1,106 research outputs found

    Birth attendant choice and satisfaction with antenatal care: the role of birth philosophy, relational style, and health self-efficacy

    Get PDF
    The purpose of this study was to examine the association of women’s birth‐related beliefs and expectations with the choice of a midwife or obstetrician birth attendant, and her satisfaction with antenatal care. Data were collected from 133 women with a low‐risk pregnancy who had consultations with their chosen birth attendant, and who lived in one of four Canadian provinces that publicly funded midwifery. A new birth philosophy scale was developed and tested, with natural and medical birth philosophies emerging as separate factors. Univariate analyses indicated that women with a midwife scored higher on natural birth philosophy, health self‐efficacy, egalitarian relational style preference, and openness than women with an obstetrician as caregiver. Multivariate analysis revealed that natural birth philosophy was the only significant factor distinguishing the choice of birth attendant. Women with a midwife scored higher on all satisfaction dimensions, and natural birth philosophy was a significant correlate of satisfaction. Findings suggest that women’s beliefs about pregnancy and childbirth are more sophisticated than a simple dichotomy of the natural versus the medical, and highlight the importance of ‘fit’ between a woman and her maternity caregiver

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    Surface Elevation and Sedimentation Dynamics in the Ganges-Brahmaputra Tidal Delta Plain, Bangladesh: Evidence for Mangrove Adaptation to Human-Induced Tidal Amplification

    Get PDF
    In the Ganges-Brahmaputra (G-B) delta, periodic flooding of the land surface during the tidal cycle coupled with enormous sediment delivery during the monsoon promotes sediment accretion and surface elevation gain through time. However, over the past several decades, widespread embankment (“polder”) construction in the GB tidal delta plain has led to numerous environmental disturbances, including channel siltation and tide range amplification. While previous research indicates that rates of sediment accretion are relatively high in the G-B tidal delta plain, it remains unclear if and how surface elevation is maintaining pace with relative sea-level rise (RSLR) in this region. In this study, we utilize an array of surface elevation tables, sediment traps, and groundwater piezometers to provide longitudinal trends of sedimentation and elevation dynamics with respect to local platform elevation and associated hydroperiod. Two hydro-geomorphic settings of the Sundarbans mangrove forest are compared: higher elevation stream-bank and lower elevation interior. Seasonal measurements over a time span of 5 years reveal that elevation gain is occurring in all settings, with the highest rates observed at elevated stream-bank zones. Elevation gain occurs primarily in response to sediment accretion, with possible minor contributions from pore-water storage and swelling of clay minerals during the monsoon season (i.e., belowground biomass and organic contribution is minimal). As a result, elevation loss and shallow subsidence in the G-B delta is unlikely to be caused by compaction of organic-rich soils, but rather appears to be controlled by seasonal lowering of the groundwater table and compaction of clay minerals. Rates of surface elevation gain in the Sundarbans greatly exceed rates of RSLR and more closely follow rates of RSLR augmented from tide range amplification, indicating that this landscape is adapting to human-induced environmental change. The proceedings of this study underscore the adaptability of the natural G-B tidal delta plain to local environmental disturbances, with the caveat that these defenses may be lost to future upstream reductions in sediment supply

    Sugar alcohol provides imaging contrast in cancer detection

    Get PDF
    Clinical imaging is widely used to detect, characterize and stage cancers in addition to monitoring the therapeutic progress. Magnetic resonance imaging (MRI) aided by contrast agents utilizes the differential relaxivity property of water to distinguish between tumorous and normal tissue. Here, we describe an MRI contrast method for the detection of cancer using a sugar alcohol, maltitol, a common low caloric sugar substitute that exploits the chemical exchange saturation transfer (CEST) property of the labile hydroxyl group protons on maltitol (malCEST). In vitro studies pointed toward concentration and pH-dependent CEST effect peaking at 1?ppm downfield to the water resonance. Studies with control rats showed that intravenously injected maltitol does not cross the intact blood-brain barrier (BBB). In glioma carrying rats, administration of maltitol resulted in the elevation of CEST contrast in the tumor region only owing to permeable BBB. These preliminary results show that this method may lead to the development of maltitol and other sugar alcohol derivatives as MRI contrast agents for a variety of preclinical imaging applications

    Lack of Mutual Respect in Relationship The Endangered Partner

    Get PDF
    Violence in a relationship and in a family setting has been an issue of concern to various interest groups and professional organizations. Of particular interest in this article is violence against women in a relationship. While there is an abundance of knowledge on violence against women in general, intimate or partner femicide seems to have received less attention. Unfortunately, the incidence of violence against women, and intimate femicide in particular, has been an issue of concern in the African setting. This article examines the trends of intimate femicide in an African setting in general, and in Botswana in particular. The increase in intimate femicide is an issue of concern, which calls for collective effort to address. This article also examines trends offemicide in Botswana, and the antecedents and the precipitating factors. Some studies have implicated societal and cultural dynamics as playing significant roles in intimate femicide in the African setting. It is believed that the patriarchal nature of most African settings and the ideology of male supremacy have relegated women to a subordinate role. Consequently, respect for women in any relationship with men is lopsided in favor of men and has led to abuse of women, including intimate femicide. Other militating factors in intimate femicide ,are examined and the implications for counseling to assist the endangered female partner are discussed

    Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data

    Get PDF
    Wetlands are a major emission source of methane (CH4) globally. In this study, we evaluate wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite. Two JULES wetland emission estimates are investigated: (a) from an offline run driven with Climatic Research Unit–National Centers for Environmental Prediction (CRU-NCEP) meteorological data and (b) from the same offline run in which the modelled wetland fractions are replaced with those derived from the Global Inundation Extent from Multi-Satellites (GIEMS) remote sensing product. The mean annual emission assumed for each inventory (181 Tg CH4 per annum over the period 1999–2007) is in line with other recently published estimates. There are regional differences as the unconstrained JULES inventory gives significantly higher emissions in the Amazon (by ~36 Tg CH4 yr−1) and lower emissions in other regions (by up to 10 Tg CH4 yr−1) compared to the JULES estimates constrained with the GIEMS product. Using the UK Hadley Centre's Earth System model with atmospheric chemistry (HadGEM2), we evaluate these JULES wetland emissions against atmospheric observations of methane. We obtain improved agreement with the surface concentration measurements, especially at high northern latitudes, compared to previous HadGEM2 runs using the wetland emission data set of Fung et al. (1991). Although the modelled monthly atmospheric methane columns reproduce the large-scale patterns in the SCIAMACHY observations, they are biased low by 50 part per billion by volume (ppb). Replacing the HadGEM2 modelled concentrations above 300 hPa with HALOE–ACE assimilated TOMCAT output results in a significantly better agreement with the SCIAMACHY observations. The use of the GIEMS product to constrain the JULES-derived wetland fraction improves the representation of the wetland emissions in JULES and gives a good description of the seasonality observed at surface sites influenced by wetlands, especially at high latitudes. We find that the annual cycles observed in the SCIAMACHY measurements and at many of the surface sites influenced by non-wetland sources cannot be reproduced in these HadGEM2 runs. This suggests that the emissions over certain regions (e.g. India and China) are possibly too high and/or the monthly emission patterns for specific sectors are incorrect. The comparisons presented in this paper show that the performance of the JULES wetland scheme is comparable to that of other process-based land surface models. We identify areas for improvement in this and the atmospheric chemistry components of the HadGEM Earth System model. The Earth Observation data sets used here will be of continued value in future evaluations of JULES and the HadGEM family of models

    Single and vertically coupled type II quantum dots in a perpendicular magnetic field: exciton groundstate properties

    Full text link
    The properties of an exciton in a type II quantum dot are studied under the influence of a perpendicular applied magnetic field. The dot is modelled by a quantum disk with radius RR, thickness dd and the electron is confined in the disk, whereas the hole is located in the barrier. The exciton energy and wavefunctions are calculated using a Hartree-Fock mesh method. We distinguish two different regimes, namely d<<2Rd<<2R (the hole is located at the radial boundary of the disk) and d>>2Rd>>2R (the hole is located above and below the disk), for which angular momentum (l)(l) transitions are predicted with increasing magnetic field. We also considered a system of two vertically coupled dots where now an extra parameter is introduced, namely the interdot distance dzd_{z}. For each lhl_{h} and for a sufficient large magnetic field, the ground state becomes spontaneous symmetry broken in which the electron and the hole move towards one of the dots. This transition is induced by the Coulomb interaction and leads to a magnetic field induced dipole moment. No such symmetry broken ground states are found for a single dot (and for three vertically coupled symmetric quantum disks). For a system of two vertically coupled truncated cones, which is asymmetric from the start, we still find angular momentum transitions. For a symmetric system of three vertically coupled quantum disks, the system resembles for small dzd_{z} the pillar-like regime of a single dot, where the hole tends to stay at the radial boundary, which induces angular momentum transitions with increasing magnetic field. For larger dzd_{z} the hole can sit between the disks and the lh=0l_{h}=0 state remains the groundstate for the whole BB-region.Comment: 11 pages, 16 figure

    Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique

    Full text link
    The potential energy surface (PES) of Lennard-Jones clusters is investigated using the activation-relaxation technique (ART). This method defines events in the configurational energy landscape as a two-step process: (a) a configuration is first activated from a local minimum to a nearby saddle-point and (b) is then relaxed to a new minimum. Although ART has been applied with success to a wide range of materials such as a-Si, a-SiO2 and binary Lennard-Jones glasses, questions remain regarding the biases of the technique. We address some of these questions in a detailed study of ART-generated events in Lennard-Jones (LJ) clusters, a system for which much is already known. In particular, we study the distribution of saddle-points, the pathways between configurations, and the reversibility of paths. We find that ART can identify all trajectories with a first-order saddle point leaving a given minimum, is fully reversible, and samples events following the Boltzmann weight at the saddle point.Comment: 8 pages, 7 figures in postscrip
    • 

    corecore