of human intervention are identified and incorporated in a decision aid. Experimental results show that aided combination can help the decision maker exploit her relevant private information and mitigate the generally observed negative effects of human intervention. Further, the results suggest that emphasizing expected sales, even when the organization is primarily interested in go/no-go decisions, helps improve performance. Several suggestions for future research are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47133/1/11002_2004_Article_BF00993954.pd
MMN and Differential Waveform
A mismatch negativity response (MMN) and a new differential waveform were derived in an effort to evaluate a neural refractory or recovery effect in adult listeners. The MMN was elicited using oddball test runs in which the standard and deviant stimuli differed in frequency. To derive the differential waveform, the same standard and deviant stimuli were presented alone. MMN responses were obtained by subtracting the averaged responses to standards from the deviants. The differential waveforms were obtained by subtracting the averaged responses to standards presented alone from deviants presented alone. Scalp topography for the MMN and differential waveforms were similar. A significant (p < .05) positive and negative correlation was found between the earlier and later components of the bimodal MMN and the N1 and P2 component of the differential waveform, respectively. Further, N1 and P2 of the differential waveform were significant (p < .05) predictor variables of early and late peak amplitudes of the MMN. These results suggest that refractory effects may overlay/modify the morphology of the MMN waveform
Stochastic thermodynamics of holonomic systems
International audienc
Effect of compost-, sand-, or gypsum-amended waste foundry sands on turfgrass yield and nutrient content
To prevent the 7 to 11 million metric tons of waste foundry
sand (WFS) produced annually in the USA from entering
landfi lls, current research is focused on the reuse of WFSs as
soil amendments. Th e eff ects of diff erent WFS-containing
amendments on turfgrass growth and nutrient content were
tested by planting perennial ryegrass (Lolium perenne L.) and
tall fescue (Schedonorus phoenix (Scop.) Holub) in diff erent
blends containing WFS. Blends of WFS were created with
compost or acid-washed sand (AWS) at varying percent by
volume with WFS or by amendment with gypsum (9.6 g
gypsum kg–1 WFS). Measurements of soil strength, shoot and
root dry weight, plant surface coverage, and micronutrients (Al,
Fe, Mn, Cu, Zn, B, Na) and macronutrients (N, P, K, S, Ca,
Mg) were performed for each blend and compared with pure
WFS and with a commercial potting media control. Results
showed that strength was not a factor for any of the parameters
studied, but the K/Na base saturation ratio of WFS:compost
mixes was highly correlated with total shoot dry weight for
perennial ryegrass (r = 0.995) and tall fescue (r = 0.94). Th is was
further substantiated because total shoot dry weight was also
correlated with shoot K/Na concentration of perennial ryegrass
(r = 0.99) and tall fescue (r = 0.95). A compost blend containing
40% WFS was determined to be the optimal amendment for
the reuse of WFS because it incorporated the greatest possible
amount of WFS without major reduction in turfgrass growth
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
Meta-analysis of type 2 Diabetes in African Americans Consortium
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
- …